
Automated Discovery of Mimicry Attacks

Jonathon T. Giffin, Somesh Jha, and Barton P. Miller

Computer Sciences Department, University of Wisconsin
{giffin,jha,bart}@cs.wisc.edu

Abstract. Model-based anomaly detection systems restrict program execution
by a predefined model of allowed system call sequences. Thesesystems are
useful only if they detect actual attacks. Previous research developed manually-
constructed mimicry and evasion attacks that avoided detection by hiding a ma-
licious series of system calls within a valid sequence allowed by the model. Our
work helps to automate the discovery of such attacks. We start with two mod-
els: a program model of the application’s system call behavior and a model of
security-critical operating system state. Given unsafe OSstate configurations that
describe the goals of an attack, we then find system call sequences allowed as
valid execution by the program model that produce the unsafeconfigurations.
Our experiments show that we can automatically find attack sequences in models
of programs such aswu-ftpd andpasswd that previously have only been dis-
covered manually. When undetected attacks are present, we frequently find the
sequences with less than 2 seconds of computation.

Key words: IDS evaluation, model checking, attacks, model-based anomaly detection

1 Introduction

A model-based anomaly detector restricts allowed program execution by a predefined
model of acceptable behavior [6,8,12,14,19,23]. These systems compare a sequence of
system calls generated by the executing program against themodel. The detector clas-
sifies any system call sequence that deviates from the model as malicious and indicative
of a program exploit. The ability of the model to detect actual attacks depends upon the
implicit assumption that attacks always appear different than valid execution.

An attack that is accepted by the model as valid will not causean anomaly and
will not be detected (Fig. 1). Mimicry and evasion attacks avoid detection by trans-
forming an attack sequence of system calls so that it is accepted by a program model
yet still carries out the same malicious action. Previous research found examples of
mimicry attacks against high-privilege processes restricted by a model-based detec-
tor [20–22,24]. However, the attacks were constructed manually by iterating between an
attack sequence and a program model until the attack could bemade to appear normal.
Although these manually-constructed attacks served as a successful proof-of-concept,
manual approaches remain unsuitable as a general attack discovery strategy.

This paper automates the discovery of mimicry attacks. Our intent is not to propose
a new detection system but rather to provide the means to evaluate an existing program
model’s ability to detect attacks. We address two primary questions:



Σ∗

Attacks

Detected attacks
Undetected attacks

L(M)

Fig. 1. If Σ is the set of system calls, thenΣ∗ is the infinite set of all possible system call se-
quences. A program modelM accepts a subset of system call sequencesL(M) as valid program
execution. Any attack sequence accepted as valid is a missedattack.

– What attacks does a program model fail to detect?
– What attacks can we prove that a model will always detect?

Finding missed attacks reveals the weaknesses of a program model and indicates that
a model-based detector provides insufficient security for that particular program. Con-
versely, proving that a model always detects an attack establishes strong indications
that a computer system using model-based detection is secure, even when an attacker
attempts to hide an attack within legitimate execution.

An attack is any sequence of system calls that produces a malicious change to the
operating system (OS). For a given attack sequence, an attacker can produce variations
of the sequence having the same attack effect by inserting extraneous system calls into
the sequence or replacing existing system calls with alternative sequences having the
same effect. A program model that detects one sequence may allow a different, obfus-
cated sequence. The net result remains the same: the model fails to detect an attack. We
must verify that a model detects each of the attack variants.

We use a novel formalism that requires neither knowledge of particular attack se-
quences nor knowledge of particular obfuscations that try to hide those sequences from
a detector. We develop a model of an OS with respect to its security-critical state and
then characterize attacks only by their effect upon the OS. This leverages a key insight:
the commonality among the obfuscated attack sequences is that the sequences are se-
mantically equivalent with respect to their malicious effect upon the OS. Although we
manually produce the OS model and the definitions of malicious OS state, this is a one-
time effort that is reused for subsequent analyses of all models of programs executing
on that operating system.

The program model specifies what sequences of system calls are allowed to exe-
cute. By specifying how each system call transforms the OS’sstate variables, we are
able to compute the set of OS configurations reachable when a program’s execution
is constrained by the model. We apply model checking [4] to prove that no reachable
configuration corresponds to the effect of an attack. If the proof fails, then some system
call sequence allowed by the model produces the malicious effect. The model checker
reports this sequence as a counter-example that caused the proof to fail, providing pre-
cisely an undetected attack as output. In terms of Fig. 1, we are finding system call
sequences contained inL(M)∩Attacks without explicitly computing the setAttacks
of malicious system call sequences.



This approach automates the previous manual effort of finding mimicry attacks. In
experiments, we show that we can automatically discover themimicry attack against the
Stide [8] model forwu-ftpd [24] and the evasion attacks against the Stide models for
passwd, restore, andtraceroute [20–22]. The model checking process com-
pleted in about 2 seconds or less when undetected attacks were present in the models.
When a model is sufficiently strong to detect an attack, the model checking algorithm
will report that no attack sequence could be found. This requires exhaustive search and
completed in 75 seconds or less for all attacks detected by the models of the four test
programs. Note that proofs of successful detection hold only with respect to our abstrac-
tion of the OS state. If this abstraction is erroneous or incomplete, undetected attacks
may still be present when using the model to protect a complete operating system.

Our work addresses outstanding problems in model-based anomaly detection. We
provide a method for model evaluation that exhaustively searches for sequences of sys-
tem calls allowed as valid by a program model but that induce amalicious configuration
of OS state. Although our current work evaluates the context-insensitive Stide model,
we have designed our system so that it can evaluate any program model expressible as
a context-sensitive pushdown automaton (PDA). One of our long-term goals, not yet
realized, is to compare the detection capabilities of different model designs proposed in
the literature.

In summary, this paper makes the following contributions:

– Automated discovery of mimicry attacks.We use model checking to find sequences
of system calls accepted as valid by a program model but that have malicious effects
upon the operating system. Our system produces the exact sequences of system
calls, with arguments, that comprise the undetected attacks.

