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Abstrac t  
This p a p e r  d e s c r i b e s  the  f u n d a m e n t a l s  of the  X-TREE Opera t ing  S y s t e m  
(XOS), a s y s t e m  d e v e l o p e d  to inves t iga te  the  e f fec ts  of the  X-TREE a rch i t ec -  
t u r e  on o p e r a t i n g  s y s t e m  design. It out l ines  the  goals and c o n s t r a i n t s  of 
the  p r o j e c t  and d e s c r i b e s  the  m a j o r  f e a t u r e s  and m o d u l e s  of XOS. Two con- 
c e p t s  a re  of spec ia l  in te res t :  The first  is d e m a n d  paging a c r o s s  the  n e t w o r k  
of nodes  and the  s e c o n d  is s e p a r a t i o n  of the  global  o b j e c t  space  and  the  
d i r e c t o r y  s t r u c t u r e  u s e d  to r e f e r e n c e  it. Weaknesses  in the  m o d e l  a re  dis- 
c u s s e d  along with d i r ec t ions  for f u t u r e  r e s e a r c h .  

1. INTRODUCTION 

X-TREE is an a r c h i t e c t u r e  for  the  des ign and  c o n s t r u c t i o n  of d i s t r i bu t ed ,  
m u l t i p r o c e s s o r  c o m p u t e r  s y s t e m s .  Its m a j o r  in ten t  is to provide  a m o d e l  for  
building powerful ,  low-cost  s y s t e m s  c o m p r i s e d  of m a n y  iden t ica l  m i c r o p r o c e s s o r  
chips  (known in p rev ious  p a p e r s  as monol i th ic  m i c r o p r o c e s s o r s )  [Deep78, 
Ditz80]. 

It was r e c o g n i z e d  ea r ly  in the  X-TREE p r o j e c t  t ha t  it would no t  be  suff ic ient  
to cons ide r  only p a p e r  ope ra t ing  s y s t e m s  des igns  when a t t e m p t i n g  to eva lua t e  
the  feas ib i l i ty  of the  X-TREE a r c h i t e c t u r e .  The re fo re  a p r o j e c t  was u n d e r t a k e n  
f rom April until  D e c e m b e r  in 1979 to wri te  an a c t u a l  s y s t e m  tha t  could  run  
u n d e r  X-TREE. At the  t ime,  the  h a r d w a r e  was la rge ly  hypo the t i ca l ,  which gave us 
b o t h  an advan tage  and a p rob lem.  On the  one hand  we could  have g r e a t  
inf luence  on the  even tua l  design. On the  o ther ,  we had  no h a r d w a r e  to run  on. 
To solve this p rob lem,  we c o n s t r u c t e d  a s i m u l a t o r  running u n d e r  UNIX on a VAX 
11/780.  The s imu la to r  of the  h a r d w a r e  was b o t h  ad hoc and slow, bu t  it gave us 
an o p p o r t u n i t y  to t r y  ou t  our  ideas  wi thout  a rea l  X-TREE. 

The X-TREE Opera t ing  S y s t e m  (XOS) is a gene ra l  p u r p o s e  ope ra t ing  s y s t e m  
for X-TREE. Our m a j o r  goals were  to d i scove r  the  a s p e c t s  of the  a r c h i t e c t u r e  t h a t  
inf luence  the  des ign of a d i s t r i b u t e d  ope ra t ing  s y s t e m  and to s u g g e s t  poss ib le  
f e a t u r e s  for the  X-TREE tha t  would aid an ope ra t ing  sys t em.  

1.1. The X-TRZE A r c h i t e c t u r e  

While the  de ta i l s  of the  a r c h i t e c t u r e  are  r a t h e r  c o m p l i c a t e d  [Pres80] ,  only 
a few are  r e l evan t  to our  d i scuss ion  and n e e d  be  p r e s e n t e d  here .  They are: 

Topology: Figure  1.1 dep ic t s  a poss ib le  X-TREE s y s t e m .  It is i m p o r t a n t  to 
no te  t h a t  all dev ices  are c o n n e c t e d  to leaf  nodes .  This was a m a j o r  inf luence  in 
the  way the  opera t ing  s y s t e m  was even tua l ly  divided. 

