
Exposing Hidden Performance Opportunities in
High Performance GPU Applications

Benjamin Welton and Barton P. Miller
Computer Sciences Department

University of Wisconsin - Madison
Madison, WI 53706

{welton,bart}@cs.wisc.edu

Abstract—The emergence of leadership class systems with
nodes containing many-core accelerators, such as GPUs, has
the potential to vastly increase the performance of distributed
applications. Exploiting the additional parallelism that many-
core accelerators offer is fraught with challenges. Developers and
existing performance tools focus on a subset of these challenges,
primarily the identification of CPU code that may be suited for
many-core parallelization and improving the efficiency of existing
many-core code. While this focus has resulted in application
performance improvements, a significant amount of untapped
performance still remains. Untapped performance opportunities
take the form of missed unobvious many-core parallelization
opportunities as well as inefficiencies in handling interactions
with the accelerator, such as memory copies and synchronization.
In this work we address three issues: (1) characterize the missed
performance opportunities in many-core applications that are
not detected by current performance tools and techniques, (2)
design detection methods that can be used by performance
tools to identify these missed opportunities, and (3) apply these
techniques to five large scale scientific applications (Qball, QBox,
Hoomd-blue, LAMMPs, and cuIBM), resulting in a reduction of
their execution time by 18% and 87%.

I. INTRODUCTION

As many-core accelerators have become standard on high
performance computing platforms, developers have had to
adapt their applications to exploit the additional parallelism
afforded by many-core architectures. The adaptation of an
application to a many-core architecture is difficult requiring the
identification of code suitable for parallelization, the writing of
an efficient many-core parallelizations of that code, handling
the interaction between the CPU and many-core device, and
the integration of the new many-core component into existing
CPU code. Developers must perform these difficult steps
correctly to successfully transition their application to an
efficient many-core architecture.

Looking for help with the adaptation process, developers
often turn to performance tools. Performance tools primarily
focus on identifying code suitable for many-core architec-
tures [5]–[7], [11], [24], [37], [42] and on diagnosing ineffi-
ciencies in already parallized many-core code [15], [27], [30],
[31], [33], [41].

While these performance tools have helped developers to
speed-up their applications, a large amount of untapped per-
formance still remains. Untapped performance takes the form
of missed unobvious many-core parallelization opportunities

and inefficiencies in handling interactions with the accelerator,
such as memory copies and synchronization. These unobvious
performance optimizations are not targeted in the performance
optimization stage by either developers or tools. In our initial
experiments with the real-world GPU applications run on
Oak Ridge National Laboratorys Cray Titan supercomputer
(Table I), we have found that we can reduce application exe-
cution time between 19-85% by finding missed parallelization
opportunities and by removing inefficiencies in interacting
with the accelerator. The goal of our work is to help developers
reveal and ultimately correct these inefficiencies in their ap-
plications. Our contributions include: (1) the characterizing of
missed performance opportunities in many-core applications
not detected by current performance tools and (2) the design
of detection methods to identify these missed opportunities.

Our exploration of GPU applications identified four
categories of issues not detected by existing performance
profiling tools that significantly impact performance. These
issues were identified with a combination of source code
review and manual instrumentation to gain details about the
runtime of functions within the applications and memory
structure; manual corrections were inserted when an issue
was identified. The four categories of missed performance
opportunities are:

Unobvious missed parallelization opportunities in areas
of the application where using the GPU would improve
performance: What makes an unobvious region for conversion
unobvious is the unknown benefit of converting the region
to the GPU. The uncertainty of the conversion is caused by
the assumption that the region does not have the necessary
characteristics for profitable parallelization on the GPU. The
characteristics needed are high parallelism, a flat memory
structure (single dimensional arrays), and workload levels high
enough to overcome the overheads associated with moving
the computation to the GPU. Reducing the uncertainty of
converting a region to the GPU is key to discovering unobvious
parallelization opportunities. Reducing uncertainty requires
that we identify CPU regions contributing significantly to run-
time, determine the underlying memory structure of variables
accessed within the region, and estimating the overheads of
transferring work to/from the GPU.

We describe the issue of missed parallelizations and tech-

1



Original
Application Name Runtime Runtime Problems
(Version) Organization Application Description (Min:Sec) Reduction Found
Hoomd-Blue [4]
(v1.1.1)

Univ of Michigan Molecular Dynamics Particle
Simulator

08:36 37% SYN

Qbox [22]
(v1.63.5)

UC Davis First Principal of Molecular
Dynamics

38:54 85% DD, SYN

QBall [16]
(Apr 24 2017)

LLNL First Principal of Molecular
Dynamics (enhanced version
of qbox)

67:55 87% DD, SYN

LAMMPs [46]
(Mar 31 2017)

Sandia Molecular Dynamics Particle
Simulator

03:34 18% MP

cuIBM [29]
(Sep 21 2016)

GWU Computational Fluid Dynamics 31:42 27% SYN, JT

MP: Unobvious missed parallelization, DD: Duplicate Data Transfers, SYN: Synchronization, JT: Just-In-Time GPU Compilation

TABLE I: Applications improved by adding parallelism and correcting inefficient behavior

niques to address them in more detail in Section III.
Duplicate data transfers causing unnecessary transfers of

data already residing in physical memory on the CPU or GPU:
The existence of unnecessary transfers is caused by the way
GPU accelerated functionality is introduced into applications.
The most common method of adding GPU functionality to
existing applications is by dropping-in GPU replacements to
CPU functionality. GPU replacements often taking the form of
a ”GPU-ized” library (such as the use of accelerated libraries
like cuFFT [40], CUSP [8], and others [14], [19], [35], [38],
[43]), a parallel code section inserted by the compiler (such
as those generated by OpenACC [52]), or a block of user
written code. Duplicate data transfers can occur when multiple
replacements are in use by the application or when CPU-
style behavior must be emulated to conform to the existing
application structure. When multiple replacement libraries are
in use, duplicate transfers to the GPU can occur because the
replacements cannot communicate what data they have already
moved to the GPU with one another. When CPU behavior must
be emulated, the replacement library cannot assume that CPU
data wont change between entrances to the library, requiring
that all CPU data needed by GPU computation be transferred
at every entry to the replacement library. The underlying
cause of duplication is the lack of reuse of GPU resident
memory and the assumption that data has been modified
in-between calls to dropped-in replacements. A survey of
large science applications conducted by Oak Ridge National
Laboratory [23] lists the lack of GPU data reuse as one of
the key performance issues faced by many high performance
accelerated applications.

