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Typestate Checking of Machine Code

Abstract

We check statically whether it is safe for untrusted foreign machine code to be loaded into a trusted host system.
(Here “safety” means that the program abides by a memory-access policy that is supplied on the host side.) Our
technique works on ordinary machine code, and mechanically synthesizes (and verifies) a safety proof. Our earlier
work along these lines was based on a C-like type system, which does not suffice for machine code whose origin is
C++ source code. In the present paper, we address this limitation with an improved typestate system and introduce
several new techniques, including: summarizing the effects of function calls so that our analysis can stop at trusted
boundaries, inferring information about the sizes and types of stack-allocated arrays, and a symbolic range analysis
for propagating information about array bounds. These techniques make our approach to safety checking more
precise, more efficient, and able to handle a larger collection of real-life code sequences than was previously the
case. For example, allowing subtyping among structures and pointers allowed our implementation to analyze code
originating from object-oriented source code. The use of symbolic range analysis eliminated 60% of the total
attempts to synthesize loop invariants in the 11 programs of our test suite that have array accesses. In 4 of these
programs, it eliminated the need to synthesize loop invariants altogether. The resulting speedup for the global-
verification phase of the system ranges from -0.4% to 63% (with a median of 37%).

1 Introduction

Our goal is to check statically whether it is safe for a piece of untrusted foreign machine code to be loaded into a

trusted host system. We start with ordinary machine code and mechanically synthesize (and verify) a safety proof. In

an earlier paper [35], we reported on initial results from our approach, the chief advantage of which is that it opens up

the possibility of being able to certify code produced by a general-purpose off-the-shelf compiler from programs writ-

ten in languages such as C, C++, and Fortran. Furthermore, in our work we do not limit the safety policy to just a

fixed set of memory-access conditions that must be avoided; instead, we perform safety checking with respect to a

safety policy that is supplied on the host side. Our earlier work was based on a C-like type system, which does not

suffice for machine code whose origin is C++ source code. In the present paper, we address this limitation and also

introduce several other techniques that make our safety-checking analysis more precise and scalable.

When our proof-synthesis techniques are employed on the host side, our approach can be viewed as analterna-

tive to the Proof-Carrying Code (PCC) approach [20]: PCC requires a code producer to create not just the machine

code but also a proof that the code is safe, and then has the host perform a proof-validation step. When our proof-syn-

thesis techniques are employed by the code producer (on the foreign side of the untrusted/trusted boundary), our

approach can be viewed as anally of PCC that helps to lift current limitations of certifying compilers [7, 18, 19],

which produce PCC automatically, but only for programs written in certain safe source languages.

In this paper, we present the following improved techniques for use in proof synthesis:

• An improved typestate-checking system that allows us to perform safety-checking on untrusted machine code

that implements inheritance polymorphism via physical subtyping [24]. This work introduces a new method for

coping with subtyping in the presence of mutable pointers (Section 3).

• A mechanism for summarizing the effects of function calls via safety pre- and post-conditions. These summaries

allow our analysis to stop at trusted boundaries. They form a first step toward checking untrusted code in a mod-

ular fashion, which makes the safety-checking technique more scalable (Section 4).

• A technique to infer information about the sizes and types of stack-allocated arrays (local arrays). This was left

as an open problem in our previous paper [35] (Section 5).
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• A symbolic range analysis that is suitable for propagating information about array bounds. This analysis makes

the safety-checking algorithm less dependent upon expensive program-verification techniques (Section 6).

Section 2 provides a brief review of the safety-checking technique from our earlier work [35]. Section 7 illus-

trates the benefits of our techniques via a few case studies. Section 8 compares our techniques with related work.

As a result of these improvements, we can handle a broader class of real-life code sequences with better precision

and efficiency. For example, allowing subtyping among structures and pointers allows us to analyze code originating

from object-oriented source code. The use of symbolic range analysis eliminated 60% of the total attempts to synthe-

size loop invariants in the 11 programs of our test suite that have array accesses. In 4 of these programs, it eliminated

the need to synthesize loop invariants altogether. The resulting speedup for global verification ranges from -0.4% to

63% (with a median of 37%). Together with improvements that we made to our global-verification phase, range anal-

ysis allows us to verify untrusted code that we were not able to handle previously.

2 Safety Checking of Machine Code

In this section, we briefly review the safety-checking technique from our earlier work [35]. The safety-checking anal-

ysis enforces a default collection of safety conditions to prevent type violations, array out-of-bounds violations,

address-alignment violations, uses of uninitialized variables, null-pointer dereferences. In addition, the host side can

specify a precise and flexibleaccess policy. This access policy specifies the host data that can be accessed by the

untrusted code, and the host functions (methods) that can be called. It provides a means for the host to specify the

“least privilege” the untrusted code needs to accomplish its task.

Our approach is based on annotating the global data in the host. The type information in the untrusted code is

inferred. Our analysis starts with information about the initial memory state at the entry of the untrusted code. It

abstractly interprets the untrusted code to produce a safe approximation of the memory state at each program point. It

then annotates each instruction with the safety conditions each instruction must obey and checks these conditions.

The memory states at the entry, and other program points of the untrusted code, are described in terms of an

abstract storage model. An abstract storeis a total map fromabstract locationsto typestates. An abstract location

summarizes one or more physical locations so that our analysis has a finite domain to work over. A typestate

describes the type, state, and access permissions of the values stored in an abstract location.

The initial memory state at the entry of the untrusted code is given by ahost-typestate specification, and aninvo-

cation specification. The host typestate specification describes the type and the state of the host data before the invo-

cation of the untrusted code, as well as safety pre- and post-conditions for calling host functions (methods). The

invocation specification provides the binding information from host resources to registers and memory locations that

represent initial inputs to the untrusted code.

