Automated Discovery of Mimicry Attacks

Jonathon T. Giffin, Somesh Jha, and Barton P. Miller

Computer Sciences Department, University of Wisconsin
{giffin,jha, bart}@s.w sc. edu

Abstract. Model-based anomaly detection systems restrict prograsnution
by a predefined model of allowed system call sequences. Tsetems are
useful only if they detect actual attacks. Previous resedeveloped manually-
constructed mimicry and evasion attacks that avoided tieteby hiding a ma-
licious series of system calls within a valid sequence albly the model. Our
work helps to automate the discovery of such attacks. We witly two mod-
els: a program model of the application’s system call bedraand a model of
security-critical operating system state. Given unsafestag& configurations that
describe the goals of an attack, we then find system call segaeallowed as
valid execution by the program model that produce the uneafdéigurations.
Our experiments show that we can automatically find attagkeseces in models
of programs such asu- f t pd andpasswd that previously have only been dis-
covered manually. When undetected attacks are presentegeehtly find the
sequences with less than 2 seconds of computation.

Key words: IDS evaluation, model checking, attacks, model-based ahodetection

1 Introduction

A model-based anomaly detector restricts allowed progreeaigion by a predefined
model of acceptable behavior [6,8,12,14,19,23]. Thesesyscompare a sequence of
system calls generated by the executing program againstdkel. The detector clas-
sifies any system call sequence that deviates from the msdehbcious and indicative
of a program exploit. The ability of the model to detect ataitacks depends upon the
implicit assumption that attacks always appear differkahtvalid execution.

An attack that is accepted by the model as valid will not caars@nomaly and
will not be detected (Fig. 1). Mimicry and evasion attacksidwdetection by trans-
forming an attack sequence of system calls so that it is aeddyy a program model
yet still carries out the same malicious action. Previoseaech found examples of
mimicry attacks against high-privilege processes rdstiliby a model-based detec-
tor [20-22,24]. However, the attacks were constructed ral@ynby iterating between an
attack sequence and a program model until the attack coutublde to appear normal.
Although these manually-constructed attacks served asaessful proof-of-concept,
manual approaches remain unsuitable as a general attack iy strategy.

This paper automates the discovery of mimicry attacks. @ent is not to propose
a new detection system but rather to provide the means taaeshn existing program
model’s ability to detect attacks. We address two primamgsgons:

\
Detected attacks
Undetected attacks

Fig. 1. If X' is the set of system calls, thefi* is the infinite set of all possible system call se-
quences. A program modé&y accepts a subset of system call sequeddéd) as valid program
execution. Any attack sequence accepted as valid is a mastsedk.

— What attacks does a program model fail to detect?
— What attacks can we prove that a model will always detect?

Finding missed attacks reveals the weaknesses of a progoatel rand indicates that
a model-based detector provides insufficient securitytat particular program. Con-
versely, proving that a model always detects an attack kgsttas strong indications
that a computer system using model-based detection isesesxen when an attacker
attempts to hide an attack within legitimate execution.

An attack is any sequence of system calls that produces aimaichange to the
operating system (OS). For a given attack sequence, akeattean produce variations
of the sequence having the same attack effect by insertimgresous system calls into
the sequence or replacing existing system calls with @temm sequences having the
same effect. A program model that detects one sequence toayatlifferent, obfus-
cated sequence. The net result remains the same: the mitgltd fdetect an attack. We
must verify that a model detects each of the attack variants.

We use a novel formalism that requires neither knowledgeadiqular attack se-
qguences nor knowledge of particular obfuscations thatthide those sequences from
a detector. We develop a model of an OS with respect to itsrisgauitical state and
then characterize attacks only by their effect upon the @& [Everages a key insight:
the commonality among the obfuscated attack sequencestiththsequences are se-
mantically equivalent with respect to their malicious effepon the OSAlthough we
manually produce the OS model and the definitions of mal&io8 state, this is a one-
time effort that is reused for subsequent analyses of alleisoof programs executing
on that operating system.

The program model specifies what sequences of system callllawed to exe-
cute. By specifying how each system call transforms the @&t variables, we are
able to compute the set of OS configurations reachable wheongagm’s execution
is constrained by the model. We apply model checking [4] tiverthat no reachable
configuration corresponds to the effect of an attack. If tte@pfails, then some system
call sequence allowed by the model produces the malicidesteThe model checker
reports this sequence as a counter-example that causecbtifagfail, providing pre-
cisely an undetected attack as output. In terms of Fig. 1, ediading system call
sequences containedI{ M) N Attacks without explicitly computing the sed¢tacks
of malicious system call sequences.

This approach automates the previous manual effort of fqndimmicry attacks. In
experiments, we show that we can automatically discovemihgcry attack against the
Stide [8] model formw- f t pd [24] and the evasion attacks against the Stide models for
passwd, r est or e, andt r acer out e [20-22]. The model checking process com-
pleted in about 2 seconds or less when undetected attackspresent in the models.
When a model is sufficiently strong to detect an attack, thdehohecking algorithm
will report that no attack sequence could be found. Thisiregexhaustive search and
completed in 75 seconds or less for all attacks detectedéyntidels of the four test
programs. Note that proofs of successful detection holgdwith respect to our abstrac-
tion of the OS state. If this abstraction is erroneous orimgiete, undetected attacks
may still be present when using the model to protect a complgérating system.

Our work addresses outstanding problems in model-basedapaetection. We
provide a method for model evaluation that exhaustivelyctess for sequences of sys-
tem calls allowed as valid by a program model but that indunalicious configuration
of OS state. Although our current work evaluates the cortesdnsitive Stide model,
we have designed our system so that it can evaluate any pnagaalel expressible as
a context-sensitive pushdown automaton (PDA). One of oug-kerm goals, not yet
realized, is to compare the detection capabilities of thifi model designs proposed in
the literature.