This study was sponsored in par t  by the Joint Services Electronics Program, Contract 
F44620-78-C-0100 and by the Nationa3 Science Foundation under Grant No. MCS 7807291. 
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CoTrz~n,u~zictztions Herd~ucLre: X-TREE has a sophisticated c o m m u n i c a t i o n s  
s y s t e m  i m p l e m e n t e d  in ha rdware .  Points  s ignif icant  to the  ope ra t i ng  s y s t e m  
are: 

1) Multiple s t r e a m s  of m e s s a g e s  b e t w e e n  nodes  a re  r o u t e d  and  m a i n t a i n e d  
c o m p l e t e l y  by ha rdware .  

2) The only d a t a  n e e d e d  by  the  h a r d w a r e  to rou t e  the  i n fo rma t ion  is the  node 
a d d r e s s  of the  des t ina t ion .  Node a d d r e s s e s  a re  of var iable  l eng th  to p e r m i t  
an e xpa nda b l e  a dd r e s s  space.  Refer  to the  node  n u m b e r s  in Figure  1.1. 

C P U f l e z i b ~ y :  An X-TREE CPU is m i c r o p r o g r a m m e d .  The re fo re  we had the  
abil i ty to choose  d a t a  s t r u c t u r e s  or address ing  m e c h a n i s m s  t h a t  were  appropr i -  
ate.  

Node ~ern.o~j size: Each node has on the order of 64K bytes of private 
memory. Part of the memory contains the local kernel code, and part of it is 
managed as a cache for the data and capabilities being referenced by processes 
on that node. This placed a restriction on the maximum kernel size of approxi- 
mately 32K bytes. 

1.2. Speci6c Goals 

As we have said above, our major goal was an operating system design for a 
general purpose system to investigate aspects of the X-TREE architecture. Addi- 
tional goals of the design were: 

Resource shgTing: Since this was to be a distributed, general purpose 
operating system it had to allow processes anywhere in the tree to share infor- 
mation. 

Effecf~ve use of the connecf~n tree: The main reason for many of the archi- 
tectural decisions in X-TREE was to reduce traffic in the tree (especially the deci- 
sion on topology). Therefore one of our major goals was to minimize the traffic 
due to the operating system. 

Process Migration: As a step toward reducing traffic caused by user 
processes, we added the requirement that processes be able to migrate across 
the system to nodes which would minimize traffic in the tree. 
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The r e s t  of this  p a p e r  d e s c r i b e s  t he  X0S s y s t e m  and  how it a t t e m p t s  to 
m e e t  t h e s e  c r i te r ia .  

2. SYSTEM STRUCTURE 

XOS is m a d e  up of five ma jo r  m o d u l e s  (see f igure 2.1): 

1) the  Microcoded  Kernel  (MK) 

2) the  Capabil i ty Manager  (CM) 

3) the  Object  Manager  (0M) 

4) the  D i rec to ry  S y s t e m  (DS) 

5) the  C o m m a n d  I n t e r p r e t e r  (CI) 

% 
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Figure 2.1 

to network 

We chose  to i m p l e m e n t  t he se  p a r t i c u l a r  modu le s  in o r d e r  to wri te  a c o m p l e t e  
s y s t e m  t h a t  would cover  the  full s p e c t r u m  of ac t iv i ty  f r o m  u s e r  login to p rocess  
execut ion .  We had  l i t t le des i re  to offer this to a u s e r  c o m m u n i t y  s ince the  
ac tua l  h a r d w a r e  was not  y e t  available. 

The lowest level of the  s y s t e m  is i m p l e m e n t e d  in the  m i c r o c o d e d  k e r n e l  
(MK). The MK serves  as the  d i r ec t  i n t e r f a c e  to the  p r o c e s s o r  and provides  t he  
r e s t  of the  s y s t e m  with an a b s t r a c t  m a c h i n e  which offers m e m o r y  m a n a g e m e n t ,  
c o m m u n i c a t i o n s ,  and schedul ing .  

Above the  MK are  two modu le s  t ha t  work in close coopera t ion .  The Object 
Manager  (0M) is cal led upon  to handle  all page faults,  resolving t h e m  by re t r i ev-  
ing the  r e q u e s t e d  page.  The Capabil i ty Manager  (CM) c h e c k s  acces s  to objec ts  
and  p e r f o r m s  all bit  level ope ra t i ons  on capabil i t ies .  The 0M and CM of ten  send  
m e s s a g e s  to one a n o t h e r  s ince e a c h  p e r f o r m s  a func t ion  the  o the r  needs ,  the  
0M fe tch ing  pages  of C-lists for the  CM and the  CM resolving a c c e s s  r ights  for the  
OM. Both the  CM and 0M exist  in the  k e r n e l  a d d r e s s  space  since t h e y  n e e d  
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access into the representation of objects and capabilities. 