– A system design where attack sequences and obfuscations need not be known.Our
system does not require that attack system call sequences beknown or enumerated.
In fact, we strive for the opposite: our system will automatically find new, unknown
attack sequences accepted by a program model and will produce those sequences as
output. Likewise, we automatically find the obfuscations used by attackers to hide
attack system calls within a legitimate sequence. As a result, our approach is not
limited bya priori knowledge of attacker behavior.

Section 2 presents related work in manual attack analysis. Section 3 gives an over-
view of our system. Section 4 describes the operating systemabstraction and Sect. 5
explains how a model checker uses that abstraction to find undetected attacks in a pro-
gram model. Section 6 presents the architecture of our implementation, and Sect. 7 uses
that implementation to demonstrate experimentally that wehave automated the previ-
ously manual process of discovering undetected attacks.

2 Related Work

The seminal research on mimicry [9, 24] and evasion attacks [20–22] demonstrated a
critical shortcoming of model-based anomaly detection. Attackers can avoid detection
by altering their attacks to appear as a program’s normal execution. These altered at-
tacks are sequences of system calls allowed by a program model but that still cause



malicious execution. Previous work constructed mimicry and evasion attacks by con-
verting some detected attack system call sequenceA into an equivalent undetected se-
quenceA′. If A andA′ are semantically equivalent andA′ is a sequence allowed by the
program model, thenA′ is a successful, undetected attack.

Determining that a model expressed as a pushdown automaton acceptsA′ is a com-
putable intersection operation provided thatA′ is regular; finding a sequenceA′ to
intersect is a manual, incomplete procedure with several drawbacks:

– The procedure requires known attack sequencesA.
– The equivalence of two system call sequences is not well defined. For example: an

undetected attack sequenceA′ may include legitimate execution behavior that is
irrelevant to the original attack sequenceA. Are A andA′ equivalent?

– There is no clear operational direction to find mimicry and evasion attacks auto-
matically. Identifying two sequences as equivalent attacks was a manual procedure
based on intuition. There was no algorithmic process amenable to automation.

Our model evaluation takes a different approach that advances the state of the art. By
defining attacks only by their malicious effects upon the system, our work is not re-
stricted to known attack sequences of system calls or known attack transformations
producing evasive attacks. Attack sequences are not part ofthe input to our system;
in fact, our work produces the sequences as its output. We canfurther define two sys-
tem call sequences as equivalent with respect to the attack if they produce the same
malicious effect upon the operating system. This formalismprovides the operational
direction allowing our work to automate the procedure of finding undetected attacks.

Previous attempts have been made to quantify the ability of amodel to detect at-
tacks.Average branching factor(ABF) [23] calculates, for any finite-state machine
model, the average opportunity for an attacker to undetectably execute a malicious
system call during a program’s execution. A predefined partitioning divides the set of
system calls into “safe” calls and “potentially malicious”calls. As the runtime monitor
follows paths through the automaton in response to system calls executed by the pro-
gram, it looks ahead one transition to determine the number of potentially malicious
calls that would be allowed as the next operation. The average branching factor is then
the sum of the potentially malicious calls divided by the number of system call oper-
ations verified during execution. An extension to average branching factor, called the
average reachability measure(ARM) [10], similarly evaluated pushdown automaton
models.

Although these measurements provide a convenient numeric score enabling model
comparisons, they do not provide a clear measure of a model’sability to actually detect
attacks. These metrics do not effectively embody an attacker’s abilities:

– An attacker may alter a program’s execution to reach a portion of the program
model that admits an attack sequence by first passing througha sequence of safe
system calls. By only looking at the first system call branching away from a benign
execution path, ABF and ARM fail to show the strength of one model over another.

– The ABF or ARM value computed depends upon the benign execution path fol-
lowed and hence upon program input. A complete evaluation ofthe model requires
computing the score along all possible execution paths. This is extremely challeng-
ing and itself forms an entire body of research in the programtesting area.



– Attacks frequently are comprised of a sequence of system calls. The previous met-
rics look at each system call in isolation and have no way to characterize longer
attack sequences.

Consequently, these metrics provide limited insight into amodel’s ability to detect at-
tacks. Our work improves the evaluation of a program model’sattack detection ability
by decoupling the evaluation from both a particular execution path and from the need
to describe malicious activity as unsafe system calls.

MOPS [3] is similar to our work in the first aspect: it statically checks a program
model to determine properties of the model. Unlike our work,however, MOPS charac-
terizes unsafe or attack behavior as regular expressions over system calls and requires
users to provide a database of malicious system call patterns. Just as commercial virus
scanners syntactically match malicious byte sequences against program code, MOPS
syntactically matches unsafe system call sequences against a program model. Likewise,
when a new malicious behavior is discovered, the database ofsystem call patterns must
be updated. Conversely, by understanding the semantics of system calls, the system
in our paper does not require known malicious system call sequences, and it in fact
automatically discovers them for the user. Our work is not tied to known patterns of
malicious system call execution.

Model checking is a generic technique used to verify properties of state transition
systems, and it has been applied previously to computer security. Bessen et al. [2] de-
scribed how model checkers can verify safety properties [16] expressed in linear-time
temporal logic (LTL). They verified the properties over annotated control-flow graphs,
where both the graph and the annotations expressing security properties of the program
code came from some unspecified source. We analyze automatically constructed pro-
gram models, and our model checking procedure automatically derives security prop-
erties of the model as it traverses the model’s edges.

Guttman et al. used model checking to find violations of information-flow require-
ments in SELinux policies [13]. They modeled the SELinux policy enforcement engine
and the ways in which information may flow between multiple processes via a file sys-
tem. They could then verify that any information flow was mediated by a trusted process
on the system. Our work has a different goal: verification of safety properties using an
OS model where system calls alter OS state.