We describe the issue of duplicate data transfers and tech-
niques to address them in more detail in Section IV.

Synchronizations between the CPU and GPU that are
unnecessary or performed before needed, reducing CPU - GPU
computation overlap. Misplaced or unnecessary synchroniza-
tion occur when a synchronous operation happens before data
is actually needed by the CPU or GPU. The existence of syn-
chronization errors is typically due to the drop-in replacement

method used by applications, such as by usage of a ”GPU-
ized” library. Dropped-in replacements are typically required
to emulate CPU-style behavior to operate within existing
application structures. A requirement of emulating CPU-style
behavior is ensuring that the results of a GPU computation are
in CPU memory before returning to the application framework,
requiring a synchronous memory transfer upon exit of the
library. However, applications may not need the GPU data
immediately on exit of the library (or even at all) making the
synchronous operation unnecessary.

We describe synchronization issues and techniques to iden-
tify misplaced and unnecessary synchronizations in more
detail in Section V-A.

Unnecessary Just-In-Time (JIT) compilation of GPU
code on every execution of the application, increasing the
overhead of using a GPU within the application. JIT compi-
lation occurs when the application contains native GPU code
that is incompatible with the GPU in use on the system [39].
The incompatibility is the result of specifying the incorrect
GPU architecture at compile time or requiring the code to
be generated from virtual code by the GPU device driver
during execution. When an application is compiled for an
incompatible architecture, application performance is affected
due to the cost of performing the JIT compilation and by GPU
code inefficiencies introduced by selecting the wrong virtual
architecture at compile time. The effect in HPC environments
can be magnified because the JIT-generated native code is not
cached for subsequent executions. In addition, if the default
virtual architecture targeted by the compiler is not a good
match for the devices actually in use on the system, then the
code may not be able to efficiently exploit to the GPU. When
these easily correctable inefficiencies exist in the application,
no notice is given to the user that performance is being
negatively affected.

We describe the JIT compilation issue and techniques to
address them in more detail in Section VI.

The four categories of performance issues that we have
identified significantly impact the performance of applications

2



that we have studied. Table I shows the performance im-
provement we obtained by correcting these issues in each
of the five categories we described. The large benefit from
correcting these issues in our initial set of applications is
our motivation for creating tools to help developers detect
their existence in an application. We discuss four techniques
to identify the performance issues we have seen in real
world applications: (1) identifying loops with memory access
patterns favorable to parallelization to uncover unobvious
parallelization opportunities, (2) using a content based data
deduplication approach to identify duplicate data transfers, (3)
using memory tracing to identify when a synchronization is
misplaced or unnecessary, and (4) inspecting the application
executable for the presence of compatible native GPU code.
These approaches are presented in Sections III-A, IV-A, V-C,
and VI respectively.

In Section II, we discuss currently available tools for
detecting performance issues in GPU applications and their
relationship to the performance challenges that we have de-
scribed. We discuss the performance challenges of missed un-
obvious parallelization opportunities, duplicate data transfers,
explicit and implicit synchronizations, and JIT compilation in
Sections III, IV, V, and VI respectively.

II. RELATED WORK

Performance tools have been a key area of research since
the introduction of the first multiprocessing machine. The
introduction of accelerator computation has brought a new
emphasis on the development of tools to find ways to improve
application performance. Research initially started on develop-
ing tools to improve performance of application code already
running on the GPU. GPU profiling and tracing tools were
developed to detect GPU idleness [15], [27], [30], [31], [33],
[41], CPU idleness waiting on GPU completion [15], [27],
[30], [33], [41], warp occupancy [15], [30], [31], [41], cache
behavior [30], [41], instrumentation of GPU code [18], on-
device synchronization issues [10], [15], [41], and workload
balance between accelerators on the same node [13]. These
approaches have been beneficial in showing application devel-
opers how to improve the performance of code already written
for GPUs.

The focus of our research is not on improving the effe-
iciency of GPU code, but on improving whole application
performance by looking for performance opportunities outside
of the GPU. Recently, the focus of tools has shifted to looking
for performance opportunities outside of the GPU. Techniques
to detect missed parallelization opportunities [5]–[7], [11],
[24], [37], [42] and detecting synchronization issues [2] have
been developed to improve whole application performance. We
discuss these contributions below.

A. Detection Approaches

Existing detection approaches have attempted to identify
missed parallelization opportunities [5]–[7], [11], [24], [37],
[42], duplicate data transfers [41], and synchronization is-

sues [2]. The approaches used to identify missed paralleliza-
tion opportunities are:

Pattern-based approaches identify parallelizable code sec-
tions by comparing arithmetic operation, control flow, and
memory access patterns in an application to a set of known
parallelizable patterns [11], [42]. Static analysis is performed
on a compiler-generated intermediate representation of the
application to uncover the operations, control flow, and the
memory access patterns contained within. If a pattern within
the application matches a set of known parallelizable patterns,
that code section is considered to be suitable for GPU par-
allelization. Our techniques use dynamically obtained infor-
mation to detect parallelizable patterns that can be hidden
from static analysis techniques, such as the identification of a
sequential memory access patterns that is hidden from static
analysis because it occurs in memory reached by a multi-level
pointer access.

Algorithm classification methods [5], [7], [24], [37] take
a similar approach to pattern-based methods to identify par-
allelism. Algorithm classification approaches compare the al-
gorithms in use by the application (such as a matrix multi-
plication or an arithmetic operation between vectors) to a list
of known parallelizable algorithms. Algorithm classification
approaches require that a developer manually specify the
algorithm types used in a for loop to create a prediction.