The only user processes implemented are the Directory System (DS) and 
Command Interpreter (CI). These have no privileged commands and are there- 
fore full-fledged user programs. The DS is a library of user routines used to pro- 
vide an access structure to the object space. The CI is a terminal interface pro- 
cess used to test the system. 

The remaining sections will describe these structures (except for the CI) 
and the concepts important to them. 

3. ADDRESSING 

X-TREE is an object-based system, with capabilities used for addressing 
[Fabr74]. While capabilities in X-TREE are similar to capabilities in previous sys- 
tems [Wulf74, Need77], various extensions and changes have been made to work 
within the X-TREE architecture. 

3.1. Objects 

The basic addressable unit of X-TREE is the object. Data, programs, 
processes, directories, files, and ports are all types of objects, and the actions of 
sending a message, starting a process, accessing a file, or storing data all involve 
operations on an object. 

The address space of X-TREE is a virtual object space. All objects (except 
ports and processes) reside at the leaf nodes of the tree, and all processes in 
the tree have equal access. This is similar to the virtual segment space in Mul- 
tics [Bens72], in that Multics segments form a uniform address space, poten- 
tially available to all processes. In Multics, a segment may be in main memory, 
on a swapping device, or on secondary storage. In the X-TREE system, an object 
may reside on secondary storage (at the leaf nodes of the tree), or in a 
processor's (internal node) local memory. Processes residing in any node of the 
tree can address any object in the system, independent of their logical or physi- 
cal locations. XOS maintains its segments in a uniform object space, allowing 
organizational groupings such as directories to be provided by systems running 
above the operating system kernel (i.e. the Directory System). 

3.2. Capabilities 

All addressing of objects in X-TREE is performed via eapab~s [Fabr74]. A 
capability is the unforgeable key that is required to access an object. It may 
reside only in objects. Capabilities serve three main functions: addressing, data 
abstraction, and protection. A capability consists of a triple: 

<address> <access rights> <object type> 

Except for the address field, the capability in XOS is almost identical to those in 
HYDRA [Cohe75]. Therefore we will focus only on the address portion and refer 
the reader to the HYDRA papers for a complete description of capabilities. 

3.3. Addresses 

The address field of a capability defines the unique address of an object. 
The address is in two parts: 

<global node address> <local node address> 
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The global node address is t h e  a d d r e s s  of t h e  p a r t i c u l a r  n o d e  of t h e  t r e e  on 
w h i c h  t h e  o b j e c t  r e s i d e s ,  a n d  t h e  local node address i d e n t i f i e s  t he  o b j e c t  wi th in  
t h e  n o d e .  One of t h e  b a s i c  goa l s  of X-TREE is to  avo id  t h e  l i m i t e d  a d d r e s s i n g  
r a n g e  of m a n y  p r e v i o u s  a r c h i t e c t u r e s .  O b j e c t  and  n o d e  a d d r e s s e s  a r e  b o t h  var i -  
ab l e  l eng th ;  t h e r e  a r e  no  i n t r i n s i c  l imi t s  on e i t h e r  t h e  size of t h e  t r e e ,  o r  t h e  
n u m b e r  of o b j e c t s  loca l  to  a s ingle  n o d e .  In p r inc ip l e ,  t h e  a d d r e s s  s p a c e  is 
i nde f in i t e l y  e x p a n d a b l e .  

A g loba l  a d d r e s s ,  w h i c h  iden t i f i e s  a n o d e  wi th in  t he  t r e e ,  is e n c o d e d  in t h e  
s t a n d a r d  X-TREE n o t a t i o n  t h a t  is u s e d  b y  t h e  m e s s a g e  r o u t i n g  h a r d w a r e  [Sequ78] .  
S ince  all s t a n d a r d  o b j e c t s  r e s i d e  in t h e  l e a v e s  of t h e  t r e e ,  t h e i r  g loba l  a d d r e s s e s  
a lways  n a m e  l ea f  n o d e s .  F o r  p o r t s  a n d  p r o c e s s e s ,  t h e  g l o b a l  a d d r e s s  n a m e s  t h e  
n o d e  in wh ich  t h e  p r o c e s s  or  p o r t  was  c r e a t e d .  