The safety-checking analysis consists of five phases. The first phase,preparation,combines the information that

is provided by the host-typestate specification, the invocation specification, and the access policy to produce an initial

annotation (in the form of an abstract store for the program’s entry point). It also produces an interprocedural control-

flow graph for the untrusted code. The second phase,typestate-propagation,takes the control-flow graph and the ini-

tial annotation as inputs. It abstractly interprets the untrusted code to produce a safe approximation of the memory

contents (i.e., a typestate for each abstract location) at each program point. The third phase,annotation, takes as input

the typestate information discovered in the typestate-propagation phase, and annotates each instruction withlocal and

global safety conditionsand assertions: the local safety preconditions are conditions that can be checked using

typestate information alone; the assertions are restatements (as logical formulas) of facts that are implicit in the
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typestate information. The fourth phase, local verification, checks the local safety conditions. The fifth phase,global

verification,verifies the global safety conditions using program-verification techniques [30].

At present, our implementation handles only non-recursive programs.

3 An Improved Typestate System

In our past work, our analysis made the assumption that a register or memory location stored values of a single type at

any given program point (although a register/memory location could store different types of values at different pro-

gram points). However, this approach had some drawbacks for programs written in languages that support subtyping

and inheritance, and also for programs written in languages like C in which programmers have the ability to simulate

subtyping and inheritance.

In this section, we describe how we have extended the typestate system [35] to incorporate a notion of subtyping

among pointers. With this approach, each use of a register or memory location at a given occurrence of an instruction

is resolved to a polymorphic type (i.e., a super type of the acceptable values). In the rest of this section, we describe

the improved type component of our typestate system.

3.1 Type Expressions

Figure 1 shows the language of type expressions used in the typestate system. Compared with our previous work, the

typestate system now includes (i) bit-level representations of integer types, and (ii) top and bottom types that are

parameterized with a size parameter. The typeint (g:s:v) represents a signed integer that hasg+s+v bits, of which

the highestg bits are ignored, the middles bits represent the sign or are the result of a sign extension, and the lowest

v bits represent the value. For example, a 32-bit signed integer is represented asint (0:1:31), and an 8-bit signed inte-

ger (e.g., a C/C++char ) with a 24-bit sign extension is represented asint (0:25:7). The typeuint (g:s:v) repre-

sents an unsigned integer, whose middles bits are zeros. The typet (n] denotes a pointer that points somewhere into

the middle of an array of typet of sizen.

t :: ground Ground types

| t [n] Pointer to the base of an array of type t of size n

| t (n] Pointer into the middle of an array of type t of size n

| t ptr Pointer to t

| s {m1, ..., mk} struct

| u {m1, ..., mk} union

| (t1, ...,tk) → t Function

| T(n) Top type of n bits

| ⊥(n) Bottom type of n bits (Type “any” of n bits)

m:: (t, l, i) Member labeled l of type t at offset i

ground::int (g:s:v) | uint (g:s:v) | . . .

Figure 1: A Simple Language of Type Expressions.
t stands for type, and m stands for a struct or union member.

Although the language in which we have chosen to express the type system looks a bit like C,
we do not assume that the untrusted code was necessarily written in C or C++.
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The bit-level representation of integers allows us to express the effect of instructions that load (or store) partial

words. For example, the following code fragment (in SPARC machine language) copies a character pointed to by reg-

ister%o1 to the location that is pointed to by register%o0:

ldub [%o1],%g2

stb %g2,[%o0]

If %o1points to a signed character and a C-like type system is used (i.e., as in [35]), typestate checking will lose pre-

cision when checking the above code fragment. There is a loss of precision because the instruction “ldub [%o1] ,

%g2” loads register%g2with a byte from memory and zero-fills the highest 24 bits, and thus the type system of [35]

treats the value in%g2as an unsigned integer. In contrast, with the bit-level integer types of Figure 1, we can assign

the typeint (24:1:7) to%g2after the execution of the load instruction. This preserves the fact that the lowest 8 bits

of %g2 store a signed character (i.e., anint (0:1:7)).

3.2 A Subtyping Relation

We now introduce a notion of subtyping on type expressions, adopted from thephysical-subtypingsystem of [24],

which takes into account the layout of aggregate fields in memory. Figure 2 lists the rules that define when a typet is

a physical subtypeof t’ (denoted byt <: t’).1 In Figure 3, the rules [Top], [Bottom], [Ground], [Pointer], and [Array]

are our additions to the physical-subtyping system given in [24]. An integer typet is a subtype of typet’ if the range

represented byt is a subrange of the range represented byt’, andt has at least as many sign-extension bits ast’ . Rule

[First Member] states that a structure is a subtype of a scalar type if the type of the first member of the structure is a

subtype of the scalar type. The consequence of this rule is that it is valid for a program to pass a structure in a place

where a supertype of its first member is expected. The rules [Structures] and [Members] state that a structures is a

subtype ofs’ if s’ is a prefix ofs, and each member ofs’ is a supertype of the corresponding member ofs.Rule [Mem-

bers] gives the constraints on the corresponding members of two structures. The rule [Pointer] states ift is a subtype

of t’ , thant ptr is a subtype oft’ ptr . Rule [Array] states that a pointer to the base of an array is a subtype of a

pointer into the middle of an array. In our system, an assignment is legalonly if the type of the right-hand-side expres-

sion is a physical subtype of the type of the receiving location, and the receiving location has enough space. The Rule

[Array] is valid because t (i] describes a larger set of states than t [i]. (The global-verification phase of the analysis

will check that all array references are within bounds.)

Figure 2: Inference Rules that Define the Subtyping Relation.

1. Note that the subtype ordering is conventional. However, during typestate checking the ordering is flipped:t1≤ t2 in

the type latticeiff t2 <: t1.