A machine learning approach [6] that identifies areas of
parallelization by using a machine learning model to estimate
GPU performance of each individual loop in an application.
Using static and dynamic analyses, a set of program properties
is obtained that are used as input for a machine learning
model. The program properties gathered include the number of
instructions, number of memory/control/integer operations, the
number of loop independent operations, and a set of features
detailing the memory access pattern of the loop. The output
of the model is an estimate of the computational speed-up
that would be achieved by converting the loop to the GPU. A
benchmark suite containing a pure CPU and hybrid CPU/GPU
implementations of each benchmark was used to evaluate
the machine learning method. The benchmarks used to train
and evaluate the model consisted of small test applications,
with source code length measured in the thousands of lines
of code, performing a single task in isolation. The machine
learning method was used to create a prediction based on the
CPU version of the benchmark, with the hybrid CPU/GPU
implementation of the same benchmark used to assess the
accuracy of the prediction. These experiments showed that
their prediction was within 22% of the actual speedup. How-
ever, the machine learning approach was not attempted on real
world applications that typically are composed of a number of
different types of tasks and number in the tens to hundreds of
thousands of lines of code

The machine learning approach predicted only computa-
tional speedup of a loop and does not take into account
overhead such as data transfer costs. The target of their
work was identifying areas where high computational speedup
(>4X performance) could be obtained. We are focused on

3



parallelization of areas that may have lower computational
speed-up where data transfer costs can dramatically effect the
outcome in terms of reducing whole application runtime. We
focus on low speed-up areas for two reason. First, they are
the most likely to be passed over by application developers
when implementing GPU parallelism into their applications.
Second, these can result in significant reductions in runtime
due to their presence on the critical paths of the application.

Researchers have used blame analysis to manually diag-
nose the presence of synchronization issues in applications.
Blame analysis is a feature, first introduced in HPCToolkit [2]
and later adopted by nvprof as dependency analysis [41],
associating the ”blame” for synchronization delays with the
device that is responsible for the delay. For example, if the
CPU is waiting for the GPU to complete, the blame for
the time spent waiting is placed on the GPU kernels active
within the GPU. Blame analysis gives a developer an idea that
there may be an issue with data transfer and synchronization
operations by blaming a large percentage of total runtime on
those operations. However, blame analysis does not give the
developer any information on whether or not the transfers
are necessary or if the synchronization operations can be
moved to reduce delay. Our approach is designed to give
developers information on the necessity of synchronization and
transfer operations including where to place these operations
to improve efficiency.

III. UNOBVIOUS PARALLELIZATION OPPORTUNITIES

Missed unobvious parallelization opportunities exist in ap-
plications primarily because they are hidden from both static
and human analysis. They have source code structures that ap-
pear to be not favorable to parallelization. An example of one
of these missed unobvious parallelization opportunities can be
seen in the code excerpt taken from the 208K line molecular
dynamics application LAMMPs [46] from Sandia National
Laboratory (shown in Figure 1). This code from LAMMPs
shows characteristics that are bad for GPUs: unknown number
of loop iterations, multiple multi-level pointer reads and writes,
and the presence of a branch condition. Developers infer that
multiple costly memory transfers are necessary to transfer the
individual data regions pointed to by v[i] and f[i] to/from
the GPU, the memory access pattern within the GPU will be
poor due to non-sequential accesses of data pointed to by v
and f across loop iterations, and that the amount of work
may be too small to overcome the overhead of the multiple
data transfers. Based on the description given for existing
techniques for detecting parallelization opportunities [5], [7],
[11], [24], [37], [42], these techniques would make the same
assumptions that developers would for this code region. While
we would like to test tools implementing existing techniques
for detection to verify our assessment of these techniques, none
are publicly available and they have never been tested on real
world code bases of this size.

We were able to obtain a 10% improvement to total ap-
plication runtime by migrating the code in Figure 1 to the
GPU. Previous techniques make inaccurate assumptions about

for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {

double dtfm;
dtfm = dtf / mass[type[i]];
v[i][0] += dtfm * f[i][0];
v[i][1] += dtfm * f[i][1];
v[i][2] += dtfm * f[i][2];

}
}

Fig. 1: Example of a missed parallelization opportunity
from LAMMPs

variables v and f and the unknown value of nlocal. The
assumption that can be drawn from source code is that v[i]
and f[i] point to completely disjoint memory regions for
every value of i. That assumption is wrong; v and f are each
allocated in a contiguous manner where all indices’s point
into the same contiguous memory region. Thus the accesses
at v and f can be rewritten as a single dimensional index.
The contiguous allocation of v and f is hidden behind the
memory management structure of LAMMPs. It would not be
apparent to a developer that these variables are contiguous in
memory without in-depth knowledge of the memory manage-
ment framework in use. The unknown and possibly changing
value of nlocal adds additional uncertainty since the loop
may not operate long enough for any reasonable benefit to be
achieved. In our experiments with LAMMPs, we found that
the value in nlocal was high (over 400,000).

Approaches to detect missed parallelization opportunities
need to be able to reveal information about the actual memory
access pattern in use and the length of time spent executing
within these code segments.

A. Detecting Unobvious Parallelization Opportunities

The behavior of long running loops with sequential memory
access patterns indicates the presence of a loop that is favor-
able to conversion to the GPU. We view long running loops
as GPU favorable because the computation is likely to run
long enough to outweigh the overheads associated with GPU
computation, such as memory transfer time and the latency
of launching the kernel. Loops with only a small amount of
execution time on the CPU may have overhead that outweighs
any computational benefit, so we consider these to be unlikely
candidates for conversion. A sequential memory access pattern
is often favorable because it allows the GPU to combine
memory operations by different threads into a single memory
transaction. GPUs are well-suited to codes with high memory
bandwidth requirements [12], [17], [25], [36], so identifying
codes with this characteristic indicates GPU favorability.

Our technique to identify these behaviors in applications
uses a dynamic approach combining CPU profiling with
memory tracing. We use existing performance profilers [2],
[27], [45], [49] to obtain information about the execution
time of loops within the application. A loop is considered

4



for conversion if it constitutes a large enough fraction of
application execution time to be worth the effort of con-
version. We use memory tracing to determine if the loop
under consideration has a memory access pattern suitable for
parallelization. We first run a single representative instance of
each candidate loop in a separate memory tracing run of the
application to not perturb the profiling results. Instrumentation
inserted into the loop records the addresses used by all
load and store operations. We determine the favorability of
the loop to parallelization by analysing the memory access
patterns contained in the trace, looking for contiguous ranges
of virtual memory addresses accessed during loop execution.
If contiguous virtual memory address ranges can be formed
from the individual virtual memory addresses captured, the
loop is identify as containing a sequential memory access
pattern suitable for the GPU parallelization. Loops identified
by both performance profiling and memory tracing as being
suitable for the GPU would be marked as a missed unobvious
parallelization opportunity.

