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Abstract—The emergence of leadership class systems with
GPU-equipped nodes has the potential to vastly increase the
performance of existing distributed applications. However, the
inclusion of GPU computation into existing extreme scale dis-
tributed applications can reveal scalability issues that were absent
in the CPU version. The issues exposed in scaling by a GPU can
become limiting factors to overall application performance. We
developed an extreme scale GPU-based application to perform
data clustering on multi-billion point datasets. In this application,
called Mr. Scan, we ran into several of these performance limiting
issues. Through the use of complete end-to-end benchmarking
of Mr. Scan (measuring time from reading and distribution to
final output), we were able to identify three major sources of real
world performance issues: data distribution, GPU load balancing,
and system specific issues such as start-up time. These issues
comprised a vast majority of the run time of Mr. Scan. Data
distribution alone accounted for 68% of the total run time of
Mr. Scan when processing 6.5 billion points on Cray Titan at
8192 nodes. With improvements in these areas, we have been
able able to cut total run time of Mr. Scan from 17.5 minutes to
8.3 minutes when clustering 6.5 billion points.

Keywords—Distributed Systems, GPU Data Clustering, DB-
SCAN, Performance Analysis

I. INTRODUCTION

Discussions of heterogeneous systems have come in two
flavors: (1) message passing combined with shared memory
(often described as MPI+OpenMP) and (2) CPU combined
with GPU. In reality, we are now confronted with both of these
flavors on leadership class systems (and even on clusters)

Our experience with scalable computing [9], [2], [10], [7]
and, most recently, with extreme scale cluster algorithms [11]
has shown us that these two flavors interact and cannot be
treated separately. We call this combined model the distributed
CPU/ GPU model.

In this combined distributed CPU/GPU model, the addition
of GPUs affects the scalability characteristics of the algorithm
as a whole. Suboptimal design choices in other parts of the
model that did not limit scalability in a CPU-only implemen-
tation become limiting factors with the addition of a GPU. In
an extreme scale clustering algorithm we developed (called
Mr. Scan [11]), we saw the impacts that these issues can
have on end-to-end application performance when running on
leadership class systems at scale. Data distribution, GPU load

balancing, and application start-up time were major limiting
factors to the scale up of Mr. Scan. In this paper we investigate
the scalability issues brought up by the inclusion of GPUs in
Mr. Scan.

Mr. Scan is a distributed clustering algorithm that uses
GPUs for clustering multi-billion point datasets. Clustering is
the act of classifying data points, where data points that are
considered similar are contained in the same cluster and dis-
similar points are in different clusters. Mr. Scan is our imple-
mentation of the DBSCAN (Density Based Spatial Clustering
of Applications with Noise) clustering algorithm [6]. Mr. Scan
uses the MRNet tree based overlay network [9] to organize
processes into a multi-level tree with an arbitrary topology. In
the multi-level tree paradigm, DBSCAN calculations are done
on the GPU leaf nodes and these results are combined on non-
leaf nodes. Mr. Scan is the first implementation of DBSCAN
that can scale up to multi-billion data point datasets and the
first distributed DBSCAN algorithm that incorporates the use
of GPUs.

With Mr. Scan, we focused on end-to-end performance.
End-to-end performance is the total run time of the applica-
tion from reading and distribution of input data to writing
the final output. The use of end-to-end performance as a
metric gives context to how the application will perform in
a real world setting. End-to-end benchmarking allows us the
opportunity to address scalability issues that would come up
in actual use but do not show up in traditional benchmarks.
In a distributed application that uses GPU-based computation,
end-to-end benchmarking becomes a more important metric
because the increased performance of the algorithm stresses
other portions of the distributed application. Data distribution,
communication, load balancing, and system costs like start-up
time become more dominate factors in application performance
due to reduced processing time by use of a GPU. Each of these
issues are major contributing factors of run time for Mr. Scan.
All combined, they composed 86% of the total run time of Mr.
Scan with only 14% being spent on actually processing data.

Data distribution had the largest impact on scalability of
Mr. Scan. Data distribution is the act of getting the data to
the nodes for computation. In our original benchmarks of Mr.
Scan, data distribution comprised 68% of the total run time of
the application (11.8 minutes out of a total run time of 17.8
minutes at 8192 nodes). A vast majority of the time spent



on data distribution was writing intermediary files that would
be created by the data partitioner and then loaded by each
compute node. In a CPU-based implementation, using interme-
diary files to pass information to compute nodes would have
been an acceptable (though inefficient) strategy for loading
data into the node for computation due to the much longer
computation time of DBSCAN on the CPU. However, with
the increased performance of the GPU, using intermediary files
becomes a limiting factor to scaling. We reduced the cost of
data distribution significantly by directly passing data to the
compute nodes via a message passing interface.

Load balancing in general is a concern of any distributed
algorithm. Since a distributed application is only as fast as its
slowest component, having a good balance between nodes is
essential to high performance in a distributed application. With
the introduction of