Ramakrishnan and Sekar [15] used model checking to find vulnerabilities in the
interaction of multiple processes. They abstracted the filesystem and specified each
program’s execution as a file system transformer. The program specifications were com-
plicated by the need to characterize interprocess communication. Our work expands the
system abstraction to include the entire operating system,shifts the checked interface
from coarse-grained process execution down to system calls, and has no need to model
communication channels between processes.

Walker et al. used formal proof techniques to verify properties of a specification
of a UNIX security kernel [25]. This work is notable because the authors rigorously
proved that the abstract specification of the kernel matchedthe actual implementation.
As a result, properties proved using the abstraction also hold true in the real operating
system. Due to the difficulty of producing proofs of correct specifications, little other
research actually demonstrates that abstractions are accurate. We adopt this simpler



approach: we produced our operating system abstraction manually and have not proved
it correct. As a result, discovered attacks or proofs of the absence of attacks hold only
with respect to the abstraction. A discovered attack can be validated by actually running
the system call sequence against a sandboxed operating system. Conversely, if we do
not find any attack, then this provides good indication that the program model is secure
even though this is not provably true in the real operating system.

3 Overview

We provide here an overview of model-based anomaly detection, including the attacker
threats addressed, context-sensitive program models, andthe purpose of attack discov-
ery.

3.1 Threat Model

Our system automatically constructs undetected attack sequences possible within a par-
ticular threat model. This threat model is simple and strong:

Let Σ be the set of system calls invoking kernel operations. If programP
is under attacker control, thenP can generate any sequence of system calls
A ∈ Σ∗.

Attackers may subvert a vulnerable program’s execution at any execution point, includ-
ing the point of process initialization. Attackers can thenarbitrarily alter the code and
data of the program, and can even replace the program’s entire memory image with an
image of their choosing. Alternatively, the attacker couldreplace the disk image of a
program with, for example, a trojan before the OS loads the program for execution. The
attacker can generate any sequence of system calls and system call arguments, and the
operating system will execute the calls with the privilege of the original program.

This threat model matches real-world attacks. In remote execution environments,
programs execute on remote, untrusted machines but send a sequence of remote system
calls back to a trusted machine for execution. An attacker controlling the remote host
can arbitrarily alter or replace the remote program. The attacker’s program image can
then send malicious system calls back to the trusted machinefor execution [11].

Common network-based attacks against server programs havea more restrictive
threat model. Attackers can subvert execution only at points of particular program vul-
nerabilities and face greater restrictions in the attack code that they can then execute. As
a result, if our system proves that a program model detects anattack in the strong threat
model, it will also detect the attack in a more restrictive model. However, successful
attacks discovered by our system are specific to the strong threat model. Although the
program model would fail to detect the attack sequence even in the restricted threat
model, a restricted attacker may be unable to cause the program to execute that attack.
Our system currently does not make this determination and will report all attacks dis-
covered in the strong threat model.

Consider the example in Fig. 2. This is a vulnerable program that reads command
characters and filenames from user input. This input may comefrom the network if



void main (void) {
char input[32];
gets(input);
if (input[0] == ‘x’) {

setreuid(42, -1);
syslog(1, "Execing file");
execve(input+2, 0, 0);

} else if (input[0] == ‘e’) {
struct stat buf;
syslog(1, "Echoing file");
stat(input+2, &buf);
int fd = open(input+2, O RDONLY);
void *filedata =

mmap(0, buf.st size, PROT READ, MAP PRIVATE, fd, 0);
write(1, filedata, buf.st size);

}
}

Fig. 2. Code example. We show system calls in boldface and library calls in italics. The unsafe
call togetsallows an attacker to execute arbitrary code.

the program is launched by a network services wrapper daemonsuch asxinetd. The
command-code and argument input resembles the usage of programs such as ftp servers
or http servers. Suppose that the program is executed with stored but inactive privilege:
its real and effective user IDs are a low-privilege user, butthe saved user ID is root. If
the input contains the command character ‘x’, then the program drops all of its saved
privilege and executes a filename given in the input. If the input contains the command
character ‘e’, then the program echoes the contents of a specified file to its output, which
may be a network stream.

In our threat model, an attacker can arbitrarily alter the execution of this program.
Perhaps the attacker exploits the vulnerablegetscall; perhaps they use an attack vector
that we have not considered. The attacker can cause the program to execute any system
call, including system calls not contained in the original program code. The role of
host-based intrusion detection is to detect any such subverted program execution.

3.2 Program Model

Readers familiar with pushdown automaton (PDA) models may elect to bypass this
section, as it presents background material and standard notation previously used for
PDA-based program models.

Model-based anomaly detection restricts allowed execution to a precomputed model
of allowed behavior. A program modelM is a language acceptor of system call se-
quences and is an abstract representation of the program’s expected execution behavior.
If Σ denotes the alphabet of system calls, thenL(M) ⊆ Σ∗ denotes the language
accepted byM . A system call sequence inL(M) is valid; sequences outsideL(M)
indicate anomalous program execution. In this paper, we implement a program model
as a non-deterministic pushdown automaton (PDA).



Definition 1. A pushdown automaton (PDA)is a tupleM = 〈S, Σ, Γ, δ, s0, Z0, F 〉,
where

– S is a set of states;
– Σis a set of alphabet symbols;
– Γ is a set of stack symbols;
– δ ⊆ {〈s, γ〉

σ

→ 〈s′, γ′〉 | s ∈ S, γ ∈ Γ ∪ ǫ, σ ∈ Σ ∪ ǫ, s′ ∈ S, γ′ ∈ Γ ∪ ǫ};
– s0 ∈ S in an initial state;
– Z0 ∈ Γ ∗ is an initial stack configuration;
– F ⊆ S is a set of final states.

A PDA model has close ties to program execution. A state corresponds to a program
point in the program’s code. The initial state corresponds to the program’s entry point.
The final states correspond to program termination points, which generally follow an
exit system call. The alphabet symbols are the system calls generated by a program as
it executes. The stack symbols are return addresses specifying to where a function call
returns. The initial stackZ0 is empty, as a program begins execution with no return
addresses on its call stack.

