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ABSTRACT
The emergence of leadership-class systems with GPU-equipped
nodes has the potential to vastly increase the performance of exist-
ing distributed applications. An increasing number of applications
that are converted to run on these systems are reliant on algorithms
that perform computations on spatial data. Algorithms that operate
on spatial data, such as density-based clustering algorithms, present
unique challenges in data partitioning and result aggregation when
porting to extreme scale environments. These algorithms require
that spatially-near data points are partitioned to the same node and
that the output from individual nodes needs to be aggregated to en-
sure that relationships between partition boundaries are discovered.
In the development of an extreme scale density-based clustering
algorithm, called Mr. Scan, we leveraged the increased computa-
tional power provided by GPUs to overcome these challenges. Three
main techniques allowed Mr. Scan to cluster 6.5 billion points from
the Twitter dataset using 8,192 GPU nodes on Cray Titan in 7.5
minutes: (1) a data partitioner scheme that ensures correctness by
using shadow regions to selectively duplicate computation between
nodes to detect clusters that lie in-between partition boundaries, (2)
a dense box algorithm that reduces the computational complexity
of clustering dense spatial regions, and (3) a new tree based method
for merging results with spatial dependencies that requires only
a fraction of the intermediate results to produce an accurate final
result. The pure computational power of the GPUs allowed us to
effectively summarize the initial data, making the scalable use of
these techniques possible.
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1 INTRODUCTION
Modern leadership-class supercomputers tie together a diverse col-
lection of resources, such as CPUs, GPUs, and high speed intercon-
nects. To get maximum performance on leadership class machines,
an application must efficiently use (and balance the use of) these

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
, ,
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

resources. In the development of an extreme scale clustering algo-
rithm, an implementation of the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [7] algorithm called Mr.
Scan [18] [17], we found that for effective utilization of resources
on leadership-class machines was difficult to achieve for algorithms
dealing with spatial data. Data partitioning, GPU load imbalance,
and data aggregation were major limiting factors that prevented
the scale-up of Mr. Scan to multi-billion point datasets.

At their core, these factors were a result of over utilization of a
system resource during some phase of execution. The challenge we
faced was how to balance utilization of system resources within
each phase of Mr. Scan. Data aggregation and reduction limits
resulted in over utilization of network resources. We developed
techniques that trade compute time for smaller data sizes to elimi-
nate network over-utilization. GPU load imbalance was resolved
by slightly increasing the computational complexity of partition-
ing to significantly reduce GPU use in the clustering phase of Mr.
Scan. In this paper, we describe the issues that we faced and the
techniques that we used to ultimately overcome these challenges to
scale Mr. Scan to cluster 6.5 billion points using 8,192 GPU nodes.
The specific techniques we describe, though tuned for clustering
algorithms, may be generalizable to other algorithms performing
decompositions and aggregations on spatial data.

Clustering is the act of classifying data points, where data points
that are considered similar are contained in the same cluster and dis-
similar points are in different clusters. Clustering helps researchers
and data analysts gain insight into their data, e.g., identifying and
tracking objects such as gamma-ray bursts in sky observation
data [6], monitoring the growth and decline of forests in the United
States [14] and identifying performance bottlenecks in large-scale
parallel applications [8]. We focus on a type of clustering algorithm
called density-based clustering, which classifies points into clusters
based on the density of the region surrounding the point. Density-
based clustering detects the number of clusters in a dataset without
prior knowledge and is able to find clusters with non-convex shapes.

The ability to cluster billions of data points with DBSCAN can
only be realized if the key obstacles to scaling DBSCAN are over-
come: distributing data advantageously, load balancing, and cluster
merging. The running time of DBSCAN increases as a function
of spatial density of the input data points, which causes a load
imbalance when compute nodes contain regions of varying den-
sity. We modify DBSCAN to find the most dense regions and infer
their membership in a cluster without evaluating the points inside
these dense regions. Results from DBSCAN compute nodes must
be merged accurately without requiring the entirety of each cluster.
Mr. Scan leverages a programming paradigm that organizes pro-
cesses into a multi-level tree with an arbitrary topology to resolve
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this issue. In this multi-level tree paradigm, DBSCAN calculations
are done on the GPU leaf nodes and these results are combined on
non-leaf nodes. A new data reduction algorithm requiring where
only a small, bounded number of representative points per cluster
is needed to accurately merge clusters using a multi-level tree topol-
ogy. Finally, data must be distributed in a manner that balances
DBSCAN’s clustering operation and the overhead of merging clus-
ters. We achieve this with a heuristic that spatially decomposes the
data into partitions to balance the merge overhead. Each partition
contains roughly equal point counts to aid in balancing DBSCAN
clustering time.