It  is i m p o r t a n t  to  n o t e  t h a t  t h e  g loba l  a d d r e s s  is t h e  a d d r e s s  of a phys ical  
n o d e  wi th in  t h e  t r e e .  This m e a n s  t h a t  a g iven  o b j e c t  m u s t  r e s i d e  on a p a r t i c u l a r  
n o d e  (e.g. ,  a p a r t i c u l a r  d i sk  d r ive  or  s e t  of d i sk  d r ives ) .  The c a s e  w h e r e  a s ec -  
t i on  of t h e  t r e e  fails and  d a t a  m u s t  b e  m o v e d  (e.g. ,  m o u n t e d  on a d i f f e r e n t  l ea f  
n o d e ' s  d i sk  dr ive)  c a n n o t  b e  h a n d l e d  b y  t he  c u r r e n t  s t r u c t u r e .  

3.4. L o c a l  a d d r e s s  t r a n s l a t i o n  

E a c h  n o d e  ha s  on  t he  o r d e r  of 64K b y t e s  of loca l  m e m o r y .  P a r t  of t h e  
m e m o r y  c o n t a i n s  k e r n e l  code ,  a n d  p a r t  of i t  is m a n a g e d  as a c a c h e  for  t h e  d a t a  
a n d  c a p a b i l i t i e s  be ing  r e f e r e n c e d  b y  the  p r o c e s s e s  on t h a t  node .  

c-list 
current offset for 
domain capability page # 

OATB 

access rights local page 
frame # 

Figure 3.1 

E a c h  n o d e  m u s t  k e e p  a l is t  of p a g e s  c u r r e n t l y  r e s i d i n g  in t h e  l oca l  m e m o r y ,  
a n d  t he  o b j e c t s  to  w h i c h  t h e y  be l ong .  S ince  e a c h  c a p a b i l i t y  a d d r e s s  is v a r i a b l e  
length, and on each data or capability reference the page cache must be 
searched, hardware support is provided to increase efficiency. Each capability 
reference is actually an index operation (offset) into the c-list for the current 
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d o m a i n  (see  PW0 d e s c r i p t i o n  in s e c t i o n  4). The re  is an  a s soc ia t ive  m e m o r y  
(ca l led  the  Object  Addre s s  T rans l a t i on  Buffer,  or  0ATB [McCr80]) thafi t r a n s l a t e s  
the  c u r r e n t  dom a in ,  c-list  offset  for  fihe capabi l i ty ,  and  page  n u m b e r  ( f rom t h e  
offset  p o r t i o n  of the  a d d r e s s )  to t h e  a c c e s s  r igh t s  and  local  page  f r a m e  n u m b e r .  
This is i l l u s t r a t e d  in f igure  3.1. 

3.5. Pre--fetching and forwarding 

Objects residing at the leaf nodes are stored on mass storage devices such 
as disk. It is the responsibility of the Object Manager (0M) to access pages from 
disk and transfer them to the appropriate node. When a request for a page of an 
object originates from a node in the tree, the request is sent to an agent for the 
OM residing in that node. The page request is then forwarded to the proper leaf 
node where the 0M accesses the page and sends it to the requesting node. 

The 0M attempts to optimize disk accesses by pre-fetching pages. Different 
pre-fetching strategies are used depending on the type of access. For example, 
access to an object containing executable code would typically use a working set 
organization [DennS0], while access through a sequential file would always 
attempt Lo have the next page available. The proper strategy is selected by exa- 
mining an history of accesses. 

For synchronization and shared access when an access request is made (at 
the leaf node) to a shared page whose latest version is not currently resident at 
the leaf node, the request is forwarded to the node that actually has the page. 
The pages is then sent to the requesting node. Each time the latest version of 
the page moves to another node, a message is sent to the leaf node that is the 
home for that page, notifying it of the new location. If a request is forwarded to 
a node that no longer has the page, the request is forwarded on to the node that 
does have the page. After a certain number of forwardings, the request is 
returned to the leaf node. 