The transition relationδ describes valid control flows within a program. Our PDA
model has three types of transitions:

– System calls:〈s, ǫ〉
σ

→ 〈s′, ǫ〉 for σ 6= ǫ indicates that the program can generate
system callσ when transitioning from states to states′. The PDA stack of function
call return addresses remains unchanged.

– Function calls: 〈s, ǫ〉 σ

→ 〈s′, γ〉 for γ 6= ǫ indicates that the program pushes return
addressγ onto the call stack when transitioning from states to s′. Here,s corre-
sponds to a function call-site in the program ands′ corresponds to the entry point
of the call’s destination.

– Function returns: 〈s, γ〉 σ

→ 〈s′, ǫ〉 for γ 6= ǫ indicates that the program returns
from a function call and pops return addressγ from the call stack. This transition
can be followed only whenγ is the top symbol of the PDA stack. The states
corresponds to a program point containing a function returninstruction ands′ is
the program point to which control is actually returned.

Many program model designs proposed in academic literatureare not presented as
pushdown automata. However, the generality of a PDA allows us to characterize those
models as PDA suitable for analysis using the techniques presented later in this paper.
The context-free languages recognized by PDA completely contain the class of regular
languages. All program models of which we are are aware accept either regular or
context-free languages, and hence can always be characterized by a PDA. This includes:

– window-based models, such as the Stide model [8] (Fig. 3a) orthe digraph model
[23] (Fig. 3b);

– non-deterministic finite automata (NFA) [12,14,19,23] (Fig. 3c);
– bounded-stack PDAs [11];
– deterministic PDAs, such as the VPStatic model [6];
– stack-deterministic PDAs, such as the Dyck model [6]; and
– non-deterministic PDAs [23] (Fig. 3d).



write

execve

stat

open

mmap

write

read

writesetreuid read

write

statwrite
execve

open

mmapwrite

setreuid

open

mmap

write

read

write

statwrite
execve

setreuid

read
pop A

push A

push C

write
push B

pop B pop C

execve

write

mmap

open

stat

setreuid

(a) Stide Model (b) Digraph Model (c) NFA Model (d) PDA Model

Fig. 3. Four different program models for the code of Fig. 2, each expressed as a pushdown
automaton. For simplicity, we assume that thegetsfunction call generates the system callread
and thesyslogfunction call generateswrite .

When a model accepts a regular language, we simply haveΓ = ∅ and transitions in
δ are only of the form〈s, ǫ〉

σ

→ 〈s′, ǫ〉. Although the experiments in Sect. 7 consider
the Stide model, a regular language acceptor, we intentionally designed our system to
analyze pushdown automata so that it is relevant to a wide collection of program models
of varying strength.

Commensurate with our threat model, we assume that an attacker has prior knowl-
edge of the particular program model used to constrain execution of a vulnerable pro-
gram. The security of the system then relies entirely upon the ability of the program
model to detect attacks.

3.3 Finding Undetected Attacks

We have developed a model analysis system that evaluates a PDA-based program model
and finds undetected attacks. Our design has three features of note:

– It operates automatically. A user must provide an initial, one-time operating system
abstraction that can then be reused to analyze the model of any program execut-
ing on that operating system. This subsequent analysis requires no human input,
allowing the analysis to scale easily to large collections of program models.

– Attacks, which are sequences of system calls, do not need to be known. In fact, our
system provides attack sequences as output.

– System call arguments can significantly alter the semantic meaning of the calls.
When our system finds an undetected attack sequence of systemcalls, it addition-
ally provides the system call arguments necessary to effectthe attack.



We construct an abstraction of the operating system with respect to its security-critical
state. This abstraction can be repeatedly used to find attacks in the models of programs
that execute on that operating system. Consider a simple example:

Example 1.Running our tool for each of the four models in Fig. 3 shows that none de-
tect all attacks that execute a shell with root privilege. The tool automatically identifies
a system call sequence, with arguments, that defeats each model:

read(0);
setreuid(0, 0);
write (0);
execve(“/bin/sh”);

The read andwrite calls are nops that are irrelevant to the attack. Thesetreuid call
alters OS state to gain root access, and theexecvecall executes a shell with that access.

One of our long-term goals is to use discovered undetected attacks to guide the
future design of program models and intrusion detection systems. Comparing the un-
detected attack sequence with the original program code of Fig. 2 suggests a model
alteration that would eliminate this undetected attack. Ifthe model constrains statically-
known system call argument values, then an attacker cannot undetectably use theset-
reuid call to set the effective user ID to root. Although the attacker remains able to
execute the shell, that shell will not have increased privilege.

We will consider additional examples in Sect. 5.

4 Operating System Model

Given a program modelM , answering the question first posed in Sect. 1,what attacks
doesM fail to detect?, requires understanding of what “attack” means. Previous work
defined attacks as known, malicious sequences of system calls [24]. Directly searching
program models for these sequences unfortunately has two drawbacks:

– An attacker could transform an attack sequence detected by the program model into
a different sequence that produces the same malicious effect but is allowed by the
model. For example, meaninglessnopsystem calls could be inserted into the attack,
and system calls such aswrite could be changed to other calls such asmmap. In
previous work, the onus of finding all attack variants was upon the human.

– This approach poorly handles program models that monitor both system calls and
system call arguments [11, 23]. Identifyingnopsystem calls is not straightforward
when the allowed system call arguments are constrained by the model.

We decouple our approach from the need to know particular system call sequences
that execute attacks. Instead, we observe that regardless of the system call sequence
transformations used by an attacker, their attack will still impart the same adverse effect
upon the operating system. It is precisely this adverse effect that characterizes an attack:
it captures the malicious intent of the attacker. The actualsystem call sequence used
by the attacker to bring about their intent need not be knowna priori, and in fact is
discovered automatically by our system.



To formalize attacks by their effect upon the operating system, we must first for-
malize the operating system itself. Our formalization has three components:

– a set of state variables,
– a set of initial assignments to those variables, and
– a set of system call transition relations that alter the state variables.