[Structures]
s(m1,..., mk) <: s (m’1, ..., m’k’)

[Top]
T(sizeof(t)) <: t

[Bottom]
t <: ⊥(sizeof(t))

[Ground]
int (g:s:v) <: int (g’:s’:v’)

g+s+v=g’+s’+v’, g ≤ g’, v ≤ v’
[First Member]

s{m1, ..., mk} <: t’

m1 = (l, t, 0), t<: t’

[Members]
m <: m’

k’ ≤ k, m1 <: m’1, ..., mk’  <: m’k’ m=(l, t, i), m’=(l’, t’, i’ ), l=l’, i=i’, t <: t’

[Reflexivity]
t <: t

[Array]
t [i] <: t (i][Pointer]

t ptr <: t’ ptr

t <: t’

uint (g:s:v) <: uint (g’:s’:v’)
uint (g:s:v) <: int (g’:s’:v’)
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Allowing subtyping among integer types, structures, and pointers allows the analysis to handle code that imple-

ments inheritance polymorphism via physical subtyping. For example, for a function that accepts a 32-bit integer, it is

legal to invoke the function with an actual parameter that is a signed character (i.e.,int (0:1:7)), provided that the

value of the actual parameter is stored into a register or into memory via an instruction that handles sign extension

properly. Figure 3 shows another example that involves subtyping among structures and pointers. According to the

subtyping inference rules for structures and pointers, typeColorPointPtr is a subtype ofPointPtr . Functionf

is polymorphic because it is legal to pass an actual parameter that is of typeColorPointPtr  to functionf .

For object-oriented languages such as C++, there is an additional complication that arises from the use of virtual

functions, where a virtual function could be implemented by any of the subclasses. As long as we have full informa-

tion about the class hierarchy, we can simply assume that the callee of a call to a virtual function can be any of the

functions that implement the virtual function and check all of them.

3.3 The State and Access Component of our Typestate system

We briefly review the state and access components of the typestate system. The state lattice contains a bottom element

⊥s that denotes an undefined value of any type. For a scalar typet, its state can beu or i, which denote uninitialized

and initialized values, respectively. We defineu ≤ i in the state lattice. For a pointer typep, its state can be eitheru or

P (a non-empty set of abstract locations referenced); we defineu ≤ P. One of the elements ofP can benull . For sets

P1 andP2, we defineP1 ≤ P2 iff P2 ⊆ P1. For an aggregate typeG, its state is given by the states of its fields.

An access permission is either a subset of {f, x, o}, or a tuple of access permissions. The access permissionf is

introduced for pointer-typed values to indicate whether the pointer can be dereferenced. The access permissionx

applies to values of type “pointer to function” (i.e., values that hold the address of a function) to indicate whether the

function pointed to can be called by the untrusted code. The access permissiono includes the rights to “examine”,

“copy”, and perform other operations not covered byx andf. The meet of two access-permission sets is their intersec-

tion. The meet of two tuples of access permissions is given by the meet of their respective elements.

3.4 Type Checking with Subtyping vs. Typestate Checking with Subtyping

Readers who are familiar with the problems encountered with subtyping in the presence of mutable pointers may be

suspicious of rule [Pointer]. In fact, rule [Pointer] is unsound for traditional flow-insensitive type systems in the

absence of alias information. This is because a flow-insensitive analysis that does not account for aliasing is unable to

determine whether there are any indirect modifications to a shared data structure, and some indirect modifications can

have disastrous effects. Figure 4 provides a concrete example of this. The statement at line 8 changesclrPtr to

point to an object of the typePoint indirectly via the variablet , so thatclrPtr can no longer fulfill the obligation

to supply thecolor  field at line 9.

A static technique to handle this problem has to be able to detect whether such disastrous indirect modifications

could happen. There are several approaches to this problem found in the literature. For example, the linear type sys-

tem given in [33] avoids aliases altogether (and hence any indirect modifications) by “consuming” a pointer as soon

struct Point {
int (0:1:31) x;
int (0:1:31) y ;

};

struct ColorPoint {
int (0:1:31) x;
int (0:1:31) y;
uint (24:0:8) color;

};

void f(Point* p) {
p->x++;
p->y--;

}

Figure 3: Subtyping Among Pointer Types
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as it is used once. Smithet al [29] use singleton types to track pointers, and alias constraints to model the shape of the

store. (Their goal is to tracks non-aliasing to facilitate memory reuse and safe deallocation of objects.)

Another approach involves introducing the notions of immutable fields and objects [1]. The idea is that ift is a

subtype of typet’ , typet ptr is a subtype oft’ ptr only if any field of t that is a subtype of the corresponding field

of t’ is immutable. Moreover, if a field oft is a pointer, then the object pointed by it must also be immutable. This rule

applies transitively. For this approach to work correctly, a mechanism is needed to enforce these immutability restric-

tions.

Our work represents yet a fourth technique. Our system performs typestate checking, which is a flow-sensitive

analysis that tracks aliasing relationships among abstract locations. (These state descriptors resemble the storage-

shape graphs of Chaseet al [4], and are similar to the diagrams shown in the right-hand column of Figure 4.) By

inspecting the storage-shape graphs at program points that access heap-allocated storage, we can (safely) detect

whether an illegal field access can occur. For instance, from the shape graph that arises after statement 8 in Figure 4,

the analysis can determine that the access tocolor in statement 9 represents a possible memory-access error. Pro-

grams with such accesses are rejected by our safety checker.

4 Summarizing Function Calls

By summarizing function calls, the safety-checking analysis can stop at the boundaries of trusted code. Instead of

tracing into the body of a trusted callee, the analysis can check that a call obeys a safety pre-condition, and then use

the post-condition in the rest of the analysis. We describe a method for summarizing trusted calls with safety pre- and

post-conditions in terms of abstract locations, typestates, and linear constraints. The safety pre-conditions describe

the obligations that the actual parameters must meet, whereas the post-conditions provide a guarantee on the resulting

state.