It is important to note that the 0M that is resident on each node is not the 
same. Non-leaf nodes contain only an agent 0M which sends its requests to the 
0M's on the leaf nodes conLaining the secondary storage devices. This greatly 
decreases the size of the kernel in non-leaf nodes. 

3.6. Structure of addressing an object 

Revocation of access to an object once a capability has been issued has 
been a problem in previous capability-based systems. A refinement of this prob- 
lem is the ability to change (reduce or increase) the access rights to an object 
after the capability for that object has been distributed. One solution to this 
problem is to use a resource manager. Each reference to some type of object is 
through this resource manager. It is up to the manager to decide whether a 
given access request should be honored. Using this organization, complex cri- 
teria may be used. A drawback of this approach is that for simple accesses, the 
resource manager may be much too slow. A different solution to the revocation 
problem was proposed by Redell [Rede74]. This method was applied in X0S as 
follows. 

X-TREE capabilities come in two forms: direct and indirect. Each object has, 
as part of its structure, an indirect field. This field consists of a special capabil- 
ity associated with the object. A direct capability ignores the indirect field, and 
behaves as described previously. An indirect capability addresses the object 
through the Capability stored in the indirect field. It is possible then, to invali- 
date the indirect field of an object and thereby revoking access to anyone with 
an indirect capability for that object. The access rights of the capability in the 
indirect field may be modified causing the access rights of anyone with an 
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i n d i r e c t  c a p a b i l i t y  to  be  c h a n g e d .  If t h e  i n d i r e c t  f ield is s u b s t i t u t e d  wi th  a c a p a -  
b i l i ty  for a n o t h e r  ob jec t ,  th i s  a c t s  as a r e n a m i n g  func t i on .  

4. PROCESSES 

4.1. P r o c e s s e s  and Messages  
XOS uses  t h e  p a r a d i g m  of p r o c e s s e s  c o m m u n i c a t i n g  via m e s s a g e s  a n d  m e s -  

sage  s t r e a m s .  A p r o c e s s  ex i s t s  on on ly  one p r o c e s s o r  a t  a t i m e  a l t h o u g h  it m a y  
m i g r a t e  f r o m  one p r o c e s s o r  to  a n o t h e r  du r ing  i ts  e x i s t e n c e .  The p r o c e s s  is 
d e s c r i b e d  in i ts  e n t i r e t y  by  the  P r o c e s s  Work Object ,  d e f i n e d  below. The s a m e  
t y p e s  of c o m m u n i c a t i o n s  m e c h a n i s m s  a re  u s e d  b o t h  by  p r o c e s s e s  for  c o m m u n i -  
c a t i o n s  a n d  b y  the  d isk  s y s t e m  for pag ing  t ra f f ic .  As m e n t i o n e d  above,  all da t a ,  
i n s t r u c t i o n ,  a n d  dev ice  a c c e s s e s  a r e  t r e a t e d  as o b j e c t  a c c e s s e s  a n d  t h e r e f o r e  
use  t he  s a m e  pag ing  m e c h a n i s m .  

4.2. Process  Work Object ( 1 ~ 0 )  
The PWO c o n t a i n s  all i n f o r m a t i o n  for  def in ing  an  o b j e c t  i n c l u d i n g  s t a c k  

pointers and registers. A single capability (pointing to the PWO) describes a pro- 
cess. There are two reasons for this compact representation. One is to provide 
an object understood by the processor that can be used to provide fast context 
switches (similar to the VAX's System Control Block [DEC78]). The other reason 
is to facilitate the migration of processes. The act of swapping the PW0 to disk 
and then back up to another node (or directly to the other node) is sufficient to 
migrate the process to another processor. 

Like other objects, the PW0 contains both a data part and a c-list. This is 
necessary since the program counter (PC), the current frame, and execution 
stack all are made up of a capability section and a data section. For the PC, the 
capability points to the current program object and the data part is the offset 
into the object of the current instruction. 

Figure 4.1 depicts the PW0. The beginning of the data part contains: 

• 8 3Z-bit general purpose registers 

• the offset to the top of the data part of the execution stack 

• the offset to the top of the capability part of the execution stack 

• the offset to the beginning of the data part of the current routine frame 

• the offset to the beginning of the capability part of the current routine 
f r a m e  

• the offset into the current program object of the current instruction 

The first capability in the c-list is that of the current program object. These 
locations are actually shadows of physical registers resident in the processor. 
Whenever a PW0 is written out, these shadows are filled in by the processor 
microcode with the values of the corresponding registers. 