In summary, this paper makes the following contributions:

— Automated discovery of mimicry attackége use model checking to find sequences
of system calls accepted as valid by a program model but &hvatimalicious effects
upon the operating system. Our system produces the exastrsegs of system
calls, with arguments, that comprise the undetected attack

— A system design where attack sequences and obfuscatichaotgee knownOur
system does not require that attack system call sequenée®tha or enumerated.
In fact, we strive for the opposite: our system will autoroally find new, unknown
attack sequences accepted by a program model and will peadase sequences as
output. Likewise, we automatically find the obfuscationsdiby attackers to hide
attack system calls within a legitimate sequence. As a tesut approach is not
limited by a priori knowledge of attacker behavior.

Section 2 presents related work in manual attack analysigidh 3 gives an over-
view of our system. Section 4 describes the operating syafgstraction and Sect. 5
explains how a model checker uses that abstraction to findtaottd attacks in a pro-
gram model. Section 6 presents the architecture of our imgiteation, and Sect. 7 uses
that implementation to demonstrate experimentally thaherxe automated the previ-
ously manual process of discovering undetected attacks.

2 Related Work

The seminal research on mimicry [9, 24] and evasion atta28s42] demonstrated a
critical shortcoming of model-based anomaly detectiotaéiters can avoid detection
by altering their attacks to appear as a program’s normaludian. These altered at-
tacks are sequences of system calls allowed by a programlrhotthat still cause

malicious execution. Previous work constructed mimicrg amasion attacks by con-
verting some detected attack system call sequehniteo an equivalent undetected se-
quenced’. If AandA’ are semantically equivalent and is a sequence allowed by the
program model, thed’ is a successful, undetected attack.

Determining that a model expressed as a pushdown automateptad’ is a com-
putable intersection operation provided thdtis regular; finding a sequencd’ to
intersect is a manual, incomplete procedure with seveeaviacks:

— The procedure requires known attack sequentes

— The equivalence of two system call sequences is not well elfiror example: an
undetected attack sequendé may include legitimate execution behavior that is
irrelevant to the original attack sequendéeAre A and A’ equivalent?

— There is no clear operational direction to find mimicry andseen attacks auto-
matically. Identifying two sequences as equivalent agaesis a manual procedure
based on intuition. There was no algorithmic process amenatautomation.

Our model evaluation takes a different approach that acdatie state of the art. By
defining attacks only by their malicious effects upon thetesys our work is not re-
stricted to known attack sequences of system calls or kndtackatransformations
producing evasive attacks. Attack sequences are not paineahput to our system;
in fact, our work produces the sequences as its output. Wéucther define two sys-
tem call sequences as equivalent with respect to the attabky produce the same
malicious effect upon the operating system. This formal@uovides the operational
direction allowing our work to automate the procedure ofifigcdundetected attacks.

Previous attempts have been made to quantify the abilityrobdel to detect at-
tacks. Average branching facto(ABF) [23] calculates, for any finite-state machine
model, the average opportunity for an attacker to undetgcexecute a malicious
system call during a program’s execution. A predefined fianing divides the set of
system calls into “safe” calls and “potentially maliciousdlls. As the runtime monitor
follows paths through the automaton in response to systéisiexacuted by the pro-
gram, it looks ahead one transition to determine the numbpotentially malicious
calls that would be allowed as the next operation. The aegbagnching factor is then
the sum of the potentially malicious calls divided by the fn@mof system call oper-
ations verified during execution. An extension to averagsbthing factor, called the
average reachability measuf@RM) [10], similarly evaluated pushdown automaton
models.

Although these measurements provide a convenient nuneaie gnabling model
comparisons, they do not provide a clear measure of a maatslisy to actually detect
attacks. These metrics do not effectively embody an attacibilities:

— An attacker may alter a program’s execution to reach a poriothe program
model that admits an attack sequence by first passing thrasgigjuence of safe
system calls. By only looking at the first system call brangtaway from a benign
execution path, ABF and ARM fail to show the strength of onelel@ver another.

— The ABF or ARM value computed depends upon the benign exatytath fol-
lowed and hence upon program input. A complete evaluatidheomodel requires
computing the score along all possible execution paths iShéxtremely challeng-
ing and itself forms an entire body of research in the progesting area.

— Attacks frequently are comprised of a sequence of systels ddde previous met-
rics look at each system call in isolation and have no way tratterize longer
attack sequences.

Consequently, these metrics provide limited insight into@del’s ability to detect at-
tacks. Our work improves the evaluation of a program modstack detection ability
by decoupling the evaluation from both a particular exexupath and from the need
to describe malicious activity as unsafe system calls.

MOPS [3] is similar to our work in the first aspect: it statlgathecks a program
model to determine properties of the model. Unlike our wbidvever, MOPS charac-
terizes unsafe or attack behavior as regular expressi@rssggtem calls and requires
users to provide a database of malicious system call pattéust as commercial virus
scanners syntactically match malicious byte sequencessigaogram code, MOPS
syntactically matches unsafe system call sequences agansgram model. Likewise,
when a new malicious behavior is discovered, the databasestém call patterns must
be updated. Conversely, by understanding the semanticgstérs calls, the system
in our paper does not require known malicious system calleeces, and it in fact
automatically discovers them for the user. Our work is ned tio known patterns of
malicious system call execution.

Model checking is a generic technique used to verify progedf state transition
systems, and it has been applied previously to computeriseddessen et al. [2] de-
scribed how model checkers can verify safety propertiep¢kpressed in linear-time
temporal logic (LTL). They verified the properties over ataied control-flow graphs,
where both the graph and the annotations expressing septojterties of the program
code came from some unspecified source. We analyze autathatonstructed pro-
gram models, and our model checking procedure automatidatives security prop-
erties of the model as it traverses the model’'s edges.

Guttman et al. used model checking to find violations of infation-flow require-
ments in SELinux policies [13]. They modeled the SELinuxigoénforcement engine
and the ways in which information may flow between multipleqasses via a file sys-
tem. They could then verify that any information flow was na¢eldl by a trusted process
on the system. Our work has a different goal: verificationadéty properties using an
OS model where system calls alter OS state.