Currently, we produce the safety pre- and post-conditions by hand. This process is error-prone, and it would be

desirable to automate the generation of function summaries. Recent work on interprocedural pointer analysis has

shown that pointer analysis can be performed in a modular fashion [5, 6]. These techniques analyze each function

assuming unknown initial values for parameters (and globals) at a function’s entry point to obtain asummary function

for the dataflow effect of the function. In future work, we will investigate how to use such techniques to create safety

pre- and post- conditions automatically.

typedef Point *PointPtr;
typedef ColorPoint *ColorPointPtr;

1: ColorPoint clr;
2: Point bw;

3: void f2(void) {
4: PointPtr bwPtr = &bw;
5: ColorPointPtr clrPtr = &clr;
6: ColorPointPtr *r = &clrPtr;
7: PointPtr *t = r;
8: *t = bwPtr;
9: clrPtr->color = 1;
10:}

Figure 4: Rule [Pointer] is unsound for flow-insensitive type checking in the absence of aliasing information.
(Assume the same type declarations as shown in Figure 3.)

bwPtr bw

clrPtr clr
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clrPtr clr

r
clrPtr clr
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r
clrPtr

bwPtr bw

bwPtr bw

bwPtr bw

bwPtr bw

After 4:

After 5:

After 6:

After 7:

After 8:
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We represent the obligation that must be provided by an actual parameter as aplaceholderabstract location

(placeholder) whose size, access permissions, and typestate provide the detailed requirements that the actual parame-

ter must satisfy. When a formal parameter is a pointer, its state descriptor can include references to other placeholders

that represent the obligations that must be provided by the locations that may be pointed to by the actual parameter. In

our model, the state descriptor of a pointer-typed placeholder can refer tonull , to a placeholder, or to a placeholder

andnull . If it refers to justnull , then the actual parameter must point tonull . If it refers to a placeholder, then all

locations that are pointed to by the actual parameter must satisfy the obligation denoted by the placeholder. If the state

descriptor refers to bothnull and a placeholder, then the actual parameter must either point tonull , or to locations

that satisfy the obligation. We represent the pre-conditions as a list of the form “placeholder : typestate”.

The safety post-conditions provide a way for the safety-checking analysis to compute the resulting state of a call

to a summarized function. They are represented by a list of post-conditions of the form [alias context, placeholder:

typestate]. An alias context[5] is a set of potential aliases (l eq l’ ) (or potential non-aliases (l neql’ )), wherel andl’

are placeholders. The alias contexts capture how aliasing among the actual parameters can affect the resulting state.

The safety pre- and post-conditions can also include linear constraints. When they appear in the safety pre-condi-

tions, they represent additional safety requirements. When they appear in the post-conditions, they provide additional

information about the resulting memory state after the call.

To make this idea concrete, Figure 5 shows an example that summarizes the C library functiongettimeof-

day . It specifies that for the call to be safe,%o0must either be (i)null or (ii) be the address of a writable location

of size sufficient for storing a value of the typestruct timeval .The safety post-conditions specify that after the

execution of the call, the two fields of the location will be initialized, and%o0 will be an initialized integer. (On

SPARC, the actual parameters will be passed through the registers%o0, %o1, ..., %o5, and the return value of the

function will be stored in the register%o0.)

In the example in Figure 5, the alias contexts are empty because there is no ambiguity about aliasing. Having

alias contexts allows us to summarize function calls with better precision (as opposed to having to make fixed

assumptions about aliasing). Now consider the example in Figure 6, which shows how alias contexts can provide bet-

ter precision. Functiong returns eithernull or the object that is pointed to by the first parameter, depending on

whether*p1  and*p2  are aliases.

Checking a call to a trusted function involves abinding process and anupdateprocess. The binding process

matches the placeholders with actual abstract locations, and checks whether they meet the obligation. The update pro-

cess updates the typestates of all actual locations that are represented by the placeholders according to the safety post-

conditions.

int gettimeofday (struct timeval *tp);

Safety Pre-condition:

%o0: <struct  timevalptr , {null, t}, fo>

t: <struct  timeval, u, wo>

Safety Post-condition:

[(), t: <struct  timeval, [0:<int(0:1:31), i, o>, 32:<int(0:1:31), i, o>], o>]

[(), %o0 : <int (0:1:31), i, o>]

[(), %o1-%o5, %g1-%g7: <⊥(32),⊥, o>]

Figure 5: Safety Pre- and Post- Conditions.
The typestate of an aggregate is given by the typestates of its components(enclosed in“[“  and“]”) .

Each component is labeled by its offset (in bits) in its closest enclosing aggregate.
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Our goal is to summarize library functions, which generally do not do very complicated things with pointers.

Thus, at present we have focused only on obligations that can be represented as a tree of placeholders. When obliga-

tions cannot be represented in this way, we fall back on letting the typestate-propagation phase trace into the body of

the function. Tree-shaped placeholders allow the binding process to be carried out with a simple algorithm: The bind-

ing algorithm iterates over all formal parameters, and obtains the respective actual parameters from the typestate

descriptors at the call site. It then traverses the obligation tree, checks whether the actual parameter meets the obliga-

tion, and establishes a mapping between the placeholders and the set of abstract locations they may represent in the

store at the callsite.

The binding process distinguishes between may information and must information. Intuitively, a placeholder

must represent a location if the binding algorithm can establish that it can only represent a unique concrete location.

The algorithm for the updating process interprets each post-condition. It distinguishes a strong update from a weak

update depending on whether a placeholder must represent a unique location or may represent multiple locations, and

whether the alias context evaluates to true or false. A strong update happens when the placeholder represents a unique

location and the alias context evaluates to true. A weak update happens if the placeholder may represent multiple

locations or the alias context cannot be determined to be either definitely true or definitely false; in this case, the

typestate of the location receives the meet of its typestate before the call and the typestate specified in the post-condi-

tion. When the alias context cannot be determined to be either definitely true or definitely false, the update specified

by the post-condition may or may not take place. We make the safest assumption via a weak update.