In Section 2 we describe the DBSCAN algorithm and discuss
other methods that attempt to parallelize DBSCAN. Section 3 de-
scribes a high level overview of the Mr. Scan algorithm. Section 4
describes the techniques we used to overcome the issues of data
partitioning, GPU load imbalance, and data aggregation. Section 5
presents and discusses the scaling results on a dataset from Twitter
and Sloan Digital Sky Survey [1]. Finally, in Section 6 we discuss
future work on GPU-based aggregations.

2 BACKGROUND AND RELATEDWORK
Due to DBSCAN’s popularity among density-based clustering al-
gorithms, optimization and parallelization of the algorithm has
been widely studied [3]. We first explain the DBSCAN algorithm
in detail, then present previous parallelization efforts that are most
significant to the parallelization style of Mr. Scan along with the
most scalable algorithms.

2.1 The DBSCAN Clustering Algorithm
DBSCAN clusters data points by density. Its notion of density comes
from its two parameters known as Eps and MinPts. DBSCAN op-
erates by finding the Eps-neighborhood of each point. The Eps-
neighborhood of a point p is the set of points that are located within
Eps distance of p. The point p is considered a core point if there are
at least MinPts points in its Eps-neighborhood. All other points are
classified as non-core points. Non-core points can have two distinc-
tions: a border point or a noise point. A border point is a non-core
point that contains at least one core point in its Eps-neighborhood,
whereas a noise point does not.

A cluster is formed by the set of core and border points reachable
from a particular core point. Once an unvisited core point is found,
it is considered a new cluster along with its Eps-neighborhood. This
cluster is expanded by finding the Eps-neighborhood of each point
classified in the cluster until all points that are reachable from the
first core point are found. For this reason, DBSCAN’s clustering
results can vary slightly if the order inwhich Eps-neighborhoods are
discovered is changed. Figure 1 shows an example of the DBSCAN
clustering process.

The performance of the DBSCAN algorithm varies greatly based
on the presence (or lack thereof) of a spatial index. DBSCAN with-
out a spatial index is O (n2) in time complexity. This is due to not
limiting the amount of points compared by the distance function.
Without a spatial index all points in the dataset must be compared
with each other to determine which points are core. A spatial index
however reduces the number of points which must be compared
by limiting the search to a smaller subset of points that are in the

Figure 1: DBSCAN clustering example showing
classification of core and non-core points in a dataset.

region of the point being queried. The average case complexity
improves to O (n logn) by use of a spatial index (e.g., R*-tree or
KD-tree).

2.2 Past Optimizations of DBSCAN
DBSCAN has been parallelized by multiple past projects. One of
the first was PDBSCAN [19]. This algorithm used a distributed
R*-tree to partition the dataset among many compute nodes. Dis-
tributed R*-trees partition data but they replicate the entire index
on each node. If a neighborhood query included an area of the
dataset that resides on different node, the node that started the
query must send a message to obtain the data. This algorithm
showed linear speedup up to 8 nodes, but the amount of messages
sent grew super-linearly in most cases, which hampered its scal-
ability. Another algorithm, DBDC [11], assumes that the dataset
to cluster is already distributed among the compute nodes. DBDC
pioneered the idea of using many slave nodes to cluster a portion
of the dataset and merging the final result at a master node, and
also the idea of sending a smaller number of points to represent the
locally found clusters to increase scalability. This technique scaled
linearly up to 30 nodes, but the manner in which representative
points were picked decreased the quality of the clustering output
when compared to traditional DBSCAN, and the assumption of
already distributed data further degraded quality.

There have been two Map/Reduce implementations of DBSCAN,
MR-DBSCAN [10] and DBSCAN-MR [5]. MR-DBSCAN was able
to cluster 1.9 billion points of 2D taxi-cab traces in approximately
5,800 seconds. However, the authors preprocessed the data prior
to running DBSCAN to reduce the negative effects of high-density
regions and did not account for this preprocessing time in their
results (they did not measure end-to-end time). Also, the parameters
for MR-DBSCAN’s runs were chosen solely for speed and not for
quality of the data analysis [9]. Aside from these issues, neither of
the Map/Reduce implementations showed near-linear speedup nor
the ability to scale weakly and only demonstrated their algorithms
on up to 12 multi-core nodes.