Ramakrishnan and Sekar [15] used model checking to find vaihiléies in the
interaction of multiple processes. They abstracted thesfistem and specified each
program’s execution as a file system transformer. The progpecifications were com-
plicated by the need to characterize interprocess comratioiic Our work expands the
system abstraction to include the entire operating sysshifts the checked interface
from coarse-grained process execution down to system ealtshas no need to model
communication channels between processes.

Walker et al. used formal proof techniques to verify prolesrof a specification
of a UNIX security kernel [25]. This work is notable becauke tuthors rigorously
proved that the abstract specification of the kernel mattihedctual implementation.
As a result, properties proved using the abstraction alfdthee in the real operating
system. Due to the difficulty of producing proofs of corregeésifications, little other
research actually demonstrates that abstractions areaaeciVe adopt this simpler

approach: we produced our operating system abstractionatigand have not proved
it correct. As a result, discovered attacks or proofs of theeace of attacks hold only
with respect to the abstraction. A discovered attack carabéated by actually running

the system call sequence against a sandboxed operatimgnsy@onversely, if we do

not find any attack, then this provides good indication thatgrogram model is secure
even though this is not provably true in the real operatirgjesy.

3 Overview

We provide here an overview of model-based anomaly detedtioluding the attacker
threats addressed, context-sensitive program modelshamulirpose of attack discov-
ery.

3.1 Threat Model

Our system automatically constructs undetected attaakesags possible within a par-
ticular threat model. This threat model is simple and strong

Let X be the set of system calls invoking kernel operations. Ifigpamn P
is under attacker control, theR can generate any sequence of system calls
Ae X,

Attackers may subvert a vulnerable program’s executiongeaecution point, includ-

ing the point of process initialization. Attackers can tlahitrarily alter the code and
data of the program, and can even replace the program’&enémory image with an

image of their choosing. Alternatively, the attacker cordglace the disk image of a
program with, for example, a trojan before the OS loads thggam for execution. The
attacker can generate any sequence of system calls anthsyaitearguments, and the
operating system will execute the calls with the privile§éhe original program.

This threat model matches real-world attacks. In remotewi@n environments,
programs execute on remote, untrusted machines but sendense of remote system
calls back to a trusted machine for execution. An attackatrotling the remote host
can arbitrarily alter or replace the remote program. Thach#r’'s program image can
then send malicious system calls back to the trusted maétirexecution [11].

Common network-based attacks against server programsehavere restrictive
threat model. Attackers can subvert execution only at pahparticular program vul-
nerabilities and face greater restrictions in the attadedbat they can then execute. As
a result, if our system proves that a program model detecistack in the strong threat
model, it will also detect the attack in a more restrictivedalo However, successful
attacks discovered by our system are specific to the straegttimodel. Although the
program model would fail to detect the attack sequence avehd restricted threat
model, a restricted attacker may be unable to cause thegrogr execute that attack.
Our system currently does not make this determination atidayiort all attacks dis-
covered in the strong threat model.

Consider the example in Fig. 2. This is a vulnerable progtzem teads command
characters and filenames from user input. This input may cioome the network if

void main (void) {
char input[32];
gets(input);
if (input[0] == ‘x") {
setreuid(42, -1);
syslog(1, "Execing file");
execvé i nput +2, 0, 0);
} elseif (input[0] == *e") {
struct stat buf;
sysl og(1, "Echoing file");
stat(i nput +2, &buf);
int fd = open(input+2, ORDONLY);
void *filedata =
mmap(0, buf.st_size, PROT_READ, MAP_PRI VATE, fd, 0);
write(1, filedata, buf.st_size);
}
}

Fig. 2. Code example. We show system calls in boldface and librdty iceitalics. The unsafe
call togetsallows an attacker to execute arbitrary code.

the program is launched by a network services wrapper dasomnasi net d. The
command-code and argument input resembles the usage oapreguch as ftp servers
or http servers. Suppose that the program is executed witbdsbut inactive privilege:
its real and effective user IDs are a low-privilege user,thatsaved user ID is root. If
the input contains the command character ‘X', then the @nogdrops all of its saved
privilege and executes a filename given in the input. If thpitrcontains the command
character ‘e’, then the program echoes the contents of #igufde to its output, which
may be a network stream.

In our threat model, an attacker can arbitrarily alter thecetion of this program.
Perhaps the attacker exploits the vulnerajdtscall; perhaps they use an attack vector
that we have not considered. The attacker can cause theapnagrexecute any system
call, including system calls not contained in the originedgram code. The role of
host-based intrusion detection is to detect any such stda/program execution.

3.2 Program Model

Readers familiar with pushdown automaton (PDA) models niagtdo bypass this
section, as it presents background material and standaatiovopreviously used for
PDA-based program models.

Model-based anomaly detection restricts allowed exenttia precomputed model
of allowed behavior. A program mod@ll is a language acceptor of system call se-
guences and is an abstract representation of the prograpested execution behavior.
If X denotes the alphabet of system calls, tigd/) C X* denotes the language
accepted byM. A system call sequence ih(M) is valid; sequences outside(M)
indicate anomalous program execution. In this paper, wéeément a program model
as a non-deterministic pushdown automaton (PDA).

Definition 1. A pushdown automaton (PDA3 a tupleM = (S, XTI, 4, so, Zo, F),
where

— Sis a set of states;

— JYis a set of alphabet symbols;

— I'is a set of stack symbols;

-0 C{{s,7) > (s, y)|s€S,yeETUe,0 € XUe,s" €8S,7 € IMUe};
— 50 € Sin aninitial state;

— Zy € I'* is an initial stack configuration;

— F C Sis aset of final states.

A PDA model has close ties to program execution. A state spmeds to a program
point in the program’s code. The initial state correspondfié¢ program’s entry point.
The final states correspond to program termination poinisctwgenerally follow an
exit system call. The alphabet symbols are the system calls gieddoy a program as
it executes. The stack symbols are return addresses spgdiéywhere a function call
returns. The initial stackZ, is empty, as a program begins execution with no return
addresses on its call stack.

The transition relatiord describes valid control flows within a program. Our PDA
model has three types of transitions:

— System callsi(s,e¢) = (s',¢) for ¢ # € indicates that the program can generate
system calb when transitioning from stateto states’. The PDA stack of function
call return addresses remains unchanged.