IV. DUPLICATE DATA TRANSFERS

Duplicate data transfers are unnecessary transfers of data
between CPU and GPU memory. A transfer is unnecessary
if the data already exists in the memory space to which it is
being written. Unnecessary transfers occur when developers
cannot make assumptions about data modifications between
regions of code, such as between functions or libraries, within
the application. A region processing data using the GPU may
conservatively decide to re-transfer data already resident on
the GPU if it could have been modified by another region.
Typically, unnecessary transfers occur when libraries are used
to add GPU acceleration to applications or when multiple
dropped-in GPU replacements to CPU functionality are in-
troduced into an application.

Figure 2 shows an example of an unnecessary transfer from
the 100K line QBox [22] molecular dynamics application
developed at U.C. Davis. The unnecessary transfer is caused
by QBox’s usage of the discrete Fourier transform library,
cuFFT [40]. cuFFT is a library developed by Nvidia as a
drop in replacement for the CPU discrete Fourier transform
library, FFTW [20]. Maintaining compatibility with FFTW
requires that all of the steps needed to setup the transform on
the GPU, such as transferring data, must be done within the
cuFFT library itself. In the example shown in Figure 2, QBox
is performing a Fourier transform on data starting at location
data[i] where data is a flat single dimensional array.
cuFFT transfers N elements starting at position data[i] to
the GPU. N is defined by the application on initialization of the
FFT library and is stored in the variable plan. The transform
is computed on the GPU and the results are transferred back
to data[i]. Since the values located within data are not
modified between each subsequent transform, each transfer
after the initial iteration contains duplicated data that does
not need to be transferred. The duplicate transfers increase
application runtime by approximately 40%.

...
for(int i = 0; i < n; i++)

fftw_execute_dft(plan, &data[i],
&data[i]);

...

A: Excerpt invoking cuFFT

void fftw_execute_dft(plan, in, out){
...
cudaMemcpy(in, dev);
[Compute FFT on GPU]
cudaMemcpy(dev, out);
...

}

B: cuFFT library code for function fftw execute dft

Fig. 2: QBox and Qball’s usage of Nvidia’s cuFFT library
to accelerate discrete Fourier transform calculations

The issue present in Qbox shown in Figure 2 extends to
QBall [16], an enhanced version of QBox created by Lawrence
Livermore National Laboratory. QBall contains experimental
features, such as support for f-projectors and the implemen-
tation of a highly-scalable algorithm to calculate the time-
dependent Density Functional Theory on a many-body system.
QBall inherits its application structure, including the structure
of the FFT computation, from QBox. By inheriting QBox’s
FFT structure, QBall also inherited the performance issue seen
in QBox when linked with cuFFT. The same performance issue
described above for QBox shown in Figure 2 appears in QBall.
The duplicate transfers seen in QBall increase application
runtime by the same amount, approximately 40%.

A. Detection

We use a content based data deduplication approach to
identify duplicate transfers. Content based data deduplication
approaches compare the hash values of data regions to identify
duplicates [3], [9], [47], [50]. Our implementation intercepts
calls to cudaMemcpy (and its derivatives such as cudaMem-
cpyAsync) to obtain the location of data being transferred
between the CPU and GPU. If a match to a previous transfer is
detected, a stack trace at the location of the duplicate transfer
is recorded. Intercepting the data transfers between the CPU
and GPU is simplified by the need to use standard calls to
invoke the transfers.

To further evaluate our automation of the detection of
duplicate transfers, we created a prototype tool implementing
our content based data deduplication approach. Using this
prototype tool, we detected that approximately 70% of the data
transfers that take place in the deep neural network framework
Tensorflow [1] contain duplicate data. Currently, we are in the
process of determining what impact the duplicate transfers
have on Tensorflow’s execution time and how to eliminate
these transfers.

5



The duplicate transfers that we identify are not guaranteed
to be duplicates on subsequent runs of the application with
different inputs. To overcome this limitation, we permanently
instrument the data transfers containing duplicate data to
always perform a hash check before the transfer. If a transfer
that we expect to be a duplicate is not, we perform the transfer
and record a stack trace to alert the user. This approach relies
on the ability to generate a hash of the data in a transfer
request faster than the transfer could take place. The time cost
of performing a data transfer can be decomposed into startup
costs, the time it takes to move the first byte of data, and the
per byte transfer cost after startup. GPU data transfers have
very high startup costs but low per byte data transfer costs [21],
[34], [48] while hash checking has very low startup costs with
higher per-byte data costs than a GPU transfer. The fastest
CPU hashing algorithm we have tested so far, xxHash [32],
can hash data up to 256 KB in size while still being faster than
a GPU transfer of the same size. Using a hashing approach
to identify and eliminate duplicate transfers in QBox [22] we
can achieve an estimated 16 - 35% of the benefit we obtained
via manual tuning.

V. SYNCHRONIZATIONS

There are two types of GPU synchronizations operations
that we have identified: implicit and explicit. Implicit syn-
chronizations are caused by side effects of operations such as
memory transfers or allocations. Explicit synchronizations are
manually invoked by the application to synchronize the CPU
with the GPU. When a synchronization takes place, the CPU
waits for the GPU to complete all existing operations before
continuing. First, we want to remove an unnecessary or redun-
dant synchronization operation. Second, we want to delay for
as long as possible any operation requiring a synchronization
with the GPU to maximize CPU - GPU computational overlap.
Ideally, the point where an application performs a synchro-
nization operation is right before the result of the operation is
needed by the CPU. We discuss how synchronization errors
present themselves in applications and describe an automated
method to detect synchronization issues.

