
Safety Checking of Machine Code

Abstract
We show how to determine statically whether it is safe for
untrusted machine code to be loaded into a trusted host system.

Our safety-checking technique operates directly on the
untrusted machine-code program, requiring only that the initial
inputs to the untrusted program be annotated with typestate
information and linear constraints. This approach opens up the
possibility of being able to certify code produced by any com-
piler from any source language, which gives the code producers
more freedom in choosing the language in which they write their
programs. It eliminates the dependence of safety on the correct-
ness of the compiler because the final product of the compiler is
checked. It leads to the decoupling of the safety policy from the
language in which the untrusted code is written, and conse-
quently, makes it possible for safety checking to be performed
with respect to an extensible set of safety properties that are
specified on the host side.

We have implemented a prototype safety checker for SPARC
machine-language programs, and applied the safety checker to
several examples. The safety checker was able to either prove
that an example met the necessary safety conditions, or identify
the places where the safety conditions were violated. The check-
ing times ranged from less than a second to 14 seconds on an
UltraSPARC machine.

1 Introduction
Two prevailing trends in software development call for techniques
to protect one software component from another. The first trend is
dynamic extensibility, where a trusted host is extended by import-
ing and executinguntrusted foreign code. For example, web
browsers download plug-ins [33,48]; databases load type-specific

extensions [13,47]; operating systems load customized policies
[2,11,23,34,38,41,50] and performance-measurement code [50].
There are even proposals for loading application-specific policies
into Internet routers [52]. Certification of the safety of untrusted
code is crucial in these domains. The second trend iscomponent-
based software development, where software components pro-
duced by multiple vendors are used to construct a complete appli-
cation [6] (e.g., COM [21]). The component-based software-
development model improves both software reusability and pro-
ductivity. Because the software components can come from differ-
ent sources, proper protection among software components is
essential.

In this paper, we show how to determine statically whether it
is safe for untrusted machine code to be loaded into a trustedhost
system. In contrast to work that enforces safety by restricting the
things that can be expressed in a source language (e.g., safe lan-
guages, certifying compilers [31], and typed-assembly languages
[25,26,28]), we believe that safe code can be written in any source
language and produced by any compiler, as long as nothing
“unsafe” is expressed in the machine code. This philosophical dif-
ference has several implications. First, it gives the code producer
more freedom in choosing an implementation language. Instead of
building a certifying compiler for each language, we can certify
code produced by an off-the-shelf compiler. Second, it leads to the
decoupling of a safety policy from the language in which the
untrusted code is written. This makes it possible for safety check-
ing to be performed with respect to an extensible set of safety
properties that are specified on the host side.

In short, the most important, high-level characteristics of our
safety-checking technique are (i) It operates directly on binary
code; (ii) It provides the ability to extend the host at a very fine-
grained level, in that we allow the foreign code to manipulate the
internal data structures of the host directly; (iii) It enforces a
default collection of safety conditions to prevent array out-of-
bounds violations, address-alignment violations, uses of uninitial-
ized variables, null-pointer dereferences, and stack-manipulation
violations, in addition to providing the ability for the safety crite-
rion to be extended according to anaccess policyspecified by the
host.

The essence of our approach is to recover source-level type
information (more precisely, typestate information) based on a
small amount of annotation about the initial inputs to the untrusted
code, and then to apply some techniques that were originally
developed for program verification to determine whether the
untrusted code is safe. The initial annotation is in the form of
typestates and linear constraints (i.e., linear equalities and inequal-
ities that are combined with∧, ∨, ¬, and the quantifiers∃ and∀).
Our analysis uses typestates (as opposed to types) because the con-
dition under which it is safe to perform an operation is a function
of not just the types of the operation’s operands, but also their
states. For example, it is safe to write to a location that stores an
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uninitialized value, but it is unsafe to read from it. Typestates differ
from types by providing information at a finer granularity. More-
over, typestate checking [44,45] differs from traditional type
checking in that traditional type checking is a flow-insensitive
analysis, whereas typestate checking is a flow-sensitiveanalysis.
Typestates can be related tosecurity automata[3]. In a security
automaton, all states are accepting states; the automaton detects a
security-policy violation whenever read a symbol for which the
automaton’s current state has no transition defined. It is possible to
design a typestate system that captures the possible states of a
security automaton (together with a “security-violation” state).
Typestate checking provides a method, therefore, for statically
assessing whether a security violation might be possible.

To perform safety checking of machine-language programs,
the issues we face include: (i) the design of a language for specify-
ing policies; (ii) the inference of a typestate at each program point;
(iii) overload resolution of certain machine-language instructions;1

and (iv) synthesis of loop invariants. We use source-level
typestates to describe the state of the host when untrusted code is
to be invoked. A safety policy specifies the data that can be
accessed and the functions (methods) that can be called by a piece
of untrusted code. We extend typestate checking to infer a
typestate for each program point, and to perform overload resolu-
tion. We use the induction-iteration method [49] to synthesize loop
invariants.

The main contributions of this paper are as follows:

• Our technique opens up the possibility of being able to certify
object code produced by off-the-shelf compilers (independent
of both the source language and the compiler). We require
only that the inputs to the untrusted code be annotated with
typestate information and linear constraints.

• The technique is extensible: (i) in addition to a default collec-
tion of safety conditions that are always checked, additional
safety conditions to be checked can be specified by the host;
(ii) typestates can be related to security automata; this makes
extending our technique to perform security checking natural.

• We extend the notion of typestate in several ways: (i) we use
typestates to describe the state information of abstract loca-
tions in an abstract storage model; (ii) we extend typestates to
include access permissions (which are used to specify the
extent to which untrusted code is allowed to access host
resources); (iii) in addition to using typestates to distinguish
initialized values from uninitialized ones, we also use
typestates to track pointers.

• Finally, by focusing only on enforcing fine-grained memory
protection, we are able to use a decidable logic for expressing
safety conditions and simple heuristics for synthesizing loop
invariants. We wish to stress that, although we use techniques
originally developed for verification of correctness, we are
not trying to prove either total or partial correctness [9,12].
Safety checking is less ambitious than verification of correct-
ness.

We have implemented a prototype safety checker for SPARC
machine-language programs. We applied the safety checker to sev-
eral examples (ranging from code that contains just a few
branches, to code that contains nested loops, and to code with
function and method calls). The safety checker was able to either
prove an example met the necessary safety conditions, or identify

the places where the safety conditions were violated, in times rang-
ing from less than a second to 14 seconds on an UltraSPARC
machine (see Section 6). Contrary to our initial intuition, we
observed that certain compiler optimizations, such as loop-invari-
ant code motion and improved register-allocation algorithms, actu-
ally make the task of safety checking easier.

The remainder of the paper is organized as follows: Section 2
describes the default safety properties that we enforce and the
notion of a host-specified safety policy. Section 3 gives an over-
view of the safety-checking analysis. Section 4 describes the basis
of the safety-checking analysis. Section 5 describes certain phases
of the safety-checking analysis in greater detail. Section 6 presents
our initial experience. Section 7 discusses related work. Section 8
discusses the limitations of our technique.

2 Safety Properties and Policies
When untrusted code is to be imported into a host system, we need
to specify acceptable behaviors for the untrusted code. These
behavior specifications take the form of safety conditions that
include a collection ofdefault safety conditionsandhost-specified
access policies. The default safety conditions check for array out-
of-bounds violations, address-alignment violations, uses of unini-
tialized values, null-pointer dereferences, and stack-manipulation
violations.