Recently, a distributed heuristic based approach for approximat-
ing DBSCAN has been developed called Paridcle [15]. Paridcle uses
a density based sampling approach to dramatically improve perfor-
mance by limiting the number of points that need to be processed
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Figure 2: Overview of the Mr. Scan algorithm

by DBSCAN. Unlike previous DBSCAN implementations that at-
tempted a density based sampling approach, Paridcle is able to
maintain a high quality for output by carefully constructing the
sample for which to perform DBSCAN on. The authors show that
Paridcle is capable of near linear speed up, showing a performance
of 3917x while using 4096 cores. While Paridcle shows good per-
formance, the usage of an approximate DBSCAN algorithm differs
from the parallel DBSCAN approach of Mr. Scan where no quality
reducing approximations are used.

Several algorithms attempted to improve the single-core perfor-
mance of DBSCAN. TI-DBSCAN [12] uses the triangle inequality.
The input dataset is sorted to determine a point’s Eps-Neighborhood,
which is similar to the way our GPU implementation of the algo-
rithm uses its KD-tree. Another version of DBSCAN [13] attempts
to remove core points early from the DBSCAN calculation. This idea
is similar to Mr. Scan’s dense box optimization, but their method
appears that it would change the result of DBSCAN significantly,
even though the authors do not comment on this effect in the paper.
In comparison, Mr. Scan’s dense region calculation has an extremely
small impact on quality when compared to traditional DBSCAN.

3 OVERVIEW OF THE MR. SCAN
ALGORITHM

Mr. Scan is a hybrid/hybrid implementation of the DBSCAN algo-
rithm with four phases: partition, cluster, merge, and sweep. Mr.
Scan starts with a single input file on a parallel file system and
writes as output a file of the points included in a cluster and their
cluster IDs as output. The input points are contained in a single
binary or text file. Each input point has a unique ID number, co-
ordinates, and an optional weight that can be used for analysis of
the clustered output. Figure 2 gives an overview of the Mr. Scan
algorithm. All four phases of the Mr. Scan algorithm take place
using the same tree layout of processes and the layout of the tree
(number of leaf nodes and fanout) is user definable.

In the partition phase, the input file is read by the leaf nodes
of the partitioner. The partitioner is responsible for creating one
partition per clustering process (one partition per leaf node) from

a given input file. The input file can contain billions of points and
reach sizes up to 300 GB, so the partitioner is distributed using
MRNet [16] to parallelize this step. Each worker process of the
partitioner moves the completed partitions (via message passing) to
the node responsible for processing that partition. The cluster phase
begins after all leaf nodes have received the completed partitions
they are responsible for processing. Each Mr. Scan leaf process
clusters its assigned partition using our GPU version of DBSCAN
and picks a small, constant set of points to represent each cluster.
The representative points are sent to the intermediate processes to
start the merge phase where the clusters are progressively merged
by each level of intermediate processes until they reach the root.
The root performs the final merge and assigns a global ID to each
cluster. Mr. Scan then starts the sweep phase, and sends the global
cluster IDs down the tree, where each point is identified with its
correct global cluster ID and written to the output file in parallel
by the leaf processes.

4 ROADBLOCKS TO EXTREME SCALE
The core challenge we faced when scaling Mr. Scan was how to
reduce the amount and type of resources used in each of its phases.
In particular, the imbalance of resource usage in the cluster and
merge phases of Mr. Scan (shown in Figure 2) originally made
scaling beyond a small number of nodes impractical.

In the clustering phase, there was a large difference in compute
time between nodes that were processing that same number of input
points due to large variations in point density. At a small scale of
16 nodes, the difference in time between the fastest and slowest
nodes in computing the initial clusters was greater than 25 minutes
on a run with a total time of 40 minutes. As we scaled the up, this
gap widened, resulting in Mr. Scan being unable to run effectively
on a large set of nodes. As we discovered, DBSCAN was strongly
influenced by point density. DBSCAN has a complexity of O (n2),
where n is the number of points when clustering dense regions
of data, but an O (nloд(n)) complexity when clustering sparse data
regions. Resolving the imbalance issue requires that we address the
problem of density.