After developing the definitions of these components, we finally define attack effects.

4.1 State Variables

A collection of state variables model security-critical internal operating system state,
such as user IDs indicating process privilege, access permissions for files in the filesys-
tem, and active file descriptors. A state variablev has a value in the finite domain
dom(v) which contains either boolean values or integer values.

Definition 2. The set of allstate variablesis V . The set of allassignmentsof values
to variables inV is S. A configurationis a boolean formula overV that characterizes
zero or more assignments.

Model checking algorithms operate over boolean variables;variables in a finite domain
are simply syntactic sugar and are represented internally as lists of boolean variables.
We additionally allow variables to be aggregated into arrays and C-style structures, both
of which our implementation automatically expands into flatlists of variables.

Consider the example of the operating system’s per-processfile descriptor table. We
abstract this structure as an array of file descriptors, eachof which has a subset of actual
file descriptor data that we consider relevant to security:

FILEDESCRIPTORTABLE : array [0 .. MAXFD] of F ILEDESCRIPTOR

FILEDESCRIPTOR: struct of
INUSE : boolean
FORFILE : integer
CANREAD : boolean
CANWRITE : boolean
ATEOF : boolean

The INUSE field indicates whether or not this file descriptor is active.The remaining
fields have meaning only for active descriptors. FORFILE is an index into an array of
file structures, not shown here, that abstract the file system. CANREAD and CANWRITE

indicate whether the file descriptor can be used to read or write the file pointed to by
the FORFILE field. ATEOF is true when the file descriptor’s offset is at the end of the
file and allows us to distinguish between writes that overwrite data in the file and writes
that simply append data to the file.

Identifying what operating system data constitutes “security-relevant state” is cur-
rently a manual operation. Whether the subsequent model checking procedure finds an
undetected attack or reports that no attack exists, these results hold only with respect
to the chosen OS abstraction. An attack sequence is executable and can be validated
against the real operating system by actually running the attack in a sandboxed envi-
ronment and verifying that it was successful. However, whenthe model checker finds



setuid (uid t uid)
{

[uid 6= −1 ∧ euid = 0 =⇒ ruid
′ = uid ∧ euid

′ = uid ∧ suid
′ = uid]∧ (1)

[uid 6= −1 ∧ euid 6= 0 ∧ (ruid = uid ∨ suid = uid) =⇒ euid
′ = uid]∧ (2)

[uid = −1 ∨ (euid 6= 0 ∧ ruid 6= uid ∧ suid 6= uid) =⇒ true] (3)
}

Fig. 4. Specification for thesetuid system call. Unprimed variables denote preconditions that
must hold before the system call, and primed variables denote postconditions that hold after the
system call. Any variable not explicitly altered by a postcondition remains unchanged.

no attack, there is no tangible artifact that may be verified.If relevant OS data is not
included in the abstraction, then our system may fail to discover a mimicry attack. As
a result, the absence of an attack in the abstract OS providesevidence but not a mathe-
matical proof that the model will detect the attack when operating in a real OS.

The initial assignments of values to OS state variables encodes the OS state config-
uration present when a process is initialized for execution. We write these assignments
as a boolean formulaI over the state variablesV ; any assignment satisfyingI is a
valid initial state. In our work, we developed two differentboolean formula for differ-
ent classes of programs. The formulaI for setuid root programs set the initial effective
user ID to root; the formula for all other programs set the user ID to a low-privilege
user.

4.2 System Call Transformers

System calls transform the state variables. For each systemcall, we provide a relation
specifying how that call changes state based upon the previous state.

Definition 3. Let π be a system call. Recall thatV is the set of all OS state variables
and S is the set of all value assignments. The set ofparameter variablesfor π is Λπ

whereΛπ ∩ V = ∅. Thesystem call transformerfor π is a relation∆π ⊆ S × S.

In English, each system call transformer produces new assignments of values to OS
state variables based upon the previous values of the OS state. We write each trans-
formation function as a collection of preconditions and postconditions that depend on
parameter variables. Preconditions are boolean formulas over V ∪ Λπ, and postcondi-
tions are boolean formulas overV . If a precondition formula holds before the system
call executes, then the corresponding postcondition formula will hold after the system
call.

Consider the example in Fig. 4. The specification forsetuid shows that the system
call has one parameter variable of typeuid t, which is an integer valued type. The
boolean formula encodes three sets of preconditions and postconditions. From line (1),
if the uid argument is valid and the effective user ID before thesetuidcall is root, then
after the call, the real, effective, and saved user IDs are all set to the user ID specified
as the argument tosetuid. Implicitly, all other OS state variables remain unchangedby
the call. Line (2) handles the case of a non-root user callingsetuid. If either the real or
saved user IDs match the argument value, then the effective user ID is changed to that



value. Again, all other state is implicitly unchanged. Line(3) allowssetuid to be used
as a nop transition that does not change OS state when neitherthe line (1) nor line (2)
preconditions hold true. We note that line (3) is redundant and can be omitted from the
setuidspecification; we show it here only to emphasize the ability of setuid to be used
as a nop.

We now have all components of the operating system abstraction:

Definition 4. Theoperating system (OS) modelisΩ = 〈V, I, ∆〉 whereV is the collec-
tion of OS state variables,I is a boolean formula overV indicating the initial OS state
configuration, and∆ = {∆1, . . . , ∆n} is the collection of system call transformers.

4.3 Attacks

An attack is a sequence of system calls that executes some malicious action against
the operating system. However, these sequences are not unique. Attackers can pro-
duce an infinite number of obfuscated attack sequences by inserting extraneous,nop
system calls into a known sequence and by changing attack system calls into other
semantically-equivalent calls. Manual specification of actual attack sequences can be
incomplete, as there may be attack obfuscations not known tothe individual specifying
the attacks. We circumvent this problem by specifying the effects of attacks rather than
the sequences themselves.

Definition 5. Anattack effectE is a boolean formula overV .