The inputs to our safety-checking analysis include the
untrusted code, ahost-typestate specification, an invocation speci-
fication, and asafety policy. All inputs except for the untrusted
code are provided by the host.

• A host-typestate specification includes (i) a data aspect that
describes the type and the state of host data before the invoca-
tion of the untrusted code, and (ii) a control aspect that pro-
vides safety pre- and post-conditions for calling host
functions and methods (in terms of the types and states of the
parameters and return values, and linear constraints on them).

• An invocation specification provides information about the
initial values passed to the untrusted code when it is invoked
by the host.

• The host-specified access policy specifies the host data that
can be accessed by a piece of untrusted code, and the host
functions (methods) that can be called.

In our model, we view any addresses passed to a piece of untrusted
code as doors into the host data region. A safety policy controls the
memory locations (resources) that are accessible by specifying the
pointer types that can be followed. For the memory locations
reachable, the safety policy specifies the ways they can be accessed
in terms of the types of the memory locations and their contents.

A policy is specified by (i) a classification of the memory
locations into regions, and (ii) a list of triples of the form [Region :
Category : Access Permitted]. A Region can be as large as an
entire address space or as small as a single variable. The Category
field is a set of types or aggregate fields. The Access field can be
any subset ofr, w, f, x, ando, meaning readable, writable, follow-
able, executable, and operable, respectively. In our model,r andw
are properties of a location, whereasf, x, ando are properties of the
value stored in a location. The access permissionf is introduced for
pointer-typed values to indicate whether the pointer can be derefer-
enced. The access permissionx applies to values of type “pointer
to function” (i.e., values that hold the address of a function) to
indicate whether the function pointed to can be called by the
untrusted code. The access permissiono includes the rights to1. Instructions such asadd  andld  are overloaded; for exam-

ple,add  can be adding two integers or adding the base
address of an array and an array index.



“examine”, to “copy”, and to perform other operations not covered
by x andf.

To get a feel for what a safety policy looks like, suppose that a
user is asked to write an extension (as a piece of untrusted code)
that finds out the lightweight process on which a thread is running,
and suppose that information about threads is stored in the host
address space in a linked list defined by the structurethread

struct thread {
int tid;
int lwpid;
...
struct thread * next;

};

The following policy allows the extension to read and examine the
tid and lwpid fields, and to follow only thenext field (H
stands for “Host Region”, which is the region in which the list of
threads is stored):

[H : thread.tid , thread.lwpid  : ro]
[H : thread.next  : rfo]
The above model can be used to specify a variety of different

safety policies. For example, we can specify something roughly
equivalent tosandboxing[55]. The original sandboxing model par-
titions the address space into protection domains, and modifies a
piece of untrusted code so that it accesses only its own domain. In
our model, sandboxing boils down to allowing untrusted code to
access memory only via valid addresses in the untrusted data
region, but otherwise to examine, and operate on data items of any
type. Because an address of a location in the host region cannot be
dereferenced, side-effects are confined to the untrusted region. Our
approach differs from sandboxing in that it is purely static, and it
does not make any changes to the untrusted code.

While sandboxing works well in situations where it is appro-
priate to limit memory accesses to only the untrusted data region,
forbidding access to all data in the host region is often too draco-
nian a measure. For instance, access to the host data region is nec-
essary for applications as simple as performance instrumentation
(e.g., to read statistics maintained by the host environment). In our
model, more aggressive policies are defined by allowing simple
reads and writes to locations in the host data region, but forbidding
pointers to be followed or modified. We can go even further by
specifying policies that permit untrusted code to follow certain
types of valid pointers in the host data region in order to traverse
linked data structures. We can even specify more aggressive poli-
cies that permit untrusted code to change the shape of a host data
structure, by allowing the untrusted code to modify pointers.

What we have presented here is a simplified view of a safety
policy. In reality, a safety policy can also include a safety postcon-
dition (typestates and linear constraints) for ensuring that certain
invariants defined on the host data are restored by the time control
is returned to the host.

3 Overview of Safety-Checking Analysis
Our goal is to verify that untrusted code (i) obeys the collection of
default safety conditions, and (ii) accesses data and calls host func-
tions only in a manner that is consistent with a given safety policy.
To do this, we introduce an abstract storage model, use the default
safety conditions and host-specified access policy to attach a safety
predicate to each instruction, use static analysis to determine an
approximation to the contents of memory locations at each point in
the program, and check whether each instruction obeys the corre-
sponding safety predicate. The abstract storage model includes the
notion of abstract locations and typestates. A typestate describes
the type, state, and access permissions of the value stored in an
abstract location.

We divide the safety-checking analysis into five phases: prep-
aration, typestate propagation, annotation, local verification, and
global verification. We now illustrate these phases informally by
means of a simple example. Figure 1 shows a piece of untrusted
code (in SPARC assembly language) that sums the elements of an
integer array. It also shows the host-typestate specification, the
safety policy, and the invocation specification.

The host-typestate specification states thatarr is an integer
array of sizen, wheren ≥ 1. We have used a single abstract loca-
tion e to summarize all elements of the arrayarr . The safety pol-
icy states thatarr ande are in theV region, that all integers in the
V region are readable and operable, and that all base addresses to
an integer array of sizen in the V region are readable, operable,
and followable. The invocation specification states thatarr and
the size ofarr will be passed through the registers%o0and%o1,
respectively. The code uses three additional registers,%o2, %g2,
and%g3.

Phase 1: Preparation takes the host-typestate specification,
the safety policy, and the invocation specification, and translates
them intoinitial annotationsthat consist of linear constraints and
the typestates of the inputs.

For the example given in Figure 1, the initial annotations are
shown in Figure 2. The fact that the address ofarr is passed via
register%o0 is described in the second line in column 1. The fact
that the size ofarr is passed via the register%o1 is captured by

Untrusted Code Host Typestate Safety Policy Invocation

1: mov %o0,%o2 ! move%o0 into %o2
2: clr %o0 ! set%o0 to zero
3: cmp %o0,%o1 ! compare%o0 and%o1
4: bge 12 ! branch to 12 if%o0≥ %o1
5: clr %g3 ! set%g3 to zero
6: sll %g3, 2,%g2 ! %g2 = 4 x %g3
7: ld  [%o2+%g2],%g2 ! load from address%o2+%g2
8: inc %g3 ! %g3 = %g3 + 1
9: cmp %g3,%o1 ! compare%g3 and%o1
10: bl 6 ! branch to 6 if%g3 < %o1
11: add %o0,%g2,%o0 ! %o0 = %o0 + %g2
12: retl
13: nop

e: <int, initialized, ro>
arr : <int [n], { e}, rfo>

{ n≥1}

V = {e, arr }
[V : int : ro]

[V : int [n] : rfo]

%o0← arr

%o1 ← n

arr is an integer array
of sizen, wheren≥1. e
is an abstract location

that summarizes all ele-
ments ofarr .

arr ande are in the V
region. All integers in the
V region are readable and

operable. All base
addresses to an integer
array of sizen in the V

region are readable, oper-
able, and followable.

arr and the size
of arr will be
passed through the
registers%o0, and

%o1, respectively.

Figure 1: A Simple Example: Summing the Elements of an Integer Array



the linear constraint “n=%o1”. Note that%o0and%o1both have
the r andw access permissions. These refer to the registers them-
selves (i.e., the untrusted code is permitted to read and change the
value of both registers). However, arrayarr cannot be overwritten
because the access permission fore, which acts as a surrogate for
all elements ofarr , does not have thew permission.