The merge phase required sending a significant fraction of the
dataset up the tree to correctly identify and merge all clusters across
partitions. In our first attempt at creating Mr. Scan, we required that
all points be available for aggregation to ensure accurate clustering.
This requirement ensured that we could properly identify clusters
that spanned multiple partitions. A comparison was made between
the points identified as members of a cluster by each node to deter-
mine if any of the points between identified clusters overlapped. If
an overlap existed between points in two or more clusters identi-
fied on different nodes, the points identified as members of those
clusters are actually members of the same cluster and should be
merged. Using this technique, greater than 50% of the input dataset
in our test data needed to be aggregated. Since our dataset sizes
reached into the multi-hundred gigabyte range, aggregation of half
of the total dataset in the merging process would not be scalable.
Resolving the issue of aggregation required that we determine a
way to reduce the amount of data necessary to identify clusters
spanning multiple partitions.
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Figure 3: Any overlapping core point P must be within 1
2 × Eps of

at least one corner or side of the grid cell. We label this point Ref.
This means that the representative point for Ref must fall within a
1
2 ×Eps-neighborhood of Ref. Since this entire region (shown as the
blue circle) is contained in the Eps-neighborhood of P this means
that P is always within Eps of a representative point.

We developed three techniques to overcome the challenges in
the clustering and merge phases: 1) Added shadow regions to our
partitioning scheme to selectively overlap computation between
nodes to reduce the amount of merging required, 2) created the
dense box algorithm to reduce the complexity of performing DB-
SCAN on dense data regions, and 3) developed a merging algorithm
that uses representative points of a cluster to reduce the number of
points that need to be sent to merge clusters. We describe these
techniques in Sections 4.1, 4.2, and 4.3 respectively.

4.1 Partitioning with Shadow Regions
In the partition phase, the input file is read by a partitioner that
creates one partition per clustering process (one partition per leaf
node). The input file can contain billions of points and can reach
sizes up to 300 GB, so the partitioner is distributed using a hybrid
MRNet/message passing model to parallelize this step. Each leaf
node process starts by reading a unique section of the input file.
Input points read from the file are then used to construct a Eps ×
Eps grid on each leaf node. The point counts of each grid cell are
then sent by the leaf nodes up to the root of the tree. At the root,
the grid cells are then used to generate the partitions for DBSCAN.
Each partition contains a set of Eps-grid cells.

In addition to the basic goal of dividing an input dataset into n
partitions given n leaf nodes, we have a secondary goal of creating
partitions that reduce the amount of data required for merging
the outputs from each leaf process to produce a correct result. To
address this issue, we add a shadow region to each partition. The
shadow region is the set of points not already included in the
partition that lie Eps distance from the partition’s boundary. A
shadow point is a point that lies in a shadow region with respect
to a partition, and a partition point is a point already included in
the partition. When the shadow region is added to a partition, each
partition point’s Eps-neighborhood contains only partition points
or shadow points, and thus is complete within the partition.

Each leaf node knows the composition of the clusters that it has
discovered in terms of the number of shadow points they contain.
A cluster that does not contain shadow points is defined as being
complete since there is no possibility that the cluster can be merged.
This guarantee can be given because clusters found in different
partitions can only overlap at most Eps distance from one another.

Figure 4: Elapsed time of Mr. Scan to cluster the Twitter
dataset with Eps=0.1 and variedMinPts.

Since the shadow region is Eps distance in size, if a cluster contains
no points in the shadow region it will not overlap with any cluster
discovered on any other node. The data points contained in clusters
with no shadow points do not need to be sent up the tree in the
merge step.

4.2 Dense Box Algorithm
The dense box algorithm allows for points in dense regions of data
to be marked as members of a cluster without incurring the cost
of expanding each point individually. The dense box algorithm
uses a modified form of the KD-tree [4] data structure already in
use by CUDA versions of DBSCAN to eliminate the expansion
phase of points in dense regions. Since the dense box algorithm
reuses existing data structures, the complexity of DBSCAN in dense
regions is reduced from O (n2) to roughly O (n) with little added
cost.

In its unmodified form, the KD-tree is used to identify points
that may be within the Eps-neighborhood of a point p. The leaves
of a standard KD-tree are composed of individual points while the
upper levels partition the k-dimensional space. Themajor difference
between the KD-Tree used by Mr. Scan and a standard KD-Tree is
that leaf nodes represent regions of data instead of single points.
Leaf nodes in the KD-Tree point to data within a (X,Y) value range
while internal nodes point to leaf nodes containing data in distinct
non-overlapping X value ranges. The nodes are stored in the tree
in sorted order relative to their parent; the left-most child node
contains the range with the lowest minimum value and the right-
most child node contains the range with the largest maximum
value. Each leaf node of the KD-Tree contains an offset that acts as
a pointer into a array where the point data is stored. In addition,
each leaf node of the KD-Tree also contains the number of points
inside the leaf node’s range.