Starting a process is performed by loading the process pointer (PP) with 
the capability for its PW0. The microcode then loads the registers from the sha- 
dows. The actual loading of the PP is performed by the dispatching hardware, 
which is described in the scheduling section. 

4.S. Inter-Process Communication (IPC) 

Communication in X0S is similar to DEMOS [Bask76]. It is message-based, 
unidirectional, and capability accessed. Remote and local communication 
appear the same to processes. 
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PROCESS WORK OBJECT 
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Figure 4.1 

AH messages are sent to a special object called a port. Ports are owned by 
processes. When a process wishes to receive messages it creates a port object 
and passes send capabilities for that port to other processes. It can do this 
either by saving the capabilities in commonly accessible objects or by handing 
them off to a switchboard process with whom every process can communicate. 
If two-way communications are to be established, the other process can send 
back a port capability with which to talk. The actual port object exists in the 
global space and contains the node location of the process that created the port. 

Messages contain both data and capabilities. This allows the transfer of 
capabilities between processes. Messages can be sent either in datagrarn or vir- 
tual circuit mode. The receiver has no idea in which mode the messages are 
being sent. ~rtual circuits provide sequenced data streams with routing per- 
formed only once for the whole stream. A process may set up sequenced com- 
munications by sandwiching the message stream between two special system 
calls which open (set-up) and close (tear-down) a virtual circuit. 

Remote process to process communication corresponds directly to physical 
c i r cu i t s .  I~rtual channels c o m p r i s e  a u n i - d i r e c t i o n a l  m e s s a g e  s t r e a m  t r a v e l i n g  
over  a p h y s i c a l  c i r cu i t ,  wi th  a r e t u r n  s t r e a m  in a n o t h e r  p h y s i c a l  c i r c u i t  p rov id -  
ing a c k n o w l e d g m e n t s  for  t h e  m e s s a g e s .  S o f t w a r e  is u s e d  to  g u a r a n t e e  s e q u e n -  
t i a l i t y  a n d  to  m a k e  c i r c u i t  t i m e - o u t s  invis ible  to  t h e  p r o c e s s e s .  When a c i r c u i t  
t i m e s  out ,  a spec i a l  Lear -down m e s s a g e  is s e n t  by  t h e  c o m m u n i c a t i o n s  s o f t w a r e  
to  f r ee  t h e  c i r cu i t .  Datagrarrts are  m e s s a g e s  e n v e l o p e d  by  s e t - u p  a n d  t e a r - d o w n  
m e s s a g e s .  Again a r e t u r n  p a t h  is p r o v i d e d  for  a c k n o w l e d g e s .  T i m e - o u t s  a r e  n o t  
a f a c t o r  s i n c e  a Lear -down follows t h e  m e s s a g e .  P r o t o c o l s  in t h e  virtual  circuit 
case  a r e  n e g a t i v e  a c k n o w l e d g e .  In t h e  c a s e  of datagrarns e v e r y  m e s s a g e  m u s t  
be a c k n o w l e d g e d .  
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S i n c e  t h e  n u m b e r  of p o s s i b l e  p h y s i c a l  c o n n e c t i o n s  is f inite,  c o m m u n i c a t i o n s  
m a y  b e c o m e  s a t u r a t e d  d e s p i t e  t h e  ava i l ab i l i t y  of t i m e - o u t  t e a r - d o w n s .  A S t a t i s t -  
ical  T ime-d iv i s ion  Mul t ip lex  (STDM) c h a n n e l  is r e s e r v e d  in e a c h  n o d e  to  al low 
m e s s a g e  flow in t h e  c a s e  w h e r e  t he  c h a n n e l s  b e c o m e  s a t u r a t e d .  By c o n v e n t i o n ,  
on ly  d a t a g r a m s  a r e  s e n t  ove r  th is  c h a n n e l .  