Phase 2: Typestate propagationtakes the untrusted code and
the initial annotations as inputs. It annotates each instruction with
an abstract representation of the memory contents that characterize
the state before the execution of that instruction. For our example,
this phase discovers that the instruction at line 7 is an array access,
where%o2holds the base address of the array and%g2represents
the index.

Phase 3: Annotationtakes as input the typestate information
discovered in Phase 2, and traverses the untrusted code to annotate
each instruction with local and global safety preconditions and
with assertions. The local safety preconditions are conditions that
can be checked using typestate information alone. The assertions
are facts that can be derived from the results of typestate propaga-
tion. For our example, the assertions, local safety preconditions,
and global safety preconditions for the instruction at line 7 are
summarized in Figure 3.

Phase 4: Local verificationchecks the local safety precondi-
tions. (In our example, the local safety preconditions are all true at
line 7.)

Phase 5: Global verificationattempts to verify the global safety
preconditions using program-verification techniques. In the pres-
ence of loops, we use the induction-iteration method to synthesize
loop invariants. In proving that at line 7 index%g2 is less than the
upper boundn, our safety checker automatically synthesizes the
loop invariant “n > %g3∧ n ≥ %o1”.

4 The Basis of Safety-Checking Analysis
This section describes (i) the abstract storage model used in our
safety-checking analysis, (ii) an abstract operational semantics for
SPARC machine-language instructions, and (iii) how safety predi-
cates are attached to instructions.

4.1 An Abstract Storage Model
The abstract storage model we use includes the notion of abstract
locations and typestates. Anabstract locationsummarizes a set of
physical locations so that the safety-checking analysis has a finite-
size domain to work over. (In general, the number of concrete acti-
vation records is unbounded in the presence of recursion, as are the
number of concrete objects allocated in a loop and the size of con-
crete linked data-structures.) An abstract location has a name, a
size, an alignment, and optional attributesr and w to indicate
whether the location is readable and writable, respectively.

A typestate records properties of abstract locations. A
typestate is defined by a triple <type, state, access>. We define a
meet operation on typestates so that typestates form a meet semi-
lattice. The meet of two typestates is defined as the meet of their
respective components.

Our type system is based on that of Siffet al [42], with the
addition of abstract types, pointers into the middle of arrays, and
alignment and size constraints on types. (See Figure 4; alignment
and size constraints on types are not shown.) The typet(n] denotes
a pointer that points somewhere into the middle of an array of type
t of sizen. The meet operation on types are defined as follows. The
meet of two different non-pointer types is⊥t.

2 The meet of two dif-
ferent pointer types, or the meet of a pointer type and a non-pointer
type is⊥t. The meet of typet[n] and typet(n] is t(n], whereas the
meet oft[n] andt[m] or the meet oft(n] andt[m] is ⊥t if m ≠ n.

The state component of a typestate captures the notion of an
object of a given type being in an appropriate state for some opera-
tions but not for others. The state lattice contains a bottom element
⊥s that denotes an undefined value of any type. Figure 5 illustrates
selected elements of the state lattice. Since we also use the state
descriptors to track abstract locations that represent pieces of
stack- and heap-allocated storage, they resemble the storage-shape
graphs of Chaseet al [5].

An access permission is either a subset of {f, x, o}, or a tuple
of access permissions. If an abstract location stores an aggregate,
its access permission will be a tuple of access permissions, with
the elements of the tuple denoting the access permissions of the

Initial Annotations

Initial Typestate Initial Constraints

e:<int , initialized, ro>
%o0 :<int  [n], { e}, rwfo>

%o1 :<int , initialized, rwo>
n ≥ 1 ∧ n=%o1

Figure 2: Initial Annotations

Assertions
Local Safety

Preconditions
Global Safety
Preconditions

%o2 is the address
of an integer array

%o2 mod 4 = 0
%o2≠ NULL

e is readable;
%g2 is writable;

%o2 is followable,
and operable

Array bounds checks
%g2≥ 0 ∧ %g2 < 4n

∧%g2 mod 4 = 0
Alignment and

null-pointer checks
%o2≠ NULL∧

(%o2 + %g2) mod 4 = 0

Figure 3: Assertions and Safety Preconditions for Line 7

t :: ground Ground types

| abstract Abstract types

| t [n] Pointer to the base of an array of type t of size n

| t (n] Pointer into the middle of an array of type t of size n

| t ptr Pointer to t

| s {m1, ..., mk} struct

| u {|m1, ..., mk|} union

| (t1, ...,tk) → t Function

m:: (t, l, i) Member labeled l of type t at offset i

ground::int8  | uint8  | int16  | uint16|int32 | ...

Figure 4: A Simple Type System
t stands for type, andm stands for a struct or union member.

2. Our implementation also incorporates a notion of subtyping
for ground types. This makes the analysis more precise
when dealing with operations such as “load byte” and “load
half word”.



respective aggregate fields. The meet of two access-permission
sets is their intersection. The meet of two tuples of access permis-
sions is given by the meet of their respective elements.

The reader may be puzzled why a safety policy is defined in
terms of five kinds of access permissions (r, w, f, x, ando), whereas
typestates have only three kinds (f, x,ando). The reason is thatf, x,
ando are properties of avalue, whereasr andw are properties of a
location. Typestates capture properties ofvalues. Policies specify
the r andw permissions of abstract locations, as well asf, x, ando
permissions of their values.

The typestate lattice also includes a top elementT.

In the remainder of the paper, we useabsLocto denote the set
of all abstract locations, and the symbolsl andm to denote individ-
ual abstract locations. We useSize(l), Align(l), to denote the size,
and alignment, respectively, of abstract locationl. We call an
abstraction location that summarizes more than one physical loca-
tion a summary location. A register is always readable and writ-
able, and has an alignment of zero. A constant always has access
permissiono.

4.2 An Abstract Operational Semantics for
SPARC Machine Instructions
An abstract store is given by a total mapM: absLoc→ typestate.
We define the abstract operational semantics of a SPARC machine
instruction as a transition functionR: M→M. We use T(l), S(l), and

A(l) to denote the type, state, and access component of the
typestate of abstract locationl, respectively.

4.2.1 Overload Resolution
We determine an appropriate typestate for each abstract location at
each program point by finding the greatest fixed point of a set of
typestate-propagation equations (see Section 4.2.2). Overload res-
olution of instructions such asadd andld falls out as a by-prod-
uct of this process: The type components of the typestates obtained
for the arguments of overloaded instructions let us identify
whether a register holds a scalar, a pointer, or the base address of
an array (and hence whether an instruction such asadd
%o0,%g2,%o0 represents the addition of two scalars, a pointer
indirection, or an array-index calculation). To achieve this, we
define the abstract operational semantics of SPARC machine
instructions to be strict inT. Consequently, during typestate check-
ing, propagation of information through the instructions of a loop
is delayed until a non-T value arrives at the loop entrance.

One artifact of this method is that each occurrence of an over-
loaded instruction is resolved to just a single usage kind (e.g., sca-
lar addition, pointer indirection, or array-index calculation). We
call this thesingle-usage restriction. We believe that this restric-
tion does not represent a significant limitation in practice because
we are performing typestate checking (which is flow sensitive).
For example, typestate checking allows an instruction such asadd
%o0,%g2,%o0 to be resolved as a pointer indirection at one
occurrence of the instruction, but as an array-index calculation at a
different occurrence.

Figure 5: A Portion of the State Lattice
For a scalar type t, its state can be [ut] or [i t], which denote uninitialized and initialized values, respectively. For a pointer type p, its state
can be [up], which is the state of an uninitialized pointer, or P, a non-empty set of abstract locations referenced, where one of the elements of
P can benull. For sets P1 and P2, we define P1 ≤ P2 iff P2 ⊆ P1. For an aggregate type G, its state is given by the states of its fields.