After the construction of themodified KD-tree, the dimension size
of all leaf nodes is examined. All points in a leaf node with dimension
size less than or equal to Eps

2
√
2
by Eps

2
√
2
and pointcount ≥ MinPts will

be marked as members of a cluster. We know that these points are
members of the same cluster since they are all within Eps distance
of one another. The points that are marked as being members of a
cluster are not expanded when they are encountered by DBSCAN.
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Figure 5: Strong scaling of 6.5 billion point twitter dataset

4.3 Merging with Representative Points
Clusters identified in different partitions are merged if they have
overlapping core points, points with greater thanMinPts neighbors
that overlap between partitions. A simple merge algorithm would
compare the core points identified in each partition with one an-
other to identify clusters that would need to be merged. The issue
encountered with this approach is the number of points that needed
to be aggregated to perform this check. When dealing with multi-
billion point datasets, this simple approach is unusable. Adding to
the challenge of merging, we do not want the reduction inside of
the aggregation to impact the quality of the final clustering.

To address this issue, we select representative points that reduce
the aggregation size while maintaining the quality of the final
clustering. The set of representative points is the minimum set of
core points from a single cluster that can correctly detect a merge
inside a single grid cell. Clusters that have overlapping core points
need to have at least one core point of overlap within the collective
Eps-neighborhood that is formed by the set of representative points
of the grid cell. We have determined that eight points can represent
the core points of a grid cell of arbitrary density. The eight selected
representative points are the points closest to the center of the sides
of the grid cell and the corners of the grid cell. Figure 3 shows that
when two clusters have an overlapping core point in a grid cell that
at least one will be within the Eps-neighborhood of a representative
point.

5 EVALUATION
We have two goals in evaluating Mr. Scan. The first goal is to test
our ability to run DBSCAN on datasets that are several billion

Figure 6: Quality measurement of Mr. Scan’s output on the
Twitter dataset using the DBDC [11] cluster quality metric
(1.0 signifies a perfect clustering)

Figure 7: Elapsed time of Mr. Scan for the sky survey dataset
with the parameters of 0.00015 Eps and 5 MinPts

points in size in a reasonable amount of time. These datasets must
represent real-world problems, and our experiments must use DB-
SCAN parameters that are useful to the problem. Datasets of this
size have not been successfully clustered with any density-based
clustering algorithm. The second goal is to evaluate whether Mr.
Scan exhibits good scaling properties. This is a difficult proposi-
tion because memory limits make comparison to a single node
implementation impossible.

Mr. Scan was evaluated with datasets from both Twitter and the
Sloan Digital Sky Survey. Mr. Scan is able to successfully cluster
6.5 billion points from the Twitter dataset with 8192 GPU equipped
nodes. Clustering the 6.5 billion point twitter dataset can be ac-
complished between 453 and 576 seconds depending on the MinPts
parameter used. Figure 4 shows the weak scaling results for the
Twitter dataset. The strong scaling results with a breakdown of the
total time for each phase of Mr. Scan are shown in Figure 5. Figure 6
shows the output quality of Mr. Scan in comparison to a single core
reference DBSCAN implementation (ELKI 0.4.1 [2]).

The sky survey experiment consisted of a weak scaling experi-
ment with a maximum point count of 1.6 billion points processed
on 2048 nodes. This experiment was run with a fixed Eps value of
0.00015 and a fixed MinPts of 5. Figure 7 shows the weak scaling
results for the sky survey experiment.

6 CONCLUSION
The successful scaling of Mr. Scan was only possible due to the
spatial data reduction methods we developed. The computational
power of the GPU allowed us to trade increased individual node
workloads for a reduction in aggregation size. This trade begins in
the partitioning phase where we use shadow regions to duplicate
computation near partition boundaries. During the computation
phase, the dense box algorithm is used to help the GPUs cope with
the increased workload by reducing the computational complexity
of regions with high point density. Finally, because of the extra
computation that was performed, we could use a fixed number
of representative points for aggregation without a loss in output
quality.While the techniques we have presented are directly applied
to the DBSCAN algorithm, the general idea of trading computation
for a reduction in data size is not limited to clustering algorithms.
Future expansions of our work would be to focus on studying the
use of aggregation operations within the GPU itself and finding the
increased compute for data reduction tradeoff in other algorithms.
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