A. Implicit Synchronization Issues

Implicit synchronizations occur when a library call made
by an application synchronizes with the GPU before returning
control. The most typical implicit synchronization operations
are synchronous data transfers and memory allocation re-
quests. The challenge developers face is determining how to
delay (or replace) operations that implicitly synchronize. The
problem of avoiding implicit synchronization is made more
challenging when the synchronization is hidden from applica-
tion code, such as when a library in use by the application is
itself making an implicit synchronization call.

The interaction between QBox/QBall with cuFFT, shown
in Figure 2, is an example of an implicit synchronization.
Figure 2B shows cuFFT making two calls to cudaMemcpy
where each call to cudaMemcpy performs an implicit synchro-
nization. However the result from the second cudaMemcpy

operation is not used until after the for-loop in Figure 2A.
The result of these unnecessary (and early) implicit synchro-
nizations used by cudaMemcpy is an increase in application
execution time by 40%. The cumulative effect of removing
duplicate data transfers and implicit synchronizations from
both QBox and QBall was a reduction in execution time by
85%.

In cuIBM [29], a 17K line computational fluid dynamics
simulator from George Washington University, the implicit
synchronization operations of cudaMalloc and cudaFree delay
CPU execution unnecessarily. The cudaMalloc and cudaFree
operations take place on the creation and destruction of tempo-
rary GPU vectors. A vector in cuIBM would be created (caus-
ing a synchronization), filled with data via an asynchronous
memory transfer, used by GPU computation, and then in most
cases would be destroyed (causing another synchronization).
This pattern of creating and destroying temporary memory
spaces for vectors is common throughout the execution of
cuIBM. The result is an unnecessary delay of CPU code not
dependent on calculations from the GPU. We corrected the
problem by allocating vectors that would be reused only once.
The result was a reduction in cuIBM’s execution time by 8%.

B. Excessive Explicit Synchronizations

Explicit synchronizations are used to wait for the com-
pletion of in-progress asynchronous operations such as data
transfers. The challenge that developers face is determining
when a explicit synchronization is necessary and where to
place it. When a developer does this incorrectly, application
performance can be reduced significantly.

In Hoomd [4], a 112K line molecular dynamics simulator,
a removal of an explicit synchronization operation reduced
execution time by 37%. The explicit synchronization, shown
in Figure 3, is used to wait for the GPU to update the
shared variable sharedStatus. sharedStatus indicates
whether the GPU computation failed because not enough
GPU memory was allocated for the operation. The value of
sharedStatus is true (successful GPU completion) for
every iteration of the for-loop except the first iteration when
GPU memory is initially allocated by the CPU. Even though
the value of sharedStatus is false for iterations 2 to
N of the for-loop, the application still synchronizes with the
GPU on every iteration causing the reduction in performance
by delaying the unrelated CPU computation.

C. Dectecting Implicit and Explicit Synchronization Opportu-
nities

A synchronization opportunity is present when a synchro-
nization operation causes unnecessary delay. We view delay
as unnecessary when CPU computation blocks for the GPU
but does not access data shared with the GPU. The result of
CPU computation being delayed unnecessarily is a reduction
in CPU - GPU overlap. We have identified three types of
unnecessary delay: (1) when the CPU does not access shared
data (data shared with the GPU) after the synchronization,

6



(a) Original version of Hoomd’s main compuational loop (b) Manually improved version with reduced CPU delay

// Status variables shared between CPU and GPU
bool sharedStatus;
int * GPUData;

// Size of GPUData
int size = 0;
cudaMalloc(&GPUData, size);

// Main computational loop of hoomd
for(step = 0; step < nsteps; step++) {

...
do {

GPUComputation<<< >>>(sharedStatus,
GPUData,
size,
...);

// Synchronize to get GPU updates
// to sharedStatus
cudaDeviceSynchronize();

// If sharedStatus is false...
// allocate more GPU memory and retry
if(sharedStatus == false) {

size = len(GPUData) + ...;
cudaMalloc(&GPUData, size);

}
} while(sharedStatus == false);

// CPU work not dependant on GPU data
for(i = 0; i < count; i++)

...
...

// Existing Implicit Synchronization
cudaMemcpy(...)
...

}

// Status variables shared between CPU and GPU
bool sharedStatus;
int * GPUData;

// Size of GPUData
int size = MAX_DATA_SIZE;
cudaMalloc(&GPUData, size);

// Main computational loop of hoomd
for(step = 0; step < nsteps; step++) {

...

GPUComputation<<< >>>(sharedStatus,
GPUData,
size,
...);

// CPU work not dependant on GPU data
for(i = 0; i < count; i++)

...
...

// Existing Implicit Synchronization
cudaMemcpy(...);
...

}

Red statements depend on results from GPU Blue statements have no GPU dependencies

Fig. 3: A flat representation of an explicit synchronization error in the main computational loop in Hoomd.

(2) when the placement of the synchronization is far from
the first access of shared data by the CPU, and (3) when
CPU computation not dependent on GPU data is delayed by a
synchronization. Unnecessary delay can be reduced by remov-
ing the synchronization, moving the synchronization closer to
shared data access, or by reordering CPU computation to make
the synchronization obsolete.

Figure 5 shows an example of how delaying (or removing)
a synchronization can reduce the amount of time the CPU is
delayed. This is a general example representing the behavior
seen in QBox, cuIBM, and Hoomd. In the code section
shown in the left of Figure 5, a synchronization operation
occurs after a memory transfer even though the shared data
(stored in dest) may not be accessed. If cond1 is true,
the synchronization is unnecessary, blocking the CPU for no
reason. In the other cases, there may be enough CPU work
performed before the access to dest that a delay could be
avoided by moving the synchronization closer to the shared

data access. The impact of the unnecessary delay can be
magnified if this code section is called multiple times, such as
within a loop.

We use a dynamic approach combining the techniques of
profiling, memory tracing, and program slicing [26], [28], [51]
to identify where a synchronization opportunity is located and
how to correct its behavior. Our approach can be broken down
into five steps: (1) identify the synchronization operations that
cause long delays on the CPU, (2) determine what data is
shared between the CPU and GPU, (3) identify the CPU
instructions that access shared data, (4) determine how far the
instruction performing the synchronization is from the first
CPU instruction that accesses data shared, and (5) determine
if CPU computation exists that does not depend on shared
data. Using this information, we will generate the corrective
measure that should be taken and an estimate of the amount of
time that could be saved if the measure was taken. We explain
how to gather this information below.