4.4.  P r o c e s s  S c h e d u l i n g  

XOS p r o c e s s  s c h e d u l i n g  is v e r y  p r imi t ive ,  dea l ing  on ly  wi th  a p r i o r i t y  m i c r o -  
c o d e d  s c h e d u l e r .  All p r o c e s s e s  a r e  a l lowed  to  r u n  un t i l  e i t h e r  t h e y  c o m p l e t e ,  
t h e y  b l o c k  awai t ing  r e s o u r c e s ,  o r  a h i g h e r  p r i o r i t y  p r o c e s s  p r e e m p t s .  This s im-  
p le  s c h e m e  is fe l t  to  be  su f f i c i en t  s i n c e  t h e  e x p e c t e d  n u m b e r  of p r o c e s s e s  p e r  
n o d e  is s m a l l  - on t h e  o r d e r  of t h r e e  or  four .  

The k e r n e l  m i c r o c o d e  i m p l e m e n t s  i n s t r u c t i o n s  for  l inking and  un l ink ing  
p r o c e s s e s  on B p r i o r i t y  levels .  The p r o c e s s e s  r u n  r o u n d  r o b i n  a t  e a c h  level ,  e a c h  
r u n n i n g  unt i l  it b l o c k s .  The h i g h e s t  p r i o r i t y  p r o c e s s  a lways  r u n s .  The p r i o r i t y  
q u e u e s  a r e  l i n k e d  l is ts ,  e a c h  e l e m e n t  c o n t a i n i n g  a p o i n t e r  to  a PWO r e s i d e n t  in 
the  n o d e ' s  m e m o r y .  

4.5.  P r o c e s s  Migrat ion  

One of XOS's o b j e c t i v e s  was  to  u n d e r t a k e  i n v e s t i g a t i o n s  of p r o c e s s  m i g r a -  
t ion  f r o m  n o d e  to  n o d e  in t h e  s y s t e m .  P r o c e s s  m i g r a t i o n  c o u l d  b e  u s e d  in 
a t t e m p t i n g  to  d y n a m i c a l l y  m o v e  p r o c e s s e s  c l o s e r  to  i ts  d a t a  in o r d e r  to  r e d u c e  
m e s s a g e  t raf f ic .  To f a c i l i t a t e  p r o c e s s  m i g r a t i o n ,  t h e  r e p r e s e n t a t i o n  of a p r o c e s s  
( i ts  s t a t e )  was  d e s i g n e d  to  b e  eas i ly  t r a n s p o r t e d  f r o m  one  p r o c e s s o r  to  a n o t h e r .  
A p r o c e s s  c a n  b e  c o m p l e t e l y  r e p r e s e n t e d  b y  i ts  PWO. S ince  t h e  PWO is an  
o b j e c t ,  it c a n  b e  m o v e d  b e t w e e n  p r o c e s s o r s ,  t h e r e b y  m o v i n g  t h e  p r o c e s s  to  
a n o t h e r  node .  The p r o b l e m  is m o r e  c o m p l e x  w h e n  p o r t  o b j e c t s  a r e  involved.  
When a p r o c e s s  m o v e s ,  all p r o c e s s e s  c o m m u n i c a t i n g  wi th  i t  a r e  now p o i n t i n g  to  
t he  old node .  However ,  in XOS, all s u c h  p o i n t e r s  a r e  t r e a t e d  as h in ts .  ]f a m e s -  
sage  s e n d  a r r i ve s  a t  t h e  wrong  node ,  a s p e c i a l  n e g a t i v e  a c k n o w l e d g e  is s e n t  to  
the  s e n d e r .  The s e n d i n g  n o d e ' s  k e r n e l  t h e n  r e t r i e v e s  t h e  a c t u a l  l o c a t i o n  of t h e  
p o r t  b y  r e a d i n g  t h e  p o r t  o b j e c t  i tself ,  a c o p y  of wh ich  is k e p t  on disk.  Af te r  ge t -  
t ing  t he  new  h in t  i t  t r i e s  t he  s e n d  again.  This p r o c e s s  c o n t i n u e s  un t i l  t h e  m e s -  
sage  c a t c h e s  up  wi th  t h e  rov ing  p r o c e s s .  

5. DIRECTORY SYSTEM 

The X0S D i r e c t o r y  S y s t e m  [Mi1179] is i n c l u d e d  in t h e  X0S d e s i g n  for  a 
n u m b e r  of r e a s o n s .  Fi rs t ,  i t  is an e x a m p l e  of a u s e r - l e v e l  ( n o n - k e r n e l )  p r o t e c t e d  
s u b s y s t e m .  This p r o v i d e d  an  a p p l i c a t i o n  to  t e s t  t h e  low-level  p a r t s  of t h e  
o p e r a t i n g  s y s t e m .  Second ,  t h e  D i r e c t o r y  S y s t e m  s u p p l i e d  a n a m e  m a p p i n g  
m e c h a n i s m .  And last ,  t h e  D i r e c t o r y  S y s t e m  p r o v i d e d  a d a t a  o r g a n i z a t i o n  faci l-  
i ty. 