5 Inferring Information about Stack-Allocated Arrays

Determining information about arrays that reside on the stack is difficult because we need to figure out both their

types and their bounds. Our previous work [35] required manual annotations of procedures that made use of local

arrays. In this section, we describe a method for inferring that a subrange of a stack frame holds an array, and illus-

trate the method with a simple example.

Figure 7 shows a C program that updates a local array; the second column shows the SPARC machine code that

is produced by compiling the program with “gcc -O ” (version 2.7.2.3). To infer that a local array is present, we

examine all live pointers each time the typestate-propagation algorithm reaches the entry of a loop. In the following

discussion, the abstract locationSF denotes the stack frame that is allocated by theadd instruction at line 2;SF[ n]

denotes the point inSF at offsetn; andSF[s,t] denotes the subrange ofSF that starts at offsets and ends at offsett-1.

By abstractly interpreting theadd instructions at lines 3 and 5, we find that%g3 points toSF[ 96] and %g2

points toSF[ 176]. The first time the typestate-checking algorithm visits the loop entry,%g2and%o1both point to

SF[ 176] (see the third column of Figure 7). Abstractly interpreting the instructions from line 10 to line 14 reveals

thatSF[96,100] stores an integer. The second time the typestate-checking algorithm visits the loop entry,%g3points

PointPtr g(PointPtr *p1, PointPtr* p2){

*p2 = null;

return *p1

}

Safety Pre-condition:

%o0: <PointPtr ptr , {q1}, fo>

%o1:<PointPtr ptr , {q2}, fo>

q1:<PointPtr , {r1}, fo>

Safety Post-condition:

[(q1 neq q2),%o0 : <PointPtr , {r1}, ...>]

[(q1 eq q2),%o0 : <PointPtr , {null }, ...>]

Figure 6: An example of safety pre- and post-conditions with alias contexts.
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to eitherSF[ 96] or SF[ 104]. We now have a candidate for a local array. The reasoning runs as follows: if we create

two fictitious componentsA andB of SF (as shown in the right-most column in Figure 7), then%g3 can point to

eitherA or B (whereB is a component ofA). However, an instruction can have only one (polymorphic) usage at a par-

ticular program point; therefore, a pointer toA and a pointer toB must have compatible types. The only choice (in our

type system) is a pointer into an array. Lettingτ denote the type of the array element, we compute a most general type

for τ by the following steps:

1. Compute the size ofτ. We compute the greatest common divisor (GCD) of the sizes of the slots that are delimited

by the pointer under consideration. In this example, there is only one slot:SF[96, 104], whose size is 8. There-

fore, the size ofτ is 8.

2. Compute the possible limits of the array. We assume that the array ends at the location just before the closest live

pointer into the stack (other than the pointer under consideration).

3. Compute the type ofτ. Assuming that the size ofτ we have computed isn, we create a fictitious locationeof size

n, and give it an initial typeT(n). We then slideeover the area that we have identified in the second step,n bytes

at a time—e.g.,SF[96,176], 8 bytes at a time—and perform a meet operation with whatever is covered bye. If an

area covered bye (or a sub-area of it) does not have a type associated with it, we assume that its type isT. In this

example, theτ that we find is

struct {

int m1;

T(32)m2;

}

No more refinement is needed for this example. In general, we may need to make refinements to our findings in later

iterations of the typestate-checking algorithm. Each refinement will bring the element type of the array down in the

type lattice. In this example, the address under consideration is the value of a register; in general it could be of the

form “r1+r2”  or “r1 +n” , wherer1 andr2 are registers andn is an integer.

This method uses some heuristics to compute the possible limits of the array. This does not affect the soundness

of this approach for the following two reasons: (i) The typestate-propagation algorithm will make sure that the pro-

gram is type correct. This will ensure that the element type inferred is correct. (ii) The global-verification phase will

verify later that all references to the local array are within the inferred bounds.

C program SPARC Machine Language First Time Second Time

typedef struct {
  int f;
  int g;
} s;

int main() {
  s a[10];
  s *p = &a[0];
  int i=0;
  while (p<a+10) {
    (p++)->f = i++;
  }
}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

main:
add %sp,-192,%sp
add %sp,96,%g3
mov 0,%o0
add %sp,176,%g2
cmp %g3,%g2
bgeu .LL3
mov %g2,%o1

.LL4:
st %o0,[%g3]
add %g3,8,%g3
cmp %g3,%o1
blu .LL4
add %o0,1,%o0

.LL3:
retl
sub %sp,-192,%sp

Figure 7: Inferring the Type and Size of a Local Array.
The label.LL4  represents the entry of the while loop.
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Note that it does not matter to the analysis whether the original program was written in terms of an n-dimensional

array or in terms of a 1-dimensional array; the analysis treats all arrays as 1-dimensional arrays. This approach works

even when the original code was written in terms of an n-dimensional array because the layout scheme that compilers

use for an n-dimensional array involves a linear indexing scheme, which is reflected in linear relationships that the

analysis infers for the values of registers.

6 Range Analysis

The technique we have used for array bounds checking in our earlier work [35], and techniques such as those

described by Cousot and Halbwachs [8] are more precise, but have a higher cost. We describe a simple range analysis

that determines safe estimates of the range of values each register can take on at each program point [32].This infor-

mation can be used for determining whether accesses on arrays are within bounds. We take advantage of the synergy

of an efficient range analysis and an expensive but powerful technique that can be applied on demand. We apply the

program-verification technique only for the conditions that cannot be proven by the range analysis.