7



We target synchronization operations with long CPU de-
lays because a change in their synchronization behavior can
result in significant improvements in CPU - GPU overlap.
Existing CPU performance profiling tools already obtain the
location of a synchronization and how long the CPU blocks
at the synchronization [2], [15], [27], [30], [33], [41]. We use
synchronization delay information obtained by one of these
profilers to determine the synchronization operations with long
delays that we will perform further analysis on.

At each synchronization, we must identify what data is
shared between the CPU and GPU. Data can be shared be-
tween the CPU and GPU using one of two methods: a memory
transfer or through the mapping of CPU memory pages to
the GPU. Both methods are initiated through requests made
through a standardized API. We identify data being shared
between the CPU and GPU by intercepting these requests and
recording the memory location (and size) of the data being
shared.

We identify where shared data is accessed by CPU computa-
tion using a combination of source code analysis and memory
tracing. We first identify the instructions containing pointers
that might point to shared data. With this set of instructions, we
use memory tracing to determine the instructions that access
a memory location containing shared data at runtime.

The ordered set of instructions accessing shared data allows
us to identify two types of unnecessary delay: no shared data
access by the CPU and synchronization far from the use of
shared data. If the set of instructions accessing shared data is
empty, no access to shared data occurs and the synchronization
can be removed. If the total number of instructions between
the end of the synchronization and the first access to shared
data is large, we know that CPU delay could be reduced
by moving the synchronization closer to this access. The
corrective measure is to move the synchronization to the
location of the access. The synchronization opportunities in
QBox [22], QBall [16], and cuIBM [29] fall under these types
and are identified here.

The approach that we use will detect shared data usage
down the most common path, but will not detect possible
paths after the synchronization where shared data uses may
occur. For example, while we are monitoring the application in
Figure 5, if the path reaching v = dest[0] is not traveled,
we must ensure that the application remains correct if the
path is ever taken. We propose to resolve correctness down
unseen paths by using static analysis to identify all untraversed
paths in the control flow graph that follow the original location
of the synchronization. Conservatively, a location before the
first memory reference on the untraversed path is where a
synchronization has to occur.

The third type of unnecessary delay, illustrated in Figure 4,
is when CPU computation not dependent on GPU data is
being delayed by a synchronization. A CPU computation is
not dependent on GPU data if the values of variables used in
the computation are not affected by changes to data shared
with the GPU. The delay is unnecessary because it can be
reduced by performing the CPU computation before the syn-

(a) Original ordering (b) Reordered to
reduced CPU delay

Other CPU 
computation

Wait for GPU

CPU computation 
dependent on 
shared data

CPU GPU

Launch GPU 
computation

GPU 
computation

CPU computation
not dependent 
on shared data

CPU computation 
dependent on 
shared data

CPU GPU

Launch GPU 
computation

GPU 
computation

Other CPU 
computation

CPU computation
not dependent 
on shared data

Wait for GPU

Processor Idle

Fig. 4: Illustrative example of unnecessary delay caused by delaying
CPU computation not dependent on GPU data

chronization, increasing CPU - GPU overlap. Identifying this
case of unnecessary delay requires that we locate instructions
that do not depend on GPU data. We use program slicing [26],
[28], [51] to identify instructions that do not depend on GPU
data. An instruction is dependent on GPU data if the values
used by the instruction are affected by data shared with the
GPU. A forward slice is created starting at the synchronization
operation with the locations of shared data being used as
the criterion for the instructions to be included in the slice.
The result is a slice containing the instructions that may
depend on data shared with the GPU. We are interested in
the set of instructions that are not in the slice since they do
not depend on data shared with the GPU. If the number of
instructions not in the slice is large (say, greater than a few
hundred instructions), then moving these instructions before
the synchronization operation could have a noticeable benefit.
The synchronization opportunity in Hoomd [4] falls under this
type of unnecessary delay and would be detected here.

Our current work is focused on automating the identification
of instructions accessing shared data and determining if CPU
computation exists after a synchronization that does not de-
pend on values stored in shared data. We will use binary code
instrumentation to identify the instructions that access shared
data by instrumenting the load and store requests made by
the CPU after a synchronization call is made. Dyninst [44], a
binary code instrumentation and analysis toolkit, will capture
the addresses used by individual load and store instructions
between the end of the synchronization and the first instruction
accessing shared data. Using the information obtained during
instrumentation, we will modify existing automated program
slicing techniques to identify the instructions not dependent
on shared data.

8



(a) Original version with synchronizing too early (b) Improved version with reduced CPU delay

cudaMemcpyAsync(dest, src, len, ...);

...

cudaDeviceSynchronization();
v = 1;

if (cond1) {
... // A lot of CPU computation

} else if (cond2) {

v = dest[0];

... // Any amount of CPU computation

} else {
... // A lot of CPU computation

v = dest[1];

}
result = v;

cudaMemcpyAsync(dest, src, len, ...);

...

v = 1;

if (cond1) {
... // A lot of CPU computation

} else if (cond2) {
cudaDeviceSynchronization();
v = dest[0];

... // Any amount of CPU computation

} else {
... // A lot of CPU computation

cudaDeviceSynchronization();
v = dest[1];

}
result = v;

cudaMemcpyAsync()

If (cond1)

If (cond2)

cudaDeviceSynchronize()

v = dest[1]

v = dest[0]

results = v

v = 1

cudaMemcpyAsync()

If (cond1)

If (cond2)

v = dest[1]

v = dest[0]

results = v

v = 1

cudaDeviceSynchronize()Control flow graph edge Elided subgraph

Fig. 5: Illustrative example of an early synchronization causing unnecessary delay

9



VI. JIT COMPILIATION

GPU native code may need to be generated, from a GPU
virtual architecture at runtime because there is no native GPU
code present in the executable file, or the code that is present
is for the wrong model GPU. The lack of native GPU support
is a product of the misconfiguration of the applications at
compile time. Common reasons for misconfiguration are a
developer not knowing the correct native architecture of the
GPU, build systems such as CMake incorrectly identifying
the native architecture, and use of compiler defaults that
produce incompatible binaries for most GPUs. When a miss-
configuration of the architecture occurs, application users are
not notified that their application is misconfigured, either at
compile or execution time.