The formulaE characterizes bad operating system configurations indicative of a
successful intrusion. It describes the attacker’s intent and the effect of the attack upon
the OS. Any system call sequenceA that takes the OS from an initial, safe configuration
satisfyingI to a configuration satisfyingE is then an attack sequence. IfA is allowed
by the program model, thanA is an undetected attack.

5 Automatic Attack Discovery

The role of automatic attack discovery is to determine if anysystem call sequences
accepted as valid execution by a program model will induce anattack configurationE .

Let E be an attack effect. The notation�¬E expresses a safety property in linear-
time temporal logic (LTL) that means “globally,E is never true”. A program modelM
will detect any attack attempting to induce the effectE if and only if M � �¬E . That
is, within the executions allowed byM interpreted in the OS modelΩ, the attack goal
can never occur. The model checker attempts to prove this formula true. If the proof
succeeds, then the attack goal could not be reached given thesystem call sequences
allowed by the program model. If the proof fails, then the model checker has discovered
a system call sequence that induces the attack goal.

We consider several examples:

Example 2 (Expanded from Sect. 3 Example 1).First, we find attacks that execute a
root-shell undetected by the four models of Fig. 3.



If the attack succeeds, then the executing image file is/bin/sh and the effective
user ID is 0:

E : image = /bin/sh∧ euid = 0

This boolean expression expresses the effect of the attack rather than any particular
sequence of system calls that produces the effect. Running our tool for each of the four
models shows that none detect the attack, as shown in Sect. 3.3.

Example 3.Next, we try to find undetected attacks that write to the system’s password
file.

If this attack succeeds, then the file/etc/passwd will have been altered:

E : file[/etc/passwd].written = true

The tool automatically finds a successful attack against theDigraph and NFA models:

read(0);
setreuid(0, 0);
write (0);
stat(0, 0);
open(“/etc/passwd”, OWRONLY | O APPEND) = 3;
mmap(0, 0, 0, 0, 0, 0);
write (3);

The attack sequence first sets the effective user ID to root, which then allows the process
to open the password file and add a new user. Theread, stat, mmap, and firstwrite
calls are all nops irrelevant to the attack.

Conversely, the tool discovers that the Stide and PDA modelswill always detect any
attack that tries to alter the password file. These models accept no system call sequence
that ever has write privilege to the file/etc/passwd.

Example 4.Finally, we try to find undetected attacks that add a new root-level account
to the system and execute a user-level shell, with the expectation that the attacker can
subsequently switch to high privilege via the new account.

This combines elements of Examples 2 and 3:

E : image = /bin/sh∧ file[/etc/passwd].written = true

The system finds an attack against the Digraph model:

read(0);
setreuid(0, 0)
write (0);
stat(0, 0);
open(“/etc/passwd”, OWRONLY | O APPEND) = 3;
mmap(0, 0, 0, 0, 0, 0);
write (3);
execve(“/bin/sh”);

The system proves that the Stide, NFA, and PDA models all detect this attack regardless
of any attempts to obfuscate a system call sequence. This is evident from the models: al-
though they accept sequences that open and write to a file, they do not allow subsequent
execution of a different program.



Model
Moped

Checker
Attack Sequence

Syscall Specifications

Compiler
System

Attack Configuration

Initial Configuration

OS State Variables

PDA Program Model

Pushdown

Fig. 5. Architecture.

6 Implementation

Model checking either proves that an unsafe OS configurationcannot be reached in
a program model or provides a counter-example system call trace that produces the
unsafe configuration. As we are verifying transition systems that may be pushdown au-
tomata, we are limited in implementation options to pushdown model checkers [5,17].
Moped [18] and Bebop [1] are interchangeable tools that analyze pushdown systems.
Our implementation uses Moped simply because of its public availability.

When a context-sensitive program model is used to verify a stream of system calls
generated by an executing process, we call that model a pushdown automaton (PDA).
The system calls are the input tape and the PDA has final statesthat correspond to
possible program termination points. When we analyze a model to verify its ability to
detect attacks, we call the model apushdown system.

Definition 6. A pushdown system (PDS)is a tupleQ = 〈S, Σ, Γ, δ, s0, Z0〉, where
each element of the tuple is defined as in Definition 1.

The definition of a PDS is identical to that of a PDA, with the exception that the PDS
has no final states and no input tape. A PDS is just a transitionsystem used to analyze
properties of sequences and is not a language acceptor. Moped verifies that no sequence
of system calls in the PDS will produce an unsafe operating system configuration.

The input to Moped is a collection of variables and a PDS whereeach transition
in δ is tagged with a boolean formula. The formula expresses preconditions over the
variables that are required to hold before traversing the transition and postconditions
that hold after traversal. If no preconditions hold, then Moped will not traverse the
transition and will not alter the state variables. The Mopedinput language allows both
boolean and integer variables, although the integer variables are represented internally
as ordered lists of boolean bits.

We have written a specification compiler that will produce valid Moped input files
from a PDA program model, the OS state variables, the initialOS configuration, the
system call transformers, and the attack that we wish to prove is detected (Fig. 5). The
compiler converts the PDA to a PDS in a straightforward manner by simply removing
the designations for final states. It compiles each system call transformer into a boolean
formula expected by Moped and annotates all system call transitions in the PDS with
these formulas. If the PDS contains other transitions, suchas push and pop transitions
that do not correspond to system calls, the compiler annotates the transitions with a
formula whose preconditions match any OS variable assignment and whose postcon-
ditions simply maintain that assignment. We add one new stateA to the PDS and new



transitions toA after each system call transition. The precondition on these new transi-
tions is exactly the OS attack configurationE that we wish to prove cannot be reached
in the model. We then invoke Moped so that it proves that stateA cannot be reached or
provides a counterexample trace of system calls reaching stateA.

7 Experiments

We used our implementation to find undetected attacks in program models that have
appeared in academic literature. We show that our automatedapproach can find the
mimicry and evasion attacks that previously were discovered manually [20–22, 24].
The automated techniques allow for better scaling of the number of test cases when
compared to manual approaches.