— Function calls: (s,) % (s’,~) for v # € indicates that the program pushes return
addressy onto the call stack when transitioning from state s’. Here,s corre-
sponds to a function call-site in the program afdorresponds to the entry point
of the call’'s destination.

— Function returns: (s,v) % (s',¢) for v # € indicates that the program returns
from a function call and pops return addresgom the call stack. This transition
can be followed only when is the top symbol of the PDA stack. The state
corresponds to a program point containing a function reistruction ands’ is
the program point to which control is actually returned.

Many program model designs proposed in academic literaigr@ot presented as
pushdown automata. However, the generality of a PDA allosvcharacterize those
models as PDA suitable for analysis using the techniquesepted later in this paper.
The context-free languages recognized by PDA completeiyado the class of regular
languages. All program models of which we are are aware actyer regular or
context-free languages, and hence can always be charactési a PDA. This includes:

— window-based models, such as the Stide model [8] (Fig. 38)eodigraph model
[23] (Fig. 3b);

— non-deterministic finite automata (NFA) [12, 14,19, 23[Rc);

— bounded-stack PDAs [11];

— deterministic PDAs, such as the VPStatic model [6];

— stack-deterministic PDAs, such as the Dyck model [6]; and

— non-deterministic PDAs [23] (Fig. 3d).

read
setreuid® write read

write stat setreuid®
write
write
execv open exeﬁxﬁ’\sfft
mmay open &
write writel Tmmay éwrite
(a) Stide Model (b) Digraph Model (c) NFA Model (d) PDA Model

Fig. 3. Four different program models for the code of Fig. 2, eachresqed as a pushdown
automaton. For simplicity, we assume that getsfunction call generates the system aalad
and thesyslogfunction call generatesrite .

When a model accepts a regular language, we simply have @ and transitions in

§ are only of the form(s,¢) % (s, ¢). Although the experiments in Sect. 7 consider
the Stide model, a regular language acceptor, we interilyod@signed our system to
analyze pushdown automata so that it is relevant to a wideatin of program models
of varying strength.

Commensurate with our threat model, we assume that an atthak prior knowl-
edge of the particular program model used to constrain éxecaf a vulnerable pro-
gram. The security of the system then relies entirely upenathility of the program
model to detect attacks.

3.3 Finding Undetected Attacks

We have developed a model analysis system that evaluate&-d&§2d program model
and finds undetected attacks. Our design has three feafureso

— It operates automatically. A user must provide an initiagdime operating system
abstraction that can then be reused to analyze the modelyqgiragram execut-
ing on that operating system. This subsequent analysisresquo human input,
allowing the analysis to scale easily to large collectiolygrogram models.

— Attacks, which are sequences of system calls, do not neezlkadown. In fact, our
system provides attack sequences as output.

— System call arguments can significantly alter the semanéanimg of the calls.
When our system finds an undetected attack sequence of syatlsmt addition-
ally provides the system call arguments necessary to dffecittack.

We construct an abstraction of the operating system witha@go its security-critical
state. This abstraction can be repeatedly used to find attacke models of programs
that execute on that operating system. Consider a simplagea

Example 1.Running our tool for each of the four models in Fig. 3 shows tfuae de-
tect all attacks that execute a shell with root privilegee ol automatically identifies
a system call sequence, with arguments, that defeats eai#l:mo

read(0);
setreuid(0, 0);
write (0);
execvé'/bin/sh”);

Theread andwrite calls are nops that are irrelevant to the attack. S&euid call
alters OS state to gain root access, andettecvecall executes a shell with that access.

One of our long-term goals is to use discovered undetectadkat to guide the
future design of program models and intrusion detectiotesys. Comparing the un-
detected attack sequence with the original program codegof2Fsuggests a model
alteration that would eliminate this undetected attacthéfmodel constrains statically-
known system call argument values, then an attacker camutstectably use theet-
reuid call to set the effective user ID to root. Although the aterckemains able to
execute the shell, that shell will not have increased mgel

We will consider additional examples in Sect. 5.

4 Operating System Model

Given a program modeV/, answering the question first posed in Sectvhat attacks

doesM fail to detect? requires understanding of what “attack” means. Previoakw
defined attacks as known, malicious sequences of systes|24]l Directly searching
program models for these sequences unfortunately has avebaicks:

— An attacker could transform an attack sequence detectduelyrogram model into
a different sequence that produces the same malicioud éfiecs allowed by the
model. For example, meaninglesspsystem calls could be inserted into the attack,
and system calls such asite could be changed to other calls suchnamap. In
previous work, the onus of finding all attack variants wasrughe human.

— This approach poorly handles program models that monittr gstem calls and
system call arguments [11, 23]. Identifyingpsystem calls is not straightforward
when the allowed system call arguments are constraineddaytitel.

We decouple our approach from the need to know particuldesysall sequences
that execute attacks. Instead, we observe that regardi¢be gystem call sequence
transformations used by an attacker, their attack willistipart the same adverse effect
upon the operating system. It is precisely this adversegffiat characterizes an attack:
it captures the malicious intent of the attacker. The actyatem call sequence used
by the attacker to bring about their intent need not be knawariori, and in fact is
discovered automatically by our system.

To formalize attacks by their effect upon the operatingeystwe must first for-
malize the operating system itself. Our formalization leieé components:

— a set of state variables,
— a set of initial assignments to those variables, and
— a set of system call transition relations that alter theestatiables.

After developing the definitions of these components, wdlfirkefine attack effects.

4.1 State Variables

A collection of state variables model security-criticaleimal operating system state,
such as user IDs indicating process privilege, access psians for files in the filesys-

tem, and active file descriptors. A state variabléas a value in the finite domain
dom(v) which contains either boolean values or integer values.

Definition 2. The set of allstate variabless V. The set of alassignmentsf values
to variables inV is S. A configurationis a boolean formula ove¥ that characterizes
Zero or more assignments.