The cuIBM [29] application is an example of the impact a
misconfiguration can have on performance. 18% of cuIBM’s
execution time is spent performing JIT compilation because
the wrong architecture is selected by the build system. cuIBM
defaults to compiling to the virtual architecture ”compute 20”,
while the GPUs in the system actually support ”compute 35”.
Since we ran cuIBM in an HPC environment (the Cray Titan
supercomputer at Oak Ridge), the JIT compilation is not
cached and must be performed at every execution.

Application incompatible with its GPU codes seems to be
quite simple and is surprising (but widely present). We can
detect GPU code incompatibility at application startup and
provide explicit instructions to the user as how to produce a
more efficient executable.

VII. CONCLUSION

The increased parallelism offered by many-core architec-
tures is difficult for developers to exploit. In response, per-
formance tool and application developers created techniques
that address some of these difficulties. Existing techniques pri-
marily address difficulties in the areas of the identification of
CPU code that may be suited for many-core parallelization and
improving the efficiency of existing many-core code. Despite
their efforts, some significant performance opportunities have
remained. We identified four performance issues that have
impacted several high performance scientific applications uti-
lizing GPUs for computation: unobvious missed parallelization
opportunities, duplicate data transfers, synchronization issues,
and JIT compilation.

What links the issues together is the lack of performance
tools and techniques to detect their presence. We have de-
veloped techniques that can detect when and where these
issues are present within applications. These techniques use
a combination of memory tracing, program slicing, content
based data deduplication, and CPU profiling to detect their
presence. When we applied these techniques to a set of high
performance scientific applications, application execution time
was reduced by 18% to 85%. We believe that the issues we
have identified impact a wider range of applications than only
the ones we have tested so far. Our current work is focused on
automating these techniques to detect their presence to allow
our techniques to be more easily employed by others.

VIII. ACKNOWLEDGEMENTS

This work is supported in part by Department of Energy
grant DE-AC05-00OR22725, National Science Foundation
Cyber Infrastructure grants ACI-1547272 and ACI-1449918,
Lawrence Livermore National Lab grant B617863, a grant
from Cray Inc., and a grant from Intel Corp.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale
machine learning. In the 12th USENIX Symposium on Operating Systems
Design and Implementation, (OSDI 16), Savannah, GA, November 2016.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCToolkit: Tools for performance
analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience, 22(6), April 2010.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer.
Farsite: Federated, available, and reliable storage for an incompletely
trusted environment. In the 5th Symposium on Operating Systems Design
and Implementation, (OSDI ’02), Boston, MA, December 2002.

[4] J. A. Anderson, C. D. Lorenz, and A. Travesset. General purpose molec-
ular dynamics simulations fully implemented on graphics processing
units. Journal of Computational Physics, 227(10), May 2008.

[5] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe. Petabricks: A language and compiler for algorithmic
choice. In the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, (PLDI ’09), Dublin, Ireland, June
2009.

[6] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu. Cross-
architecture performance prediction (XAPP) using CPU code to predict
GPU performance. In the 48th International Symposium on Microarchi-
tecture, (MICRO), Waikiki, Hawaii, December 2015.

[7] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubia-
towicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and
K. Yelick. A view of the parallel computing landscape. Communications
of the ACM, 52(10), October 2009.

[8] N. Bell, S. Dalton, and L. N. Olson. Exposing fine-grained parallelism
in algebraic multigrid methods. SIAM Journal on Scientific Computing,
34(4), July 2012.

[9] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single instance
storage in Windows R©2000. In the 4th Conference on USENIX Windows
Systems Symposium, (WSS ’00), Seattle, Washington, January 2000.

[10] W. c. Feng and S. Xiao. To GPU synchronize or not GPU synchronize?
In the 2010 IEEE International Symposium on Circuits and Systems,
(ISCAS ’10), Paris, FR, May 2010.

[11] L. Carrington, M. M. Tikir, C. Olschanowsky, M. Laurenzano, J. Per-
aza, A. Snavely, and S. Poole. An idiom-finding tool for increasing
productivity of accelerators. In the 25th International Conference on
Supercomputing, (SC ’11), Tucson, Arizona, June 2011.

[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron.
A performance study of general-purpose applications on graphics pro-
cessors using CUDA. Journal of Parallel and Distributed Computing,
68(10), October 2008.

[13] L. Chen, O. Villa, S. Krishnamoorthy, and G. R. Gao. Dynamic
load balancing on single- and multi-GPU systems. In the 2010 IEEE
International Symposium on Parallel Distributed Processing, (IPDPS
’10), Atlanta, GA, April 2010.

[14] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer. cuDNN: Efficient primitives for deep learning.
Computing Research Repository, abs/1410.0759, October 2014.

[15] B. R. Coutinho, G. L. M. Teodoro, R. S. Oliveira, D. O. G. Neto,
and R. A. C. Ferreira. Profiling general purpose GPU applications. In
the 21st International Symposium on Computer Architecture and High
Performance Computing, (SBAC-PAD ’09), Sao Paulo, Brazil, October
2009.

[16] E. W. Draeger, X. Andrade, J. A. Gunnels, A. Bhatele, A. Schleife, and
A. A. Correa. Massively parallel first-principles simulation of electron
dynamics in materials. In the 2016 International Parallel and Distributed
Processing Symposium, (IPDPS ’16), Chicago, IL, May 2016.

10



[17] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU cluster for
high performance computing. In the 2004 ACM/IEEE Conference on
Supercomputing, (SC ’04), Pittsburgh, PA, November 2004.

[18] N. Farooqui, A. Kerr, G. Eisenhauer, K. Schwan, and S. Yalamanchili.
Lynx: A dynamic instrumentation system for data-parallel applications
on GPGPU architectures. In the 2012 IEEE International Symposium
on Performance Analysis of Systems Software, (ISPASS ’12), New
Brunswick, NJ, April 2012.

[19] FFmpeg project. FFmpeg: A complete, cross-platform solution to record,
convert and stream audio and video. 3.1.2 edition, 2016.