We can automatically find mimicry and evasion attacks that previous research found
only with manual analysis. Previous work considered four test programs—wu-ftpd,
restore, traceroute, andpasswd—that had known vulnerabilities allowing at-
tackers to execute a root shell. Forrest et al. [8] successfully detected known attack
instances using a model calledStide. The Stide model is a context-insensitive charac-
terization of execution learned from system call traces generated by a series of training
runs. Wagner and Soto [24] and Tan et al. [20–22] demonstrated that attackers could
modify their attacks to evade detection by the Stide model. In some cases, the unde-
tected attacks werenot semantically equivalent to the original root shell exploit, al-
though the attacks adversely modified system state so that the attacker can subsequently
gain root access. For example, successful attack variants may:

– write a new root-level account to the user accounts file/etc/passwd;
– set/etc/passwd world-writable so that an ordinary user can add a new root

account; or
– set/etc/passwd owned by the attacker so that the attacker can add a new root

account.

We automatically found these undetected attacks. We used our infrastructure to ana-
lyze the Stide model for each of the four programs with respect to each of the four attack
goals. Forwu-ftpd, we constructed the Stide model using the original Linux training
data of Forrest et al. [7]. We were unable to obtain either thewu-ftpd training data
used by Wagner and Soto or the Stide models that they constructed from that data. As a
result, we were able to find attacks in thewu-ftpd model constructed from Forrest’s
data that were reportedly not present in the model constructed from Wagner’s data. For
the remaining three test programs, we constructed models from training data generated
in the manner described by Tan et al. [20]. Our specification compiler combined PDA
representations of the Stide models with specifications of Linux system calls to produce
pushdown systems amenable to model checking.

Table 1 lists the size of the PDA representation of the Stide model for each pro-
gram. The OS state model included 119 bits of global state and50 bits of temporary
state for system call argument variables. This temporary state reduces Moped’s resource
demands because it exists only briefly during the model checker’s execution.



Table 1.Number of states and edges in the transition systems describing the Stide model for each
of the four test programs. The boolean OS state includes 119 bits for global state variables and
50 bits of temporary state for system call argument variables.

wu-ftpdrestoretraceroutepasswd

Edge count 2,085 1,206 623 1,058
State count 1,477 892 459 766

Table 2. Evaluation of the Stide model’s ability to detect classes ofattacks. A “yes” indicates
that the Stide model will always detect the attack because the model checker was unable to find
an undetected attack. A “no” indicates that Stide is unable to protect the system from the attack
because the model checker discovered an undetected attack sequence. Writing to/etc/passwd
is normal behavior forpasswd.

wu-ftpdrestoretraceroutepasswd

Execute root shell No No Yes Yes
Write to/etc/passwd No No No —
Set/etc/passwd world-writable Yes Yes Yes No
Set/etc/passwd attacker-owned Yes Yes Yes No

Table 2 presents the ability of the Stide model to detect any attack designed to reach
a particular attack goal, as determined by Moped. A “yes” indicates that the model
will always prevent any attacker from reaching their goal, regardless of how they try to
transform or alter their attack sequence of system calls. A “no” indicates the reverse:
the model checker was able to find a system call sequence, witharguments, accepted by
the model but that induces the unsafe operating system condition. Figure 6 shows the
undetected attack againsttraceroute’s Stide model discovered by our system. We auto-
matically found all attacks that researchers previously found manually, one additional
attack due to differences between Forrest’s training data and Wagner’s training data for
wu-ftpd, and an additional attack againstrestore not found by previous manual
research.

Previous work missed this attack because manual inspectiondoes not scale to many
programs and attacks, and hence the research did not attemptto compute results for all
attack goals in all programs. When using manual inspection,it is likewise difficult to
show that an attack is not possible: has the analyst simply not considered an attack that
would be successful? Model checking can prove that a goal is unreachable regardless
of the actual system calls used by the attacker in their attempt to reach the goal. We

close; munmap;open(“/etc/passwd”, ORDWR | O APPEND) = 3;
fcntl64; fcntl64; fstat64; mmap2; read; close; munmap;write(3);

Fig. 6. Undetected attack against the Stide model oftraceroutethat adds a new root-level user to
/etc/passwd. The system calls producing the attack effect are shown in boldface. Although
our system discovers arguments for the nop system calls, we omit the arguments here for con-
ciseness. We do not discover the actual string value writtento /etc/passwd; a suitable string
would be “attacker::0:0::/root:/bin/sh\n”.



Table 3.Model checking running times, in seconds.

wu-ftpdrestoretraceroutepasswd

Execute rootshell 0.34 0.75 2.38 2.70
Write to/etc/passwd 0.39 0.73 1.33 —
Set/etc/passwd world-writable 39.10 74.41 0.90 2.02
Set/etc/passwd attacker-owned 41.11 65.21 1.15 1.81

can show that the models of the first three test programs detect all attacks that try to
set/etc/passwd world-writable or owned by the attacker—assertions that previous
manual efforts were unable to make. Although the proofs of detection hold with respect
to the OS abstraction and may not hold in the actual OS implementation, as described
in Sect. 2, the proofs do provide a strong indication that runtime attack detection in the
real system will be effective.

Table 3 lists the model checker’s running times in seconds for each model and attack
goal. When comparing the running times with Table 2, a loose trend becomes apparent.
In cases where the model checker found an attack, the runningtimes are very small.
When no attack was found, the model checker executed for a comparatively longer
period of time. This disparity is to be expected and reflects the behavior of the un-
derlying model checking algorithms. When a model checker finds a counter-example
that disproves a logical formula—here an attack sequence that violates an LTL safety
property—the model checker can immediately terminate its execution and report the
counter-example. However, a successful proof that the logical formula holds requires
the model checker to follow exhaustively all execution paths and early termination is
not possible.