Model checking algorithms operate over boolean variabi@sables in a finite domain
are simply syntactic sugar and are represented internsillista of boolean variables.
We additionally allow variables to be aggregated into estayd C-style structures, both
of which our implementation automatically expands intolilets of variables.

Consider the example of the operating system’s per-prditeskescriptor table. We
abstract this structure as an array of file descriptors, e&wshich has a subset of actual
file descriptor data that we consider relevant to security:

FILEDESCRIPTORABLE : array [0 .. MAXFD] of FILEDESCRIPTOR

FILEDESCRIPTOR: struct of
INUSE : boolean

FORFILE :integer

CANREAD : boolean
CANWRITE : boolean
ATEOF : boolean

The INUSE field indicates whether or not this file descriptor is actiVee remaining
fields have meaning only for active descriptoreRFILE is an index into an array of
file structures, not shown here, that abstract the file sysBamREAD and CANWRITE
indicate whether the file descriptor can be used to read de e file pointed to by
the FORFILE field. ATEOF is true when the file descriptor’s offset is at the end ef th
file and allows us to distinguish between writes that ovaendata in the file and writes
that simply append data to the file.

Identifying what operating system data constitutes “siéguelevant state” is cur-
rently a manual operation. Whether the subsequent modekutieprocedure finds an
undetected attack or reports that no attack exists, thesdtseénold only with respect
to the chosen OS abstraction. An attack sequence is exézatadh can be validated
against the real operating system by actually running tteelatin a sandboxed envi-
ronment and verifying that it was successful. However, wiinenmodel checker finds

setuid (uid_t wid)

[uid # —1 A euid = 0 = ruid’ = uid A euid’ = wid A suid’ = wid) A (1)
[uid # —1 A euid # 0 A (ruid = wid V suid = uid) = euid = uid] A (2)
[uid = =1V (euid # 0 A ruid # wid A suid # uid) = true] (3)

}

Fig. 4. Specification for thesetuid system call. Unprimed variables denote preconditions that
must hold before the system call, and primed variables @gpastconditions that hold after the
system call. Any variable not explicitly altered by a postdition remains unchanged.

no attack, there is no tangible artifact that may be verifietelevant OS data is not
included in the abstraction, then our system may fail toaliec a mimicry attack. As

a result, the absence of an attack in the abstract OS prosidgsnce but not a mathe-
matical proof that the model will detect the attack when apag in a real OS.

The initial assignments of values to OS state variablesadggthe OS state config-
uration present when a process is initialized for execulfga write these assignments
as a boolean formulé over the state variablels; any assignment satisfyingj is a
valid initial state. In our work, we developed two differdrtolean formula for differ-
ent classes of programs. The formiiléor setuid root programs set the initial effective
user ID to root; the formula for all other programs set ther uBeto a low-privilege
user.

4.2 System Call Transformers

System calls transform the state variables. For each systéimwe provide a relation
specifying how that call changes state based upon the presgiate.

Definition 3. Letw be a system call. Recall th#t is the set of all OS state variables
and S is the set of all value assignments. The separfameter variablefor is A,
whereA, NV = @. Thesystem call transformdor = is a relationA, C .S x S.

In English, each system call transformer produces new @as>s of values to OS
state variables based upon the previous values of the OS BYat write each trans-
formation function as a collection of preconditions andtposditions that depend on
parameter variables. Preconditions are boolean formwkasio U A, and postcondi-
tions are boolean formulas over. If a precondition formula holds before the system
call executes, then the corresponding postcondition ftamill hold after the system
call.

Consider the example in Fig. 4. The specificationdetuid shows that the system
call has one parameter variable of typied_t , which is an integer valued type. The
boolean formula encodes three sets of preconditions aridgraditions. From line (1),
if the uid argument is valid and the effective user ID beforedbtuid call is root, then
after the call, the real, effective, and saved user IDs adrgeaiko the user ID specified
as the argument teetuid. Implicitly, all other OS state variables remain unchaniggd
the call. Line (2) handles the case of a non-root user cadletgid. If either the real or
saved user IDs match the argument value, then the effeciiel D is changed to that

value. Again, all other state is implicitly unchanged. L{i3¢ allowssetuid to be used
as a nop transition that does not change OS state when nékithiéme (1) nor line (2)
preconditions hold true. We note that line (3) is redundant@an be omitted from the
setuid specification; we show it here only to emphasize the abilityatuid to be used
as a nop.

We now have all components of the operating system absiracti

Definition 4. Theoperating system (OS) modsl2 = (V, I, A) whereV is the collec-
tion of OS state variabled, is a boolean formula ovel indicating the initial OS state
configuration, andA = {4, ..., A, } is the collection of system call transformers.

4.3 Attacks

An attack is a sequence of system calls that executes sonieioualaction against
the operating system. However, these sequences are nateurfittackers can pro-
duce an infinite number of obfuscated attack sequences bytimg extraneousjop
system calls into a known sequence and by changing attat&nsysalls into other
semantically-equivalent calls. Manual specification diiatattack sequences can be
incomplete, as there may be attack obfuscations not knowhetmdividual specifying
the attacks. We circumvent this problem by specifying thieat$ of attacks rather than
the sequences themselves.

Definition 5. Anattack effec€ is a boolean formula ovey'.

The formula& characterizes bad operating system configurations indécaf a
successful intrusion. It describes the attacker’s intedtthe effect of the attack upon
the OS. Any system call sequendehat takes the OS from an initial, safe configuration
satisfying/ to a configuration satisfying is then an attack sequence Afis allowed
by the program model, tha# is an undetected attack.

5 Automatic Attack Discovery

The role of automatic attack discovery is to determine if apgtem call sequences
accepted as valid execution by a program model will inducattatk configuratiog.

Let £ be an attack effect. The notatiafh—-& expresses a safety property in linear-
time temporal logic (LTL) that means “globall§,is never true”. A program model/
will detect any attack attempting to induce the effédf and only if M = O-£. That
is, within the executions allowed b/ interpreted in the OS modél, the attack goal
can never occur. The model checker attempts to prove thisuiartrue. If the proof
succeeds, then the attack goal could not be reached givesysiem call sequences
allowed by the program model. If the proof fails, then the elathecker has discovered
a system call sequence that induces the attack goal.