[it2]

[ut2]

{m} {null}

{m, null}
[it1]

[ut1]

<[it1], [it2]>

<[it1], [ut2]>

<[ut], [ut]>

< ⊥s, [ut2]>

⊥s

Scalars Pointers Aggregates

[up]

<[ut1], [it2]>

<[it1], ⊥s> <⊥s, [it2]>

<[ut1], ⊥s>

Operation Assumption Type-Propagation Rule State-Propagation Rule Access-Propagation Rule

1

addrs, Opnd, rd

Scalar add
1. T’( rd) = T(rs)  T(Opnd).

2. for l ≠rd, T’( l) = T(l).

1. S’( rd) = S(rs)  S(Opnd).

2. for l ≠rd, S’( l) = S(l).

1. A’( rd) = A(rs) ∩ A(Opnd).

2. for l ≠rd, A’( l) = A(l).

2
Array-index calculation
T(rs) = t [n]

1. T’( rd) = t ( n] .

2. for l ≠rd, T’( l) = T(l).

1. S’( rd) = S(rs).

2. for l ≠rd, S’( l) = S(l).

1. A’( rd) = A(rs).

2. for l ≠rd, A’( l) = A(l).

3 st rs, [ra+n]
Store to an aggregate field
Let F = {s.β | s ∈ S(ra),

β ∈ lookUp(T(s), n, 4)}

1. if F={ l},

if l is not a summary location,

T’ (l)=T(rs);

otherwiseT’ (l)=T(rs)  T(l).

2. if | F | > 1,

for l ∈ F, T’ (l)=T(rs)  T(l).

3. for l ∉ F, T’( l) = T(l).

1. if F={ l},

if l is not a summary location,

S’ (l)=S(rs);

otherwise S’ (l)=S(rs)  S(l).

2. if | F |>1,

for l ∈ F, S’ (l)=S(rs)  S(l).

3. for l ∉ F, S’( l) = S(l).

1. if F = { l},

if l is not a summary location,

A’ (l)=A(rs);

otherwiseA’( l) =A(l) ∩ A(rs).

2. if | F |>1,

for l ∈ F, A’( l) =A(l) ∩ A(rs).

3. for l ∉ F, A’( l) = A(l).

Table 1: Propagation of Type, State, and Access information



4.2.2 Propagation of Type, State, and Access Informa-
tion
For the sake of brevity, Table 1 shows the rules for propagating
type, state, and access information only for two different kinds of
uses of theadd instruction (scalar add and array-index calcula-
tion) and for storing to an aggregate field.rs, ra, andrd are regis-
ters, andOpndis either an integer constantn or a register. We use
l ≠ rd to denotel ∈(absLoc− {r d}), and useT(l) andT’( l) to denote
the types of abstract locationl before and after the execution of an
instruction, respectively. We defineS(l), S’( l), A(l), andA’( l) simi-
larly. We useβ to refer to a (possibly empty) sequence of field
names. The functionlookUp takes a type and two integersn andm
as input; it returns the set of fields that are at offsetn and of sizem,
or ∅ if no such fields exist.

1. The typestate-propagation rules for scalar-add state that after
the execution of theadd instruction, the typestate ofrd is the
meet of those ofrs andOpndbefore the execution, and the
typestate of all other abstract locations inabsLoc remain
unchanged.

2. For an array-index calculation, the type of the destination reg-
ister becomes “t(n]”, where “t” is the type of an array ele-
ment. The type “t(n]” indicates thatrd could point to any
element in the array. As to the state-propagation rule, at
present we use a single abstract location to summarize the
entire array; thus the state of the destination register is the
same as that of the source register.

3. The typestate-propagation rules for storing to an aggregate
field are divided into two cases, depending on whether strong
or weak update is appropriate. The abstract-location setF
gives the set of locations into which thest instruction may
store. The pointer “ra+n” must point tol (∈ F), if |F|=1 andl
is not a summary location. In this case,l receives the typestate
of the source register. The pointer “ra+n” may point to the
locations inF, if |F|>1, orF={ l} and l is a summary location.
In this case, each possible destination receives the meet of the
typestate before the operation and the typestate of the source
register.

4.3 Attachment of Safety Predicates
Phase 3 of the safety-checking analysis uses the default safety con-
ditions, the host-specified access policy, and the results of overload
resolution to attach a collection of safety predicates to each
instruction. These safety predicates are divided into local safety
predicates and global safety predicates, depending on whether or
not the predicates can be validated using typestate information
alone. Table 2 summarizes the safety predicates for the two cases
of add  and the one case ofst  that were described earlier.

1. For scalaradd , the safety predicate specifies that uninitial-
ized values must not be used. The predicatereadable(l) is true
iff l is readable, and the predicateoperableis trueiff o ∈ A(l)
and S(l) ∉ {[uT(l)], ⊥s}.

2. The safety predicates for an array-index calculation state that
rs and Opnd must both be readable and operable, and the
index must be within the bounds of the array. The predicate
inbounds(size, low, high, i) is true iff low × size≤ i < high ×
size,andi modsize = 0.

3. The safety predicates forst state that (i)ra must be follow-
able andn must be a valid index of a field of the right size; (ii)
ra must be non-null, and the address “ra+n” must be properly
aligned. The predicatefollowable(l) is trueiff f∈Α(l), and T(l)
is a pointer type; the predicateassignable(m, l) is trueiff read-
able(m), writable(l), and (T(l)≤T(m), Align(l) mod
Align(T(m))=0 andsizeof(T(m))≤Size(l)) all hold; the predi-
catealign(A, n) is true iff ∃ α st.A = nα.

5 Elaboration of Phases 2 and 5 of
Safety-Checking Analysis
In this section, we expand upon Phases 2 and 5 of the safety-
checking analysis of the array-summation example introduced in
Section 3.

5.1 Phase 2 — Typestate Propagation
The typestate-propagation phase works on interprocedural control-
flow graphs, where the nodes in the graph represent instructions
and the edges represent control flow in the usual way. To create a
safe approximation of the program state before and after each
node, each node has two total maps (each of typeabsLoc →
typestate) representing abstract stores. The algorithm for typestate
propagation is a standard worklist-based algorithm. It starts with
the mapλl.T at all program points except for the entry node. The
map for the entry node incorporates the initial annotations gener-
ated during Phase 1 (see Figure 2); the abstract locations for which
there are no initial annotations are initialized with the typestate
<⊥t, ⊥s, ∅>.

Initially, the first instruction of the untrusted code is placed on
the worklist. An instruction is chosen from the worklist and exam-
ined. The typestates of the abstract locations at the entry to the
examined instruction become the meet of the corresponding
typestates at the exits of the instruction’s predecessors. The
instruction is interpreted abstractly using the new typestates. This
may cause the abstract store associated with the exit of the instruc-
tion to change. In that case, each instruction that is a successor of

Operation Assumptions Local Safety Predicates Global Safety Predicates

1 addrs, Opnd, rd Scalar add operable(rs) ∧ operable(Opnd)

2 addrs, Opnd, rd
Array-index calculation
T(rs) = t [n]

operable(rs) ∧ operable(Opnd) null ∉ S(rs) ∧ inbounds(sizeof(t), 0, n, Opnd)

4 st rs, [ra+n]
Store to an aggregate field
Let F = {s.β | s ∈ S(ra),

β ∈ lookUp(T(s), n, 4)}

followable(ra) ∧ operable(ra) ∧
F ≠ ∅ ∧ forall l ∈ F, assignable(rs, l)

null ∉ S(ra) ∧
forall a∈ S(ra), align(Align(a)+n, 4)∧
sizeof(T(rs))=4

Table 2: Attachment of Safety Properties



the examined instruction is added to the worklist. This process is
repeated until the worklist is empty.