[20] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2), Febuary 2005.

[21] Y. Fujii, T. Azumi, N. Nishio, S. Kato, and M. Edahiro. Data transfer
matters for GPU computing. In the 2013 International Conference on
Parallel and Distributed Systems, (ICPADS ’13), Seoul, South Korea,
December 2013.

[22] F. Gygi. Architecture of Qbox: A scalable first-principles molecular
dynamics code. IBM Journal of Research and Development, 52(1),
January 2008.

[23] W. Joubert, R. Archibald, M. Berrill, W. M. Brown, M. Eisenbach,
R. Grout, J. Larkin, J. Levesque, B. Messer, M. Norman, B. Philip,
R. Sankaran, A. Tharrington, and J. Turner. Accelerated application
development: The ORNL Titan experience. Computers and Electrical
Engineering, 46, August 2015.

[24] K. Keutzer, B. L. Massingill, T. G. Mattson, and B. A. Sanders. A design
pattern language for engineering (parallel) software: Merging the PLPP
and OPL projects. In the 2010 Workshop on Parallel Programming
Patterns, (ParaPLoP ’10), Carefree, Arizona, March 2010.

[25] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W.
Arnold, J. E. Stone, J. C. Phillips, and W. m. Hwu. GPU clusters for
high-performance computing. In 2009 IEEE International Conference
on Cluster Computing and Workshops, (CLUSTER ’09), Austin, TX,
August 2009.

[26] A. Kiss, J. Jasz, G. Lehotai, and T. Gyimothy. Interprocedural static
slicing of binary executables. In the 3rd IEEE International Workshop
on Source Code Analysis and Manipulation, (SCAM ’03), Amsterdam,
NL, September 2003.

[27] A. Knüpfer, C. Rössel, D. a. Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf. Score-P: A joint per-
formance measurement run-time infrastructure for Periscope, Scalasca,
TAU, and Vampir. In the 5th International Workshop on Parallel Tools
for High Performance Computing, Berlin, Heidelberg, September 2011.

[28] B. Korel and J. Laski. Dynamic program slicing. Information Processing
Letters, 29(3), October 1988.

[29] S. Layton, A. Krishnan, and L. A. Barba. cuIBM - a GPU-accelerated
immersed boundary method. In the 23rd International Conference
on Parallel Computational Fluid Dynamics, (ParCFD ’11), Barcelona,
Spain, May 2011.

[30] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juck-
eland, R. Dietrich, D. Poole, and C. Lamb. Parallel performance
measurement of heterogeneous parallel systems with GPUs. In the 2011
International Conference on Parallel Processing, (ICPP ’11), Taipei
City, Taiwan, September 2011.

[31] A. D. Malony, S. Biersdorff, W. Spear, and S. Mayanglambam. An
experimental approach to performance measurement of heterogeneous
parallel applications using cuda. In the 24th ACM International
Conference on Supercomputing, (ICS ’10), Tsukuba, Ibaraki, Japan, June
2010. ACM.

[32] Mathias Westerdahl. xxhash - xxh64. http://www.xxhash.com/.
[33] J. Mellor-Crummey. Hpctoolkit: Multi-platform tools for profile-based

performance analysis. In the 5th International Workshop on Automatic
Performance Analysis, (APART ’03), Phoenix, AZ, July 2003.

[34] J. Michalakes and M. Vachharajani. GPU acceleration of numerical
weather prediction. In the 2008 IEEE International Symposium on
Parallel and Distributed Processing, (IPDPS ’08), Miami, Florida, April
2008.

[35] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton,
S. Layton, N. Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan, and
R. Strzodka. AmgX: A library for GPU accelerated algebraic multigrid
and preconditioned iterative methods. SIAM Journal on Scientific
Computing, 37(5), July 2015.

[36] J. Nickolls and W. J. Dally. The GPU computing era. IEEE Micro,
30(2), March 2010.

[37] C. Nugteren and H. Corporaal. A modular and parameterisable clas-
sification of algorithm. Technical Report ESR-2011-02, Eindhoven
University of Technology, Eindhoven, Netherlands, Febuary 2011.

[38] Nvidia. The CUBLAS Library. 8.0 edition, 2016.
[39] Nvidia. CUDA Compiler Driver NVCC - Reference Guide. 8.0 edition,

2016.
[40] Nvidia. The Cuda FFT Library. 8.0 edition, 2016.
[41] Nvidia. The Nvidia CUDA Profiler Users’ Guide. 8.0 edition, 2016.
[42] C. Olschanowsky, A. Snavely, M. R. Meswani, and L. Carrington. PIR:

PMaC’s idiom recognizer. In the 39th International Conference on
Parallel Processing Workshops, (ICPP ’10), San Diego, CA, September
2010.

[43] J. Pantaleoni and N. Subtil. NVBIO - User Guide. 1.1.50 edition, 2016.
[44] Paradyn Project. Dyninst: Putting the performance in high performance

computing. http://www.dyninst.org/.
[45] P. Petersen. Intel R© parallel studio. In Encyclopedia of Parallel

Computing. 2011.
[46] S. Plimpton. Fast parallel algorithms for short-range molecular dynam-

ics. Journal of Computational Physics, 117(1), March 1995.
[47] S. Quinlan and S. Dorward. Venti: A new approach to archival storage.

In the 2002 Conference on File and Storage Technologies, (FAST ’02),
Monterey, CA, 2002.

[48] D. Schaa and D. Kaeli. Exploring the multiple-GPU design space. In the
2009 IEEE International Symposium on Parallel Distributed Processing,
(IPDPS ’09), Rome, Italy, May 2009.

[49] SoftBank Group. Allinea Forge User Guide. 7.0 edition, 2016.
[50] C. A. Waldspurger. Memory resource management in VMware ESX

server. In the 5th symposium on Operating Systems Design and
Implementation, (OSDI ’02), Boston, MA, December 2002.

[51] M. Weiser. Program slicing. In the 5th International Conference on
Software Engineering, (ICSE ’81), San Diego, CA, March 1981.

[52] S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC: First
experiences with real-world applications. In the 18th International
Conference on Parallel Processing, (Euro-Par ’12), August 2012.

11