We consider several examples:

Example 2 (Expanded from Sect. 3 ExampleFlist, we find attacks that execute a
root-shell undetected by the four models of Fig. 3.

If the attack succeeds, then the executing image filbisn/ sh and the effective
user IDis 0:
€ rimage = /bin/sh A euid =0
This boolean expression expresses the effect of the attdbkrrthan any particular
sequence of system calls that produces the effect. Runninigol for each of the four
models shows that none detect the attack, as shown in S&ct. 3.

Example 3.Next, we try to find undetected attacks that write to the sy&@assword
file.
If this attack succeeds, then the filet ¢/ passwd will have been altered:

& : file[/ete/passwd].written = true

The tool automatically finds a successful attack againsbtgeaph and NFA models:

read(0);

setreuid(0, 0);

write (0);

stat(0, 0);

open(“/etc/passwd”, QWRONLY | O_.APPEND) = 3;
mmap(0, 0, 0, 0, 0, 0);

write (3);

The attack sequence first sets the effective user ID to rdothwthen allows the process
to open the password file and add a new user. fEaé, stat, mmap, and firstwrite
calls are all nops irrelevant to the attack.

Conversely, the tool discovers that the Stide and PDA mawiéllalways detect any
attack that tries to alter the password file. These modebspacm system call sequence
that ever has write privilege to the fileet ¢/ passwd.

Example 4.Finally, we try to find undetected attacks that add a new lexe! account
to the system and execute a user-level shell, with the eapestthat the attacker can
subsequently switch to high privilege via the new account.

This combines elements of Examples 2 and 3:

€ rimage = /bin/sh A file[/etc/passwd].written = true
The system finds an attack against the Digraph model:

read(0);

setreuid(0, 0)

write (0);

stat(0, 0);

open(“/etc/passwd”, QWRONLY | O_.APPEND) = 3;

mmap(0, 0, 0, 0, 0, 0);

write (3);

execvé'/bin/sh”);
The system proves that the Stide, NFA, and PDA models alttittes attack regardless
of any attempts to obfuscate a system call sequence. Thiglsre from the models: al-

though they accept sequences that open and write to a fijeditheot allow subsequent
execution of a different program.

PDA Program Modet—»
OS State Variables —» Moped
Initial Configuration —»| Compiler |—» ngttigx]vngb Cl\/rllodﬁl —> Attack Sequence
Syscall Specifications—» ecker

Attack Configuration—»

Fig. 5. Architecture.

6 Implementation

Model checking either proves that an unsafe OS configurai@mmot be reached in
a program model or provides a counter-example system ealé tthat produces the
unsafe configuration. As we are verifying transition systehat may be pushdown au-
tomata, we are limited in implementation options to pushuawedel checkers [5,17].
Moped [18] and Bebop [1] are interchangeable tools thatyaegbushdown systems.
Our implementation uses Moped simply because of its pulshdability.

When a context-sensitive program model is used to verifyemst of system calls
generated by an executing process, we call that model a pwshautomaton (PDA).
The system calls are the input tape and the PDA has final dteésorrespond to
possible program termination points. When we analyze a irtodesrify its ability to
detect attacks, we call the modgbashdown system

Definition 6. A pushdown system (PDS$ a tuple@Q = (S, X, I, so, Zo), where
each element of the tuple is defined as in Definition 1.

The definition of a PDS is identical to that of a PDA, with theeption that the PDS
has no final states and no input tape. A PDS is just a trans§istem used to analyze
properties of sequences and is not a language acceptordWepifies that no sequence
of system calls in the PDS will produce an unsafe operatistesy configuration.

The input to Moped is a collection of variables and a PDS wihea@h transition
in § is tagged with a boolean formula. The formula expressesopiitions over the
variables that are required to hold before traversing tamsition and postconditions
that hold after traversal. If no preconditions hold, thengdad will not traverse the
transition and will not alter the state variables. The Mopgalit language allows both
boolean and integer variables, although the integer imsadre represented internally
as ordered lists of boolean bits.

We have written a specification compiler that will producéd/&oped input files
from a PDA program model, the OS state variables, the in@&l configuration, the
system call transformers, and the attack that we wish togpiodetected (Fig. 5). The
compiler converts the PDA to a PDS in a straightforward mabgesimply removing
the designations for final states. It compiles each systdinraasformer into a boolean
formula expected by Moped and annotates all system calitians in the PDS with
these formulas. If the PDS contains other transitions, sisgbush and pop transitions
that do not correspond to system calls, the compiler anewthie transitions with a
formula whose preconditions match any OS variable assighaned whose postcon-
ditions simply maintain that assignment. We add one newe stab the PDS and new

transitions taA after each system call transition. The precondition ondhmesv transi-
tions is exactly the OS attack configuratirihat we wish to prove cannot be reached
in the model. We then invoke Moped so that it proves that statennot be reached or
provides a counterexample trace of system calls reachang 4t

7 Experiments

We used our implementation to find undetected attacks inrprognodels that have
appeared in academic literature. We show that our autonegiptbach can find the
mimicry and evasion attacks that previously were discayenanually [20-22, 24].
The automated techniques allow for better scaling of thebmmof test cases when
compared to manual approaches.

We can automatically find mimicry and evasion attacks thexipus research found
only with manual analysis. Previous work considered foat programs—wau- f t pd,
restore,tracerout e, andpasswd—that had known vulnerabilities allowing at-
tackers to execute a root shell. Forrest et al. [8] succhgsfatected known attack
instances using a model call&tide The Stide model is a context-insensitive charac-
terization of execution learned from system call tracesegmied by a series of training
runs. Wagner and Soto [24] and Tan et al. [20-22] demonstthte attackers could
modify their attacks to evade detection by the Stide modesdme cases, the unde-
tected attacks wereot semantically equivalent to the original root shell explait
though the attacks adversely modified system state so #hattdicker can subsequently
gain root access. For example, successful attack variaats m

— write a new root-level account to the user accountd fdec/ passwd;

— set/ et ¢/ passwd world-writable so that an ordinary user can add a new root
account; or

— set/ et ¢/ passwd owned by the attacker so that the attacker can add a new root
account.