Figure 6 shows the results of typestate propagation applied to
our running example. The right column shows the instructions.
The left column shows the abstract store before the execution of
the corresponding instruction. Lines 6 to 11 correspond to the
loop. Initially, %o0holds the base address of the integer arrayarr
(whose elements are summarized bye), and%o1holds the size of
the array. Typestate checking is initiated by placing themov
instruction at line 1 on the worklist. Abstract interpretation of the
mov instruction at line 1 sets the contents of%o2 to point to e.
Because the typestate of%o2has changed, the instruction at line 2
is placed on the worklist. The interpretation of theclr instruction
at line 2 sets the contents of%o0to 0. This process continues until
the worklist becomes empty. For line 7, the results show that%o2
holds the base address of an integer array and that%g2 is an inte-
ger (and hence must be an index).

5.2 Phase 5 —Verification of Global Safety Pre-
conditions
The fifth phase verifies the global safety preconditions using pro-
gram-verification techniques. This phase involves (i) generating
verification conditions (VCs), and (ii) verifying the VCs using a
theorem prover. Unlike standard techniques for program verifica-
tion, in which one monolithic VC is created containing all proper-
ties to prove, we check the validity of the global safety
preconditions in a demand-driven fashion, and verify the condi-
tions one at a time.

Since array-bounds, null-pointer, and address-alignment
requirements can usually be represented as linear equalities and
inequalities, our theorem prover is based on the Omega Library
[17]. The Omega library represents relations and sets as Presburger
formulas, which are formulas constructed by combining affine
constraints on integer variables with the logical operations¬, ∧,
and∨, and the quantifiers∀ and∃. The affine constraints can be
either equality or inequality constraints [17]. Presburger formulas
are decidable. For more details on the Omega Library, see Kellyet
al [17] and Pughet al [35,36,37].

When the untrusted code involves loops, an additional step is
needed to synthesize loop invariants. In our system, the synthesis
of loop invariants is attempted by means of the induction-iteration
method [49]. We have extended the induction-iteration method to
synthesize loop invariants for natural loops (and also to work on
machine-language programs).

5.2.1 Induction Iteration Method
The induction-iteration method uses the “weakest liberal precondi-
tion” (wlp) as a heuristic for generating loop invariants. The weak-
est liberal precondition of statement S with respect to
postcondition Q, denoted by wlp(S, Q), is a condition R such that
if statement S is executed in a state satisfying R, (i) Q is always
true after the termination of S (if S terminates), and (ii) no condi-
tion weaker than R satisfies (i). A weakest liberal precondition dif-
fers from a weakest precondition in that a weakest liberal
precondition does not guarantee termination. Since our technique
works on machine language programs, we have extended the
induction-iteration method to work onreducible control-flow

Typestate Before Untrusted Code

1: mov %o0,%o2

2: clr %o0

3: cmp %o0,%o1

4: bge 12

5: clr %g3

6: sll %g3, 2,%g2

7: ld  [%o2+%g2],%g2

8: inc %g3

9: cmp %g3,%o1

10: bl 6

11: add %o0,%g2,%o0

12: retl

13: nop

Figure 6: Results of Typestate Propagation

%o0: int[n], { e}, rw foe: iint, ro %o1: iint, rwo%o2: ⊥ %g2: ⊥ %g3: ⊥

e: iint, ro %o1: iint, rwo %g2: ⊥ %g3: ⊥%o2: int[n], { e}, rw fo%o0: int[n], { e}, rw fo

e: iint, ro %o1: iint, rwo %g2: ⊥ %g3: ⊥%o0: 0, rwo %o2: int[n], { e}, rw fo

e: iint, ro %o1: iint, rwo %g2: ⊥ %g3: ⊥%o0: 0, rwo %o2: int[n], { e}, rw fo

e: iint, ro %o1: iint, rwo %g2: ⊥ %g3: ⊥%o0: 0, rwo %o2: int[n], { e}, rw fo

e: iint, ro %o1: iint, rwo %g2: ⊥ %g3: iint, rwo%o0: iint, rwo %o2: int[n], { e}, rw fo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o2: int[n], { e}, rw fo%o0: iint, rwo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o0: iint, rwo %o2: int[n], { e}, rwfo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o0: iint, rwo %o2: int[n], { e}, rwfo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o0: iint, rwo %o2: int[n], { e}, rwfo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o0: iint, rwo %o2: int[n], { e}, rwfo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o2: int[n], { e}, rwfo%o0: iint, rwo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o0: iint, rwo %o2: int[n], { e}, rwfo



graphs [29], and partition the control-flow graph into code regions
that are either cyclic (natural loops) or acyclic.

The method for generating wlps for non-conditional instruc-
tions is the same as those for generating weakest preconditions [9].
We compute the wlp of load and store instructions based on Mor-
ris’s general axiom of assignment [24], which provides a general
framework for computing weakest precondition for assignments to
pointer-typed variables. To compute the wlp for an acyclic code
region, the standard technique for verification generation is used.

To compute the wlp for a natural loop, we define W(0) as the
wlp generated by back-substituting the postcondition Q to be
proved until the entry of a loop is reached, i.e., W(0) = wlp(loop-
body, Q), and define W(i+1) as wlp(loop-body, W(i)). The wlp of

the loop is the formula∧i≥0W(i).

We use L(j) to denote∧j≥ i ≥ 0W(i). The induction-iteration

method attempts to find an L(j) that is both (i) true on entry to the
loop and (ii) a loop invariant (i.e., L(j) implies wlp(loop-body,
L(j))). Suzuki and Ishihata show that this can be established by
showing:

L(j) is true on entry to the loop, and (Inv.0(j))

L(j) ⊃ W(j+1) (Inv.1(j)).
Their argument runs as follows [49]:
1. From the assumption that L(j) implies W(j+1), we know that

∧ j≥ i≥ 0W(i) implies∧ j ≥ i ≥ 0W(i+1).

2. Next, we observe that∧j≥i≥0W(i+1) is equivalent to

wlp(loop-body, L(j))

∧j≥ i ≥ 0 W(i+1) =∧ j≥ i ≥ 0wlp(loop-body, W(i))

= wlp(loop-body,∧ j≥ i ≥ 0W(i)) = wlp(loop-body, L(j))

The induction iteration method, in essence, iterates the fol-
lowing steps: create the expression L(j) as the current candidate for
the loop invariant; generate VCs for (Inv.0(j)) and (Inv.1(j));
attempt to verify the VCs using a theorem prover. Figure 7 shows
the basic induction-iteration algorithm taken from Suzuki and Ishi-
hata (rewritten in pseudo code) [49].

The reader may be puzzled why the algorithm first tests for
inv.1(i-1), and then tests forinv.0(i). This is because the test
inv.0(i-1) that matches the test forinv.1(i-1) is performed in the
previous iteration. In the case of L(-1), inv.0(-1) holds vacuously

because L(-1)=∧-1 ≥ i ≥ 0W(i) = true.

We have made several enhancements to the basic induction-
iteration algorithm. The first enhancement is the ability to deal
with multiple loops. To ensure that the induction-iteration algo-
rithm will terminate in the presence of nested loops, we extended
the basic induction-iteration algorithm to treat an inner loop differ-
ently when trying to verifyInv.0. In the case of computing a wlp
for an inner loop due to the synthesis of a loop invariant for an
outer loop, instead of naively testing that W(i) of the inner loop is
true on entry to the loop, we record the current trial invariant L(j)
of the outer loop, and first try to verify that L(j) implies W(i).