The range-analysis algorithm that we use is a standard worklist-based forward dataflow algorithm. It finds a sym-

bolic range for each register at each program point. In our analysis, a range is denoted by [l, u], where l andu are

lower and upper bounds of the formax+by+c (a, b, andc are integer constants, andx andy are symbolic names that

serve as placeholders for either the base address or the length of an array). The reason that we restrict the bounds to

the form ofax+by+c is because that array-bounds checks usually involves checking either that the range of an array

index is a subrange of [0,length-1], or that the range of a pointer that points into an array is a subrange of [base,

base+length-1], wherebaseandlengthare the base address and length of the array, respectively. In the analysis, sym-

bolic names such asx andy stand for (unknown) values of quantities likebase andlength.

Ranges form a meet semi-lattice with respect to the following meet operation: for rangesr=[l, u], r’ =[l’ , u’], the

meet ofr andr’ is defined as [min(l, l’ ), max(u, u’)]; the top element is the empty range; the bottom element is the

largest range [−∞, ∞]. The functionmin(l, l’ ) returns the smaller ofl and l’ . If l and l’ are notcomparable(i.e., we

cannot determine the relative order ofl and l’ because, for instance,l=ax+by+c, l’=a’x’+b’y’+c’ , x≠x’, andy≠y’),

min returns−∞. The functionmaxis defined similarly except that it returns the greater of its two parameters, and∞ if

its two parameters are not comparable.

We give a dataflow transfer function for each machine instruction, and define dataflow transfer functions to be

strict with respect to the top element. We introduce four basic abstract operations, +,−, ×, and÷, for describing the

dataflow transfer functions. The abstract operations are summarized below, wheren is an integer:

[l, u] + [l’, u’ ] = [l  +− l’ , u ++ u’]

Operations x=x’, y=y’ x=x’, y≠y’ x≠x’, y=y’ x≠x’, y≠y’

++
(a+a’)x+(b+b’)y+c+c’

if (a+a’)=0, by+b’y’+c+c’
otherwise, ∞

if (b+b’)=0, ax+a’x’+c+c ’
otherwise, ∞

∞

+−
if (a+a’)=0, by+b’y’+c+c’
otherwise, −∞

if (b+b’)=0, ax+a’x’+c+c ’
otherwise, −∞

−∞

−+
(a−a’)x+(b−b’)y+c−c’

if (a−a’)=0, by−b’y’+c −c’
otherwise, ∞

if (b−b’)=0, ax−a’x’+c −c’
otherwise, ∞

∞

−−
if (a−a’)=0, by−b’y’+c −c’
otherwise, −∞

if (b−b’)=0, ax−a’x’+c −c’
otherwise, −∞

−∞

Figure 8: Binary Operations over Symbolic Expressions.
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[l, u] − [l’, u’ ] = [l −− u’, u −+ l’ ]

[l, u] × n = [l × n, u × n]

[l, u] ÷ n = [l ÷ n, u ÷ n]

The arithmetic operations++, +−, −+, −− over boundsax+by+c anda’x’ + b’y’+c’ are given in Figure 8, wherea, b,

a’, andb’ are non-zero integers. These arithmetic operations ensure that the bounds are always of the formax+by+c.

Comparison instructions are a major source of bounds information. Because our analysis works on machine

code, we need only consider tests of two forms:w ≤ v andw = v (wherew andv are program variables). Figure 9 sum-

marizes the dataflow transfer functions for these two forms. We assume that the ranges ofw andv are [lw, uw] and [lv,

uv] before the tests. The functionmin1(l, l’ ) andmax1(l, l’ ) are defined as follows:

If a upper bound of a range is smaller than its lower bound, the range is equivalent to the empty range. For the data-

flow functions for variablesw andv along the false branch of the testw=v, we could improve precision slightly by

returning the empty range whenlw, uw, lv, anduv are all equal.

To ensure the convergence of the range-analysis algorithm in the presence of loops, we perform a widening oper-

ation at a node in the loop that dominates the source of the loop backedge. Let r=[l, u] be the range of an arbitrary

variablex at the previous iteration and r’=[l’, u’ ] be the dataflow value ofx at the current iteration. The resulting range

will be r’’= r ∇ r’ where∇ is the widening operator defined as follows:

[l, u] ∇ [l’, u’ ] = [l’’, u’ ’], where

We sharpen the basic range analysis with two enhancements. The first enhancement deals with selecting the most

suitable spot in a loop to perform widening. The key observation is that for a “do-while” loop (which is the kind that

dominates in binary code2), it is more effective to perform widening right before the test to exit the loop. In the case

of a loop that iterates over an array (e.g., where the loop test is “i < length”) this strategy minimizes the imprecision of

our relatively crude widening operation: the range fori is widened to [0, +∞] just before the loop test, but is then

immediately sharpened by the transfer function for the loop test, so that the range propagated along the loop’s

backedge is [0,length-1]. Consequently, the analysis quiesces after two iterations. The second enhancement is to uti-

Test w v

w = v
True Branch [max1(lw, lv), min1(uw, uv)] [max1(lv, lw ), min1(uv, uw)]

False Branch [lw, uw] [ lv, uv]

 w ≤ v
True Branch [lw, min1(uw, uv)] [max1(lv, lw), uv]

False Branch [max1(lw, lv+1), uw] [ lv, min1(uv, uw-1)]

Figure 9: Dataflow Functions for Tests.

2. Although “while” and “for” loops are more common in source code, compilers typically transform them to an “if”
with a “do-while” in the “then-part” of the “if”. After this transformation has been done, the compiler can exploit the
fact that the code in the body of the “do-while” will always be executed at least once if the loop executes. Thus, it is
possible to perform code-motion without the fear of ever slowing down the execution of the program. In particular,
the compiler can hoist expressions from within the body of the loop to the point in the “then-part” just before the
loop, where they are still guarded by the “if”.

min1 l l '( , )
min l l'( , ) if comparablel l '( , )

l otherwise



= and max1 l l '( , )
max l l'( , ) if comparablel l '( , )

l otherwise



=

l''
∞– if l' l<( )

l otherwise



= and u''
∞ if u u'<( )
u otherwise




=
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lize correlations between register values. For example, if the test under consideration isr < n and we can establish

thatr = r’+c at that program point, wherec is a constant, we can incorporate this information into the range analysis

by assuming that the branch also testsr’ < n-c .