We automatically found these undetected attacks. We usadfoastructure to ana-
lyze the Stide model for each of the four programs with resipegach of the four attack
goals. Fomu- f t pd, we constructed the Stide model using the original Linuitrey
data of Forrest et al. [7]. We were unable to obtain eithemihef t pd training data
used by Wagner and Soto or the Stide models that they cotestrfrom that data. As a
result, we were able to find attacks in twe- f t pd model constructed from Forrest’s
data that were reportedly not present in the model constifodbm Wagner's data. For
the remaining three test programs, we constructed modsistiaining data generated
in the manner described by Tan et al. [20]. Our specificatamgiler combined PDA
representations of the Stide models with specificationgraft system calls to produce
pushdown systems amenable to model checking.

Table 1 lists the size of the PDA representation of the Stidelehfor each pro-
gram. The OS state model included 119 bits of global state5@niiits of temporary
state for system call argument variables. This temporatg seduces Moped’s resource
demands because it exists only briefly during the model adréckxecution.

Table 1. Number of states and edges in the transition systems deggtite Stide model for each
of the four test programs. The boolean OS state includes it4%dp global state variables and
50 bits of temporary state for system call argument var@ble

| [[wu-ftpdrestordtraceroutgpasswi

Edge cou 2,085 1,204 623 1,058
State count 1,471 892 459 766

Table 2. Evaluation of the Stide model’s ability to detect classesttdicks. A “yes” indicates
that the Stide model will always detect the attack becausenibdel checker was unable to find
an undetected attack. A “no” indicates that Stide is unablgrotect the system from the attack
because the model checker discovered an undetected atpekee. Writing td et ¢/ passwd

is normal behavior fopasswd

| [[wu-ftpdrestordtraceroutgpasswii

Execute root shell No No Yes Yes
Write to/ et ¢/ passwd No No No —
Set/ et ¢/ passwd world-writable|| Yes | Yes Yes No
Set/ et ¢/ passwd attacker-ownefl Yes | Yes Yes No

Table 2 presents the ability of the Stide model to detect ttagladesigned to reach
a particular attack goal, as determined by Moped. A “yes'idatis that the model
will always prevent any attacker from reaching their goagjardless of how they try to
transform or alter their attack sequence of system callsa& fndicates the reverse:
the model checker was able to find a system call sequenceawgitiments, accepted by
the model but that induces the unsafe operating system ttmmdrigure 6 shows the
undetected attack agairtsiceroutés Stide model discovered by our system. We auto-
matically found all attacks that researchers previoushintbmanually, one additional
attack due to differences between Forrest’s training dada/dagner’s training data for
wu- f t pd, and an additional attack againstst or e not found by previous manual
research.

Previous work missed this attack because manual inspedies not scale to many
programs and attacks, and hence the research did not atizeghpute results for all
attack goals in all programs. When using manual inspectias Jlikewise difficult to
show that an attack is not possible: has the analyst simplgorsidered an attack that
would be successful? Model checking can prove that a goairsachable regardless
of the actual system calls used by the attacker in their stémreach the goal. We

close; munmapopen(“/etc/passwd”’, QRDWR | O_APPEND) = 3;
fcntl64; fentl64; fstat64; mmap2; read; close; munmapte(3);

Fig. 6. Undetected attack against the Stide moddtateroutethat adds a new root-level user to
/ et ¢/ passwd. The system calls producing the attack effect are shown lidfdee. Although
our system discovers arguments for the nop system callsmietiee arguments here for con-
ciseness. We do not discover the actual string value writtéret ¢/ passwd; a suitable string
would be ‘at t acker:: 0: 0: : /root:/ bi n/ sh\n".

Table 3. Model checking running times, in seconds.

| [[wu-ftpdrestordtraceroutepasswidi
Execute rootshell 0.34 0.75 238 2.70
Write to/ et ¢/ passwd 0.39 0.73 1.33 —
Set/ et ¢/ passwd world-writable|| 39.1Q 74.41 0.90 2.02
Set/ et ¢/ passwd attacker-ownefl 41.11 65.21 1.15 1.81

can show that the models of the first three test programs tdaflemttacks that try to
set/ et ¢/ passwd world-writable or owned by the attacker—assertions thavijous
manual efforts were unable to make. Although the proofs tdat®mn hold with respect
to the OS abstraction and may not hold in the actual OS impiatien, as described
in Sect. 2, the proofs do provide a strong indication thatinu@ attack detection in the
real system will be effective.

Table 3 lists the model checker’s running times in secondsdoh model and attack
goal. When comparing the running times with Table 2, a locesst becomes apparent.
In cases where the model checker found an attack, the rutinieg are very small.
When no attack was found, the model checker executed for gaa@tively longer
period of time. This disparity is to be expected and reflelsés iehavior of the un-
derlying model checking algorithms. When a model checkelsfia counter-example
that disproves a logical formula—here an attack sequeratevtblates an LTL safety
property—the model checker can immediately terminatexecetion and report the
counter-example. However, a successful proof that thegdormula holds requires
the model checker to follow exhaustively all execution gadhd early termination is
not possible.

We believe that automating the previously manual processtatk construction is
a significant achievement. We are not surprised at ourabalitind undetected attacks:
attackers have significant freedom in program models thatdgonstrain system call
arguments. For example, the system call sequepen followed by write without
argument constraints can be misused by an attacker to ladteystem’s password file.
Yet, this is a common sequence contained in nearly eventmdaalprogram, including
programs that execute with the root-level privilege reegito alter the password file.

Our automated system provides us with the means to unddrstactly where a
program model fails. From Table 2 we learn which classestatkican be effectively
detected by a program model and which classes of attackreegltérnative protection
strategies. What is important is not simply that the modailsté detect some attacks,
but that we know exactly what type of attacks are missed.