Second, procedure calls complicate the induction-iteration
method in three ways: (i) handling a procedure call when perform-
ing a back-substitution, (ii) reaching the procedure entry before we
can prove or disprove a condition, and (iii) recursion. To handle
procedure calls during back-substitution, we simply walk through
the body of the callee as through it is inlined in the caller; this will
generate a wlp for the callee function with respect to the postcon-
dition that is propagated to the callsite. When we reach the entry of
a procedure, we check that the conditions are true at each callsite
by using these conditions as postconditions to be proven at each of
the caller. To simplify matters, our present system detects and
rejects recursive programs. In principle, we could use the induc-
tion-iteration method to synthesize invariant entry conditions for
recursive functions as we do for loops.

Third, certain conditionals in a loop can sometimes weaken
L(j) to such an extent that it is prevented from becoming a loop-
invariant. To address this problem, we strengthen L(j) by comput-
ing the disjunctive normal form of wlp(loop-body, W(i-1)), and try
each of its disjuncts as W(i) in turn. We rank the candidates
according to a simple heuristic and test the potential candidates for
W(i) using a breadth-first strategy.

Fourth, the breath-first strategy of the extended induction-iter-
ation algorithm also incorporates a technique calledgeneraliza-
tion, also introduced by Suzuki and Ishihata [49]. The
generalization of a formulaf is defined as “¬(elimination(¬f)).”
Elimination uses the Fourier-Motzkin variable-elimination method
to eliminate variables from the set of variables in¬f to generate a
simplified set of constraints that has the same integer solution asf.
If there are several resulting generalizations, then each of them in
turn is chosen to be the generalized formula.

Fifth, the conditionals in the program can cause the formula
under consideration to blow-up in size exponentially during VC
generation. To reduce this effect, back-substitution over a region is
performed in backwards topological order (with respect to the pro-
gram’s control-flow graph), and the formula at each junction point
is simplified. This strategy effectively controls the size of the for-
mulas considered, and ultimately the time that is spent in the theo-
rem prover.

Finally, to reduce the number of times the induction-iteration
algorithm is performed, we back-substitute all formulas to be
proven until they reach a loop entry. We partition the formulas into
groups that are made of comparable constituents, and invoke the
induction-iteration algorithm only for the strongest formulas in
each group.

1: Induction_Iteration() : SUCCESS | FAILURE {
2: i=0; Create formula W(0); //Try L(-1)
3: while (i < MAX_NUMBER_OF_ITERATIONS) {
4: switch (Theorem_prover((∧i-1 ≥ k ≥ 0W (k)) ⊃ W (i))) { //inv.1(i-1)
5: TRUE: return SUCCESS;
6: OTHERWISE:{ //Try L(i)
7: switch (Theorem_prover(wlp(<on-entry-to-loop>,W(i)))) { //inv.0(i)
8: TRUE: W(i+1)=wlp(loop-body, W(i));
9: i=i+1;
10: OTHERWISE: return FAILURE;
11: }
12: }
13:  }
14:}
15:}

Figure 7: The Basic Induction-Iteration Algorithm



5.2.2 Example
Here we illustrate how the induction-iteration method is applied in
our running example. The control-flow graph of the program is
shown in Figure 8. The instructions at lines 5 and 11 are replicated
to model the semantics of delayed branches. We use a single bool-
ean variableicc to model the SPARC condition code and label
each control-flow graph edge with the condition for that edge to be
taken. Below, we use the line number of an instruction to denote
the instruction, and a sequence of line numbers within square
brackets to represent a path.

To verify that “%g2< 4n” holds at line 7, we perform back-
substitution, starting with “%g2< 4n”. Back-substituting this con-
dition across line 6 produces “%g3< n”. Since the instruction at
line 6 is the entry of a natural loop, we attempt to synthesize a loop
invariant that implies “%g3 < n”.

We set W(0) to “%g3< n”. Since W(0) is not a tautology, we
need to verify that W(0) is true on entry to the loop and to create
the formula for W(1). The fact that W(0) is true on entry to the
loop can be shown by back-substituting W(0) along the path
[5’,4,3,2,1]. To create W(1), we perform back-substitution through
the loop body, starting with the formula “%g3< n”, until we reach
the loop entry again:

1. wlp([11’], “%g3 < n”) = “ %g3 < n”

2. wlp([11’,10], “%g3 < n”) = “ icc < 0 ⊃ %g3 < n”

3. wlp([10,9], “icc < 0 ⊃ %g3 < n”)
= “%g3< %o1⊃ %g3 < n”

4. wlp([8], “%g3< %o1⊃ %g3 < n”)
= “%g3+1 < %o1⊃ %g3+1 <n”

5. wlp([7,6], “%g3+1 < %o1⊃ %g3+1 <n”)
= “%g3+1 < %o1⊃ %g3+1 <n”

Thus, W(1) is the formula “%g3+1 < %o1⊃ %g3+1 <n”.

Unfortunately, W(0)⊃ W(1) is not a tautology. Instead of
continuing by creating W(2) etc., we strengthen W(1) using the
generalization technique mentioned in Section 5.2.1. The steps to
generalize W(1) are as follows: (i) negating “%g3+1 < %o1 ⊃
%g3+1 <n” produces “%g3+1 < %o1∧ %g3+1 ≥ n”; (ii) eliminat-
ing %g3produces “%o1> n”; (iii) negating “%o1> n” produces
“%o1≤ n”. Consequently, we set W(1) to be the generalized for-
mula “%o1≤ n”.

It is still the case that W(0)⊃ W(1) is not a tautology, but now
the formula that we create for W(2) (by another round of back-sub-
stitution) is “%o1≤ n”. (The variables%o1andn are not modified
in the loop body.) We now have that W(0)∧ W(1) implies W(2).

By this means, the loop invariant synthesized for line 6 is
“%g3< n ∧ %o1≤ n”. This invariant implies that “%g3< n” holds
at line 6, which in turn implies that “%g2 < 4n” holds at line 7.

5.2.3 Discussion
In this section, we address the scalability of the verification phase,
and discuss other potential improvements to the induction-iteration
method.

One major cost of the verification phase is from performing
the induction-iteration method, whose cost is determined by the
number of iterations that have to be performed before an invariant
is identified. The cost of iteration step of the induction-iteration
method is determined by the cost to perform VC generation and
invoking the theorem prover. These costs are ultimately deter-
mined by the characteristics of the untrusted code. From our expe-
rience, it seems to be sufficient to set the maximum allowable
number of iterations to three. The intuition behind this number is
as follows: the first iteration will incorporate the conditionals in the
loop into L(1), the second iteration will test if L(1) is already a
loop invariant, and no new information will be discovered beyond
the second iteration. The situation for the inner loops is better
when synthesizing loop invariants for an outer loop, since usually
the tests in the inner loops will not contribute to the proof of a con-
dition of an outer loop.

Besides the enhancements that were described in the previous
section, there are a few enhancements that can, in principle, be
made to our existing prototype:

• The first is to cache in the theorem prover: we can represent
formulas in a canonical form and use previous results when-
ever possible.

• The second is to do tabulation at function calls or at nodes
that have multiple incoming edges, and to reuse previous
results of VCgen.