7 Case Studies

All of the techniques described above, with the exception of the technique from Section 5 to infer sizes of local

arrays, have been implemented in our safety-checker for SPARC machine programs [35]. We illustrate the benefits of

these improvements on a few example programs. These examples include array sum, start-timer and stop-timer code

taken from Paradyn’s performance-instrumentation suite [12], two versions of Btree traversal (one version compares

keys via a function call), hash-table lookup, a kernel extension that implements a page-replacement policy [28], bub-

ble sort, two versions of heap sort (one manually inlined version and one interprocedural version), stack-smashing

(example 9.b described in [25]), MD5Update of the MD5 Message-Digest Algorithm [22], several functions from

jPVM [10] (two cases, where one case includes more functions), and a module in the device driver /dev/kerninst [31]

that reads the kernel symbol table.

In our experiments, we were able to find a safety violation in the example that implements a page-replacement

policy—it attempts to dereference a pointer that could benull —and we identified all array out-of-bounds violations

in the stack-smashing example, and all array out-of-bounds violations in the /dev/kerninst example. Figure 10 sum-

marizes the time needed to verify each of the examples on a 440MHz Sun Ultra 10 machine. The times are divided

into the times to perform typestate propagation, create annotations and perform local verification, perform range anal-

ysis, and perform global verification. Figure 10 also characterizes the examples in terms of the number of machine

instructions, number of branches, number of loops (total versus number of inner loops), number of calls (total versus

S
um

P
ag

in
g

P
ol

ic
y

S
ta

rt
T

im
er

H
as

h

B
ub

bl
e

S
or

t
S

to
p

T
im

er

B
tr

ee

B
tr

ee
2

H
ea

p
S

or
t 2

H
ea

p
S

or
t

jP
V

M

S
ta

ck
-

sm
as

hi
ng

jP
V

M
 2

/d
ev

/k
er

ni
ns

t

M
D

5

N
um

be
r 

of
E

ac
h 

F
ea

tu
re

Instructions 13 20 22 25 25 36 41 51 71 95 157 309 315 339 883

Branches 2 5 1 4 5 3 11 11 9 16 12 89 16 45 11

Loops
(Inner loops)

1 2 (1) 0 1 2 (1) 0 2 (1) 2 (1) 4 (2) 4 (2) 3 7(1) 3 6(4) 5(2)

Procedure Calls
(Trusted Calls)

0 0
1

(1)
1

(1)
0

2
(2)

0
4

(4)
3 0

21
(21)

2
40

(40)
36

(25)
6

Global Conditions
(Bounds Checks)

4
(2)

9 13
14
(2)

19
(10)

17
41

(18)
42

(16)
56

(26)
84

(42)
57

(18)
162

(136)
99

(18)
134
(58)

135
(38)

Source Language C C C C C C C C C C C C C C++ C

Typestate Propagation 0.02 0.05 0.02 0.04 0.04 0.04 0.09 0.11 0.18 0.15 0.63 0.68 3.08 4.60 6.95

Annotation 0.003 0.006 0.006 0.006 0.005 0.007 0.008 0.011 0.015 0.015 0.034 0.033 0.069 0.073 0.083

Range Analysis 0.01 0 0 0.01 0.03 0 0.03 0.03 0.08 0.13 0.13 0.52 0.26 0.79 0.87

Global Verification 0.06 0.16 0.11 0.35 0.18 0.13 0.42 0.39 1.13 2.49 0.78 12.99 1.57 18.6 5.66

TOTAL ( Seconds) 0.09 0.21 0.13 0.40 0.25 0.17 0.54 0.54 1.40 2.78 1.58 14.22 4.97 22.92 13.07

Figure 10: Characteristics of the Examples and Performance Results.
The test cases written in C are compiled withgcc -O  (version 2.7.2.3),

and the example /dev/kerninst written in C++ is compiled with Sun Workshop Comipler 5.0.
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number of calls to trusted functions), number of global safety conditions (number of bounds checks), and the source

language in which each test case is written. Note that the checking of the lower and upper bounds are regarded as two

separate safety conditions. The times to verify these examples range from 0.1 seconds to 23 seconds.

The extensions to the typestate system allow us to handle a broader class of real-life examples. Having bit-level

representations of integers allow the analysis to deal with instructions that load/store a partial word in the Md5Update

and stack-smashing examples. The technique to summarize trusted functions allow the analysis to use summaries of

several host and library functions in hash, start- and stop-timer, Btree2, the two jPVM examples, and /dev/kerninst.

For these examples, we simply summarize the library functions without checking them. This implies that the exam-

ples are safe only if the library functions are safe. In principle, we could check the library code once and use the sum-

maries whenever possible. Subtyping among structures and pointers allows summaries to be given for JNI [9]

methods that are polymorphic. For example, the JNI function “jsize GetArrayLength(JNIEnv* env, jar-

ray array) ” takes the typejarray as the second parameter, and it is also applicable to the typesjintArray

andjobjectArray , both of which are subtypes ofjarray . Because all Java objects have to be manipulated via

the JNI interface, we model the typesjintArray and jobjectArray as physical subtypes ofjarray when

summarizing the JNI interface functions.