8 Conclusions

Model-based intrusion detections systems are useful ohnvthey actually detect or
prevent attacks. Finding undetected attacks manuallyffiewlt, error-prone, unable
to scale to large numbers of program models and attacks, @mainleito prove that an
attack will always be detected. We showed here that forimglithe effects of attacks
upon the operating system provides the operational meafisdandetected attacks

automatically. A model checker attempts to prove that tteckteffect will never hold
in the program model. By finding counter-examples that cdbiseproof to fail, we
find undetected attacks: system call sequences and arggithahére accepted as valid
execution and induce the malicious attack effect upon treaimg system. This au-
tomation let us find undetected attacks against program Imdldat previously were
found only with manual inspection of the models. The efficieaf the computation—
about 2 seconds computation to find undetected attacks-id@®wan indication that
this automated approach can easily scale to large coliectibprogram models.

Acknowledgments. We thank the anonymous reviewers and the members of the WiSA
project at Wisconsin for their helpful comments that impgd¥he quality of the paper.

This work was supported in part by Office of Naval Researcintg®0014-01-1-
0708, NSF grant CCR-0133629, and Department of Energy s G02-93ER25176.
Jonathon T. Giffin was partially supported by a Cisco SystBimtnguished Graduate
Fellowship. Somesh Jha was partially supported by NSF Caraat CNS-0448476.
The U.S. Government is authorized to reproduce and diséribeprints for govern-
mental purposes, notwithstanding any copyright noticéseaf hereon. The views and
conclusions contained herein are those of the authors anddshot be interpreted as
necessarily representing the official policies or endoes#s) either expressed or im-
plied, of the above government agencies or the U.S. Goverhme

References

[1] T. Ball and S. K. Rajamani. Bebop: A symbolic model chedke boolean programs. In
7th International SPIN Workshop on Model Checking of Saftw&tanford, California,
Aug./Sep. 2000.

[2] F. Besson, T. Jensen, D. L. Métayer, and T. Thorn. Modelkking security properties of
control-flow graphsJournal of Computer Securit®:217-250, 2001.

[3] H. Chen and D. Wagner. MOPS: An infrastructure for exangnsecurity properties of
software. In9th ACM Conference on Computer and Communications Sedi@iB5)
Washington, DC, Nov. 2002.

[4] E. M. Clarke, O. Grumberg, and D. A. Peleldlodel Checking The MIT Press, 2000.

[5] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwooncidgffialgorithms for model
checking pushdown systems. Gomputer Aided Verification (CAVELhicago, lllinois,
July 2000.

[6] H.H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. Rl&fi Formalizing sensitivity
in static analysis for intrusion detection. IREE Symposium on Security and Privacy
Oakland, California, May 2004.

[7] S. Forrest. Data sets—synthetic FTP. http://www.csiiedu~immsec/data/FTP/UNM/-
normal/synth/, 1998.

[8] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longitaf sense of self for UNIX
processes. IfTEEE Symposium on Security and Priva©akland, California, May 1996.

[9] D. Gao, M. K. Reiter, and D. Song. On gray-box programknag for anomaly detection.
In USENIX Security Symposiyf®an Diego, California, Aug. 2004.

[10] J. T. Giffin, D. Dagon, S. Jha, W. Lee, and B. P. Miller. Eomment-sensitive intrusion
detection. In8th International Symposium on Recent Advances in IntnuBietection
(RAID), Seattle, Washington, Sept. 2005.

[11] J. T. Giffin, S. Jha, and B. P. Miller. Detecting manigeth remote call streams. [lth
USENIX Security Symposiy®an Francisco, California, Aug. 2002.

[12] R. Gopalakrishna, E. H. Spafford, and J. Vitek. Effitignrusion detection using automa-
ton inlining. InIEEE Symposium on Security and Priva®gakland, California, May 2005.

[13] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W. Sk&l. Verifying information
flow goals in Security-Enhanced Linudournal of Computer Securityt3:115-134, 2005.

[14] L.-c. Lamand T.-c. Chiueh. Automatic extraction of acate application-specific sandbox-
ing policy. InRecent Advances in Intrusion Detection (RAIBpphia Antipolis, French
Riveria, France, Sept. 2004.

[15] C.R.Ramakrishnan and R. Sekar. Model-based vulniésedmalysis of computer systems.
In 2nd International Workshop on Verification, Model Checkamgl Abstract Interpreta-
tion, Pisa, Italy, Sept. 1998.

[16] F. B. Schneider. Enforceable security policieBCM Transactions on Information and
System Securityd(1):30-50, Feb. 2000.

[17] S. Schwoon.Model-Checking Pushdown Syster®.D. dissertation, Technische Univer-
sitat Minchen, June 2002.

[18] S. Schwoon. Moped—a model-checker for pushdown systerhttp://www.fmi.uni-
stuttgart.de/szs/tools/moped/, 2006.

[19] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. Atf@automaton-based method for
detecting anomalous program behaviors. IBEEE Symposium on Security and Privacy
Oakland, California, May 2001.

[20] K. Tan, K. S. Killourhy, and R. A. Maxion. Undermining @momaly-based intrusion de-
tection system using common exploits.Recent Advances in Intrusion Detection (RAID)
Zurich, Switzerland, Oct. 2002.

[21] K. Tan and R. A. Maxion. “Why 6?" Defining the operationahits of stide, an anomaly
based intrusion detector. IEEE Symposium on Security and Priva©akland, California,
May 2002.

[22] K. Tan, J. McHugh, and K. Killourhy. Hiding intrusion§rrom the abnormal to the nor-
mal and beyond. I5th International Workshop on Information Hidiniyoordwijkerhout,
Netherlands, Oct. 2002.

[23] D. Wagner and D. Dean. Intrusion detection via statialgsis. INIEEE Symposium on
Security and PrivacyOakland, California, May 2001.

[24] D. Wagner and P. Soto. Mimicry attacks on host basedisitn detection systems. In
9th ACM Conference on Computer and Communications SecWaghington, DC, Nov.
2002.

[25] B.J.Walker, R. A. Kemmerer, and G. J. Popek. Specificedind verification of the UCLA
Unix security kernelCommunications of the ACN23(2), Feb. 1980.