• The third is to use more efficient algorithms for simple formu-
las. Several people have described methods that trade the gen-
erality of the constraint system for better efficiency. Bodikat
al [4] describe a method to eliminate array-bounds checks for
Java programs. Their method uses a restricted form of linear
constraints calleddifference constraintsthat can be solved
using an efficient graph-traversal algorithm on demand. Wag-
ner et al [53] have formulated the buffer overrun detection
problem asan integer constraint problemthat can be solved
in linear time in practice.

• Finally, it might be profitable to use other invariant-synthesis
methods in conjunction with induction iteration.

We have used the induction-iteration method to synthesize
loop invariants because it works well for linear constraints and is
totally mechanical. It is conceivable that we could use other tech-
niques, such as the heuristic methods introduced by Katz and
Manna [16] and Wegbreit [54], the difference equations method
introduced by Elspaset al [10], and abstract interpretation using
convex hulls [7].

The method described in [7] works forward on a program’s
control-flow graph. It has the potential to speed up the induction-
iteration method by pushing the facts down in the program’s con-
trol-flow graph. Simple experiments that we carried out demon-
strated substantial speedups in the induction-iteration method by

Figure 8: Induction Iteration: Example

6: sll %g3,2,%g2
7: ld [%o2+%g2],%g2
8: inc %g3
9: cmp %g3,%o1
10:bl 6

1: mov %o0,%o2
2: clr %o0
3: cmp %o0,%o1
4: bge 12

5’: clr %g3

11: add %o0,%g2,%o0

12: retl
13: nop

5: clr %g3

11’: add %o0,%g2,%o0

{ icc ≥ 0} { icc  < 0}

{icc < 0}{icc ≥ 0}



selectively pushing conditions involving array bounds down in the
program’s control-flow graph. The abstract-interpretation method
also addresses some of our current limitations such as inferring
bounds of local arrays or arrays in structures (see Section 6).

6 Initial Experience
We have implemented a prototype safety checker for SPARC
machine-language programs, and applied our safety checker to
several examples. The time to check these examples varies from
0.06 seconds to 14 seconds.

The examples include array sum, start-timer and stop-timer
code taken from Paradyn’s performance-instrumentation suite
[22], two versions of Btree traversal (one version compares keys
via a function call), hash-table lookup, a kernel extension that
implements a page-replacement policy [46], bubble sort, two ver-
sions of heap sort (one manually inlined version and one interpro-
cedural version), stack-smashing (example 9.b described in
Smith’s paper [43]),MD5Update of the MD5 Message-Digest
Algorithm [39], and Java_jPVM_addhosts of jPVM [15].
jPVM is a Java native interface to PVM for the Java platform. Java
Native Interface (JNI) is a native-programming interface that
allows Java code that runs inside a Java Virtual Machine to inter-
operate with applications and libraries written in other program-
ming languages, such as C, C++, and assembly [14]. In the jPVM
example, we verify that calls into JNI methods and PVM library
functions are safe, i.e., they obey the safety preconditions (see
Section 2). All examples are written in C and then compiled with
gcc -O  (version 2.7.2.3).

In our experiments, we were able to find a safety violation in
the example that implements a page-replacement policy—it
attempts to dereference a pointer that could be null—and we iden-
tified all array out-of-bounds violations in the stack-smashing
example. Figure 9 summarizes the time needed to verify each of
the examples on a 440MHz Sun Ultra 10 machine. The times are
divided into the times to perform typestate propagation, create
annotations and perform local verification, and perform global ver-
ification. It also characterizes the examples in terms of the number
of machine instructions, number of branches, number of loops
(total versus number of inner loops), number of calls (total versus
number of calls to trusted functions),3 and number of global safety

conditions. The time to check these examples ranges from about
0.06 seconds to 14 seconds.

Our current approach has three major limitations. First, if the
untrusted code uses local arrays, we may not be able to infer their
bounds. For example, for the stack-smashing and MD5Update pro-
grams, we have to annotate the stackframes for the functions that
use local arrays. Similarly, for structures that have multiple array-
typed fields, our analysis may not be able to find out which array a
pointer points to. To address this limitation, a forward pass such as
that described in Cousot and Halbwachs [7] could be used to prop-
agate the preconditions forward to find out information about the
bounds of local arrays and to disambiguate pointers that point to
arrays in structures.

Second, our analysis may lose precision due to array refer-
ences. Recall that we use a single abstract location to summarize
all elements of an array, and model a pointer to the array base (or
to an arbitrary array element) as a pointer that may point to the
summary location. Our analysis loses precision when we cannot
determine whether an assignment kills all elements of an array. For
example, our analysis reported that some actual parameters to the
host methods and functions are undefined in the jPVM example,
when they were in fact defined. We believe that dependence-analy-
sis techniques such as those used in parallelizing compilers can be
used to address this limitation.

Third, the type system described in this paper is too restrictive
in that it does not incorporate a notion of subtyping for structures
and pointers. This can cause the analysis to lose precision when
certifying programs written in an object-oriented style.

Our experience to date allows us to make the following obser-
vations:

• Certain compiler optimizations, such as loop-invariant code
motion and improved register-allocation algorithms, actually
make the task of safety checkingeasier. The memory-usage
analysis that is part of typestate checking can lose precision at
instructions that access memory (rather than registers). When
a better job of register allocation has been done, more precise
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Figure 9: Characteristics of the Examples and Performance Results

3. A trusted function is either a host function or a function that
we trust. We check that calls to a trusted function obey the
corresponding safety preconditions of the function.



typestate information will be recovered. Loop-invariant code
motion makes induction iteration more efficient by making
the loops smaller and simpler.

• Certain compiler optimizations, such as strength reduction
and optimizations to address-calculations,complicatethe task
of global verification because they hide relationships that can
be used by the induction-iteration method. Standard tech-
niques should allow us to overcome this limitation [7,29].

• There are several strategies that makes the induction-iteration
method more effective: First, because certain conditions in a
loop can pollute L(j), instead of using wlp(loop-body, W(i-1))
as W(i), we compute the disjunctive normal form of
wlp(loop-body, W(i-1)), and try each of its disjuncts as W(i)
in turn. Second, we rank the potential candidates according to
a simple heuristic, and test each candidate for W(i) using a
breadth-first strategy, rather than a depth-first one. Finally,
forward propagation of information about array bounds can
substantially reduce the time spent in the induction-iteration
method (it reduces the time needed to verify that a W(i) is true
on entry, and it eliminates the need to use generalization to
synthesize a loop invariant).

• Verifying an interprocedural version of an untrusted program
can take less time than verifying a manually inlined version
because the manually inlined version replicates the callee
functions and the global conditions in the callee functions.
This is a place where our analysis benefits from the procedure
abstraction.

7 Related Work
There are several projects investigating topics related to our safety-
checking technique. The approaches taken in these projects range
from statically identifying common programming errors, to stati-
cally ensuring type safety, to the run-time checking of certain secu-
rity properties.

The projects that are closest to ours are Proof-Carrying Code
(PCC) [32], the Touchstone Certifying Compiler [31] and Typed-
Assembly Language (TAL) [25,26,28]. Proof-Carrying Code
(PCC) has a code producer generate not only the code but also a
proof that the code is safe. Consequently, verification of the safety
of untrusted code can be carried out by a small proof checker.
Since manual generation of proofs is tedious and error-prone, a
certifying compiler automates the generation of PCC by having the
compiler generate code that carries proofs. Touchstone is a proto-
type certifying compiler that compiles a safe subset of C into
machine code that carries proofs of type safety.