Symbolic range analysis allows the system to identify the boundaries of an array that is one field of a structure in

the MD5 example. When the typestate-propagation algorithm needs information about the range of a register value,

we run an intraprocedural version of the range analysis on demand, and the intraprocedural range analysis is run at

most once for each function. In the 11 of our test cases that have array accesses, range analysis eliminated 60% of the

total attempts to synthesize loop invariants. In 4 of the 11 test cases, it eliminated the need to synthesize loop invari-

ants altogether. The resulting speedup for global verification ranges from -0.4% to 63% (with a median of 37%). Fur-

thermore, in conjunction with improvements that we made to our global-verification phase, range analysis allows us

to verify the /dev/kerninst example, which we were not able to handle previously. Figure 11 shows the times for per-

forming global verification, together with the times for performing range analysis (normalized with respect to the

times for performing global verification without range analysis). The reason that the analysis of the stack-smashing

Figure 11: Times to perform global verification with range analysis normalized with respect to times to
perform global verification without range analysis.
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example is slowed down is because most array accesses in that example are out of bounds. When the array accesses

are, in fact, out of bounds, range analysis will not speed up the overall analysis because the analysis still needs to

apply the program-verification technique before it can conclude that there are array out-of-bounds violations. Simi-

larly, the reason that hash is slowed down is because only 2 of the 14 conditions are array-bounds checks, and the

range analysis cannot prove that the array accesses are within bounds.

8 Related Work

There are several papers that have investigated topics related to the typestate-checking system and symbolic range

analysis that we use.

Morrisettet al [14,15,17] introduced the notion of typed assembly language (TAL). Our type system and theirs

model different language features: For instance, TAL models several language features that we do not address, such

as exceptions and existential types. On the other hand, our system models size and alignment constraints, whereas

TAL does not. Furthermore, the TAL type system does not support general pointers into the stack, and because stack

and heap pointers are distinguished, one cannot declare a function that receives a tuple argument that can accept both

a heap-allocated tuple at one call site and a stack-allocated one at another call site [16]. Finally, TALx86 introduces

special macros for array subscripting and updating to prevent an optimizer from rescheduling them. (These macros

expand into code sequences that perform array-bounds checks). We impose no such restrictions on the idioms that a

compiler can employ to implement array subscripting. TAL achieves flow-sensitivity in a different way than our sys-

tem does; with TAL, different blocks of code are labeled as different functions, and types are assigned to the registers

associated with each function. Our system achieves flow-sensitivity by having a different typestate at each instruction.

Mycroft [11] described a technique that reverse engineers C programs from target machine code using type-

inference techniques. His type-reconstruction algorithm is based on Milner’s algorithm W [13]; it associates type

constraints with each instruction in an SSA representation of a program; type reconstruction is via unification.

Mycroft’s technique infers recursive data-types when there are loops or recursive procedures. We start from annota-

tions about the initial inputs to the untrusted code, whereas his technique requires no annotation. We use abstract

interpretation, whereas he uses unification. Note that the technique we use to detect local arrays is based on the same

principle as his unification technique. Mycroft’s technique currently only recovers types for registers (and not mem-

ory locations), whereas our technique can handle both stack- and heap-allocated objects. Moreover, his technique

recovers only type information, whereas ours propagates type, state, and access information as well. Our analysis is

flow-sensitive, whereas Mycroft’s is flow-insensitive, but it recovers a degree of flow sensitivity by using SSA form

so that different variables are associated with different live ranges.

Ramalingamet al [21] describe an efficient algorithm for decomposing aggregates such as records and arrays

into simpler components based on the access patterns specific to a given program. The technique we use to infer local

arrays identifies aggregates (arrays) based on the access pattern that is specific to a loop.

Several people have described techniques that can be used to statically check for out-of-bounds array accesses.

Cousot and Halbwachs [8] described a method that is based on abstract interpretation using convex hulls of polyhe-

dra. Their technique is precise in that it does not simply try to verify assertions, but instead tries to discover assertions

that can be deduced from the semantics of the program. Our range analysis can be regarded as a simple form of Cou-

sot and Halbwachs’ analysis with an eye towards efficiency. Our goal is to take advantage of the synergy of an effi-

cient range analysis and an expensive but powerful program-verification technique [30] that can be applied on

demand. We apply the program-verification technique only for conditions that cannot be proven by the range analysis.
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Verbruggeet al [32] described a range-analysis technique called Generalized Constant Propagation (GCP). Our

symbolic range analysis differs from GCP in the following respects: GCP uses a domain of intervals of scalars,

whereas we use symbolic ranges. GCP attempts to balance convergence and precision of analysis by “stepping up”

ranges for variables that have failed to converge after some fixed number of iterations. We perform a widening opera-

tion right away for quicker convergence, but sharpen our analysis by selecting suitable spots in loops for performing

the widening operation, and also by incorporating correlations among register values. Both GCP and our technique

use points-to information discovered in an earlier analysis phase. Our current implementation of range analysis is

context-insensitive, whereas GCP is context-sensitive.

Rugina and Rinard [23] also use symbolic bounds analysis. Their analysis gains context sensitivity by represent-

ing the symbolic bounds for each variable as functions (polynomials with rational coefficients) of the initial values of

formal parameters. Their analysis proceeds as follows: For each basic block, it generates the bounds for each variable

at the entry; it then abstractly interprets the statements in the block to compute the bounds for each variable at each

program point inside and at the exit of the basic block. Based on these bounds, they build a symbolic constraint sys-

tem, and solve the constraints by reducing it to a linear program over the coefficient variables from the symbolic

bound polynomials. They solve the symbolic constraint system with the goal of minimizing the upper bounds and

maximizing the lower bounds.

Bodik et al [8] describe a method to eliminate array bounds checks for Java programs. Their method uses a

restricted form of linear constraints calleddifference constraintsthat can be solved using an efficient graph-traversal

algorithm on demand. Their goal is to apply their analysis to array bounds checks selectively based on profile infor-

mation, and fall back on run-time checks for cold code blocks. Wagneret al [87] have formulated the buffer-overrun-

detection problem asan integer constraint problemthat can be solved in linear time in practice. Their analysis is

flow- and context-insensitive with a goal of finding as many errors as possible.
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