We believe that automating the previously manual process ofattack construction is
a significant achievement. We are not surprised at our ability to find undetected attacks:
attackers have significant freedom in program models that donot constrain system call
arguments. For example, the system call sequenceopen followed by write without
argument constraints can be misused by an attacker to alter the system’s password file.
Yet, this is a common sequence contained in nearly every non-trivial program, including
programs that execute with the root-level privilege required to alter the password file.

Our automated system provides us with the means to understand exactly where a
program model fails. From Table 2 we learn which classes of attack can be effectively
detected by a program model and which classes of attack require alternative protection
strategies. What is important is not simply that the models fail to detect some attacks,
but that we know exactly what type of attacks are missed.

8 Conclusions

Model-based intrusion detections systems are useful only when they actually detect or
prevent attacks. Finding undetected attacks manually is difficult, error-prone, unable
to scale to large numbers of program models and attacks, and unable to prove that an
attack will always be detected. We showed here that formalizing the effects of attacks
upon the operating system provides the operational means tofind undetected attacks



automatically. A model checker attempts to prove that the attack effect will never hold
in the program model. By finding counter-examples that causethe proof to fail, we
find undetected attacks: system call sequences and arguments that are accepted as valid
execution and induce the malicious attack effect upon the operating system. This au-
tomation let us find undetected attacks against program models that previously were
found only with manual inspection of the models. The efficiency of the computation—
about 2 seconds computation to find undetected attacks—provides an indication that
this automated approach can easily scale to large collections of program models.

Acknowledgments.We thank the anonymous reviewers and the members of the WiSA
project at Wisconsin for their helpful comments that improved the quality of the paper.

This work was supported in part by Office of Naval Research grant N00014-01-1-
0708, NSF grant CCR-0133629, and Department of Energy grantDE-FG02-93ER25176.
Jonathon T. Giffin was partially supported by a Cisco SystemsDistinguished Graduate
Fellowship. Somesh Jha was partially supported by NSF Career grant CNS-0448476.
The U.S. Government is authorized to reproduce and distribute reprints for govern-
mental purposes, notwithstanding any copyright notices affixed hereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or im-
plied, of the above government agencies or the U.S. Government.

References

[1] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs. In
7th International SPIN Workshop on Model Checking of Software, Stanford, California,
Aug./Sep. 2000.

[2] F. Besson, T. Jensen, D. L. Métayer, and T. Thorn. Model checking security properties of
control-flow graphs.Journal of Computer Security, 9:217–250, 2001.

[3] H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties of
software. In9th ACM Conference on Computer and Communications Security(CCS),
Washington, DC, Nov. 2002.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press, 2000.
[5] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model

checking pushdown systems. InComputer Aided Verification (CAV), Chicago, Illinois,
July 2000.

[6] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. Formalizing sensitivity
in static analysis for intrusion detection. InIEEE Symposium on Security and Privacy,
Oakland, California, May 2004.

[7] S. Forrest. Data sets—synthetic FTP. http://www.cs.unm.edu/∼immsec/data/FTP/UNM/-
normal/synth/, 1998.

[8] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for UNIX
processes. InIEEE Symposium on Security and Privacy, Oakland, California, May 1996.

[9] D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for anomaly detection.
In USENIX Security Symposium, San Diego, California, Aug. 2004.

[10] J. T. Giffin, D. Dagon, S. Jha, W. Lee, and B. P. Miller. Environment-sensitive intrusion
detection. In8th International Symposium on Recent Advances in Intrusion Detection
(RAID), Seattle, Washington, Sept. 2005.



[11] J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call streams. In11th
USENIX Security Symposium, San Francisco, California, Aug. 2002.

[12] R. Gopalakrishna, E. H. Spafford, and J. Vitek. Efficient intrusion detection using automa-
ton inlining. InIEEE Symposium on Security and Privacy, Oakland, California, May 2005.

[13] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W. Skorupka. Verifying information
flow goals in Security-Enhanced Linux.Journal of Computer Security, 13:115–134, 2005.

[14] L.-c. Lam and T.-c. Chiueh. Automatic extraction of accurate application-specific sandbox-
ing policy. In Recent Advances in Intrusion Detection (RAID), Sophia Antipolis, French
Riveria, France, Sept. 2004.

[15] C. R. Ramakrishnan and R. Sekar. Model-based vulnerability analysis of computer systems.
In 2nd International Workshop on Verification, Model Checkingand Abstract Interpreta-
tion, Pisa, Italy, Sept. 1998.

[16] F. B. Schneider. Enforceable security policies.ACM Transactions on Information and
System Security, 3(1):30–50, Feb. 2000.

[17] S. Schwoon.Model-Checking Pushdown Systems. Ph.D. dissertation, Technische Univer-
sität München, June 2002.

[18] S. Schwoon. Moped—a model-checker for pushdown systems. http://www.fmi.uni-
stuttgart.de/szs/tools/moped/, 2006.

[19] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast automaton-based method for
detecting anomalous program behaviors. InIEEE Symposium on Security and Privacy,
Oakland, California, May 2001.

[20] K. Tan, K. S. Killourhy, and R. A. Maxion. Undermining ananomaly-based intrusion de-
tection system using common exploits. InRecent Advances in Intrusion Detection (RAID),
Zürich, Switzerland, Oct. 2002.

[21] K. Tan and R. A. Maxion. “Why 6?” Defining the operationallimits of stide, an anomaly
based intrusion detector. InIEEE Symposium on Security and Privacy, Oakland, California,
May 2002.

[22] K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions:From the abnormal to the nor-
mal and beyond. In5th International Workshop on Information Hiding, Noordwijkerhout,
Netherlands, Oct. 2002.

[23] D. Wagner and D. Dean. Intrusion detection via static analysis. InIEEE Symposium on
Security and Privacy, Oakland, California, May 2001.

[24] D. Wagner and P. Soto. Mimicry attacks on host based intrusion detection systems. In
9th ACM Conference on Computer and Communications Security, Washington, DC, Nov.
2002.

[25] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification and verification of the UCLA
Unix security kernel.Communications of the ACM, 23(2), Feb. 1980.