Morrisett et al [25,26,28] introduced the notion of typed
assembly language (TAL). In their approach, type information
from a high-level program is incorporated into the representation
of the program in a platform-independent typed intermediate form,
and carried through a series of transformations down to the level of
the target code. The compiler can use the type information to per-
form sophisticated optimizations. Certain internal errors of a com-
piler can be detected by invoking a type-checker after each code
transformation. A compiler that uses typed assembly language cer-
tifies type safety by ensuring that a well-typed source program
always maps to a well-typed assembly program.

The most prominent difference between our approach and the
certifying compiler (or the TAL) approach is a philosophical one.
The certifying compiler approach enforces safety by preventing
“bad” things from being expressible in a source language. For
example, both the safe subset of C of the Touchstone compiler and

the Popcorn language for TALx86 [28] do not allow pointer arith-
metic, pointer casting, or explicit deallocation of memory. In con-
trast, we believe that safe code can be written in any language and
produced by any compiler, as long as nothing “bad” is said in the
code.

This philosophical difference has several implications. It
gives the code producer the freedom to choose any language
(including even “unsafe” languages such as C or assembly), and
the freedom to produce the code with an off-the-shelf compiler or
manually. It eliminates the dependence of safety on the correctness
of a compiler. As with PCC, our technique checks the safety of the
final product of the compiler. It leads to the decoupling of the
safety policy from the source language, which in turn, makes it
possible for safety checking to be performed with respect to an
extensible set of safety properties that are specified on the host
side.

The second important difference between our approach and
the certifying compiler (or TAL) approach is that the safety proper-
ties we enforce are based on the notation of typestate, which pro-
vides information at a finer granularity than types.

Finally, neither Touchstone nor the Popcorn compiler track
aliasing information. We have introduced an abstract storage
model and extended typestate checking to also track pointers. As a
result, the analysis we provide is more precise than that used in
Popcorn and Touchstone.

In addition to these high-level differences, there are a few
technical differences. It should be noted that our safety checker can
be viewed as a certifier that generates proofs by first recovering
type information that (may have) existed in the source-language
program (an embodiment of a suggestion made by Necula and Lee
[31, p. 342].) The approach used in our safety checker differs from
that used in the Touchstone compiler in the following respects:
First, Touchstone replaces the standard method for generating
VCs, in which formulas are pushed backwards through the pro-
gram, with a forward pass over the program that combines VC
generation with symbolic execution. In contrast, our system uses a
forward phase of typestate checking (which is a kind of symbolic
execution) followed by a fairly standard backward phase of VC
generation. The VC-generation phase is a backwards pass over the
program for the usual reason; the advantage of propagating infor-
mation backwards is that it avoids the existential quantifiers that
arise when formulas are pushed in the forward direction to gener-
ate strongest postconditions; in a forward VC-generation phase,
quantifiers accumulate—forcing one to work with larger and larger
formulas. Second, our safety-checking analysis mechanically syn-
thesizes loop invariants for bounds checking and alignment check-
ing, whereas Touchstone generates code that contains explicit
bounds checks and then removes those checks that it can prove to
be redundant.

Comparing with TAL, the type system of TAL is richer in the
sense that they model several language features that we have not
considered so far, including exceptions, type variables, and exis-
tential types. However, their type system does not support general
pointers into the stack; nor can stack and heap pointers be unified
so that a function taking a tuple argument can be passed either a
heap-allocated or stack-allocated tuple [27]. Furthermore, TALx86
introduce special macros for array subscripting and updating to
prevent an optimizer from rescheduling them. The macros expand
into code sequences that perform bound checks. We impose no
such restrictions. TAL is more restrictive than PCC. PCC suggests
that the relevant operational content of simple type systems may be
encoded using extensions to first-order predicate logic. Our type
system is closer in spirit to PCC, in that we provide a meta lan-



guage to describe types including size and alignment constraints.
Moreover, TAL achieve flow-sensitivity in a different way than we
do; they label different blocks of code as different functions, and
assign types to the registers at the level of basic blocks. We achieve
flow-sensitivity through more traditional dataflow-analysis tech-
niques. In this way we can use results from the pointer-analysis
community in a more straightforward way. Despite the differences,
it is interesting to note that if our safety checker were to be given
programs written in typed assembly language rather than in an
untyped machine language, less work would be required to recover
type information and to perform overload resolution (although we
would still have to propagate state and access information). This
also applies to Java bytecode [19], where type information is con-
tained in the bytecode instructions themselves.

A static debugger uses static analysis to find unsafe opera-
tions rather than to guarantee safety. Detlefset al [8] describe a
static checker for common programming errors, such as array
index out-of-bounds, null-pointer dereferencing, and synchroniza-
tion errors (in multi-threaded programs). In common with our
approach, their analysis makes use of linear constraints, automati-
cally synthesizes loop-invariants to perform bounds checking, and
is parameterized by a policy specification. However, their safety-
checking analysis works on source-language programs and also
makes use of analyses that are neither sound nor complete. In their
policy specifications, user-suppliedMODIFIES lists (specifying
which variables of a procedure can be modified) offer a certain
degree of access control; our access policies are given in terms of
regions, categories, and access permissions, which is a more gen-
eral mechanism.

Leroy and Rouaix [18] have proposed a theoretical model for
systematically placing type-based run-time checks into interface
routines of the host code. Their technique differs from ours in sev-
eral respects: it is dynamic, it checks the host rather than the
untrusted code, and it requires that the source of the host API be
available. Furthermore, safety requirements are specified by enu-
merating a set of predetermined sensitive locations and invariants
on these locations, whereas our model of a safety policy is more
general. Finally, they perform type checking, whereas we perform
typestate checking.

8 Limitations
The main limitation of our technique is that it only can enforce
safety properties that are expressible using typestates and linear
constraints. This excludes all liveness properties and some safety
properties.

Our analysis uses flow-sensitive interprocedural analysis to
propagate typestate information. The verification phase is fairly
costly due to the need to synthesize loop invariants to prove the
safety predicates. The scalability of our analysis remains to be
evaluated with bigger applications.

Like all static techniques, our technique is incomplete. First,
the analysis loses precision when handling array references,
because we use a single abstract location to summarize all ele-
ments of the array. Second, the existing prototype cannot infer the
bounds of local arrays. We have to annotate the stackframes of
functions that use local arrays. Third, the induction-iteration
method itself is incomplete even for linear constraints. The induc-
tion-iteration method cannot prove the correctness of array
accesses in a loop if correctness depends on some data whose val-
ues are set before the execution of the loop. One such example is
the use of a sentinel at the end of the array to speed up a sequential
search [49]. The generalization capabilities of the system may fall

short for many problems, even though we only care about memory
safety: The induction-iteration method could fail in cases that a
loop invariant must be strengthened to the point where we end up
verifying a large part of the partial correctness of the algorithm.
Fourth, our type system does not incorporate a notion of subtyping
for structures and pointers. This can hurt us when certifying pro-
grams written in an object-oriented style. In principle, we could
define the meet operation for structures in terms of physical sub-
types [42] (i.e., if t1 ≤ t2 then struct t2 is an initial prefix of struct t1)
and define the meet of two pointer types t1 ptr and t2 ptr to be
(t1  t2 ) ptr ; however, the typestate-checking algorithm would
have to be extended to track which pointers are mutable. (See [1]
for a discussion of subtyping in the presence of mutable pointers.)
Finally, our analysis is not able to deal with certain unconventional
usages of operations, such as swapping two non-integer values by
means of “exclusive or” operations.

Despite these limitations, the method shows some promise.
Its limitations represent potential research opportunities, and we
believe that future research will make the analysis more precise
and efficient, and continued engineering can make the technique
practical for larger programs.
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