5.1. D irec tory  S y s t e m  as a n o n - u n i q u e ,  u s e r  s u b s y s t e m .  

The DS is an  e x a m p l e  of a u se r - l eve l ,  p r o t e c t e d  s u b s y s t e m .  O p e r a t i o n s  on 
o b j e c t s  of t y p e  directory a r e  c o n t r o l  b y  t he  DS. It s h o u l d  b e  n o t e d  t h a t  t h e  DS is 
a "non- f i l e  s y s t e m " .  A d i r e c t o r y  is m e r e l y  a l i s t  of c a p a b i l i t i e s  fo r  s o m e  o b j e c t s ,  
and  any  o b j e c t  w h o s e  c a p a b i l i t y  is c o n t a i n e d  in a d i r e c t o r y  is t e r m e d  afile. The 
d i r e c t o r y  s y s t e m  only  p r o v i d e s  a c c e s s  c o n t r o l  to  t h e  c a p a b i l i t i e s  for  files; n o t  to  
t he  files t h e m s e l v e s .  T h e r e  is no  c o n c e p t  of o p e n i n g  or  c los ing  a file. This c o u l d  
be  bu i l t  as  a n o t h e r  s u b s y s t e m  wh ich  m a k e s  u s e  of t h e  DS. 
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5.2. Directory structures as a forest 

A capability for a directory object might be contained in some other 
directory-type object. This forms a s~ubclirectorpj structure. Access to subdirec- 
tories and files in subdirectories is as in MULTICS or UNIX [Salt74, Rite78]. It is 
possible to build directory structures that form arbitrary directed graphs, but 
this is not desirable for maintenance purposes, and so is prevented. All direc- 
tory structures are restricted to trees. 

For each DS function, the user may supply a "starting directory", which 
forms the root of the tree for that particular operation. This allows the user to 
have a number of totally independent directory structures, or a forest of struc- 
tures. 

5.3. Directories as a collection of objects. 

A major role of the DS is that of providing a name mapping mechanism. 
Associated with each capability (file) in a directory is a symbolic name for that 
object. The naming function, incorporated with a systom directory (one to 
which each user has access), provides a mechanism for allowing objects to be 
available throughout the system. Accessing such facilities as editors and com- 
pilers, or establishing initial connections for communications is done through 
the directory system. In this role, it similar to the "switch board" in DEMOS 
[Bask77]. 

6. CONCLUSION 

We have presented an operating system for the X-TREE architecture. X0S is 
a capability-based system because the communications structure easily facili- 
tated capability addressing. A number of structures, among them the 0ATB and 
PW0, have been proposed to assist an architecture running a capability-based 
operating system. 

The uniform, global address space simplified the structure of the operating 
system over multiple processors. Each processor had a consistent and 
equivalent view of the address space. The ability to influence the CPU design 
(microcode) allowed an efficient implementation of many of the 0.S. primitives. 

Communications channels were used for both message and paging traffic. 
This allowed common usage of a single mechanism, thus simplifying the overall 
structure. 

It was also demonstrated that the directory structure is easily separated 
from the object name space allowing the possibility of several separate access 
structures to be implemented on the same system. 

The X-TREE structure facilitated the rapid construction of the 0.S., but the 
system proved larger and more complex than may be appropriate for the VLS] 
implementation (24,000 lines of high-level language code). The system was con- 
structed by 6 people in eight months, at which time the basic system, a com- 
mand interpreter (shell) and directory system were working. 

A number of problems still exist in the system. The physical dependency of 
object names makes it difficult to move objects to different locations in the tree. 
This can prove to be awkward when expanding the tree or when parts of the tree 
fail. A number of solutions have been proposed during our initial implementa- 
tion and may be tried out in the future. The migration of processes has been 
made possible and even easy. However no attempt has been made to formulate 
an algorithm for determining to where to migrate them. This is also a topic for 
future research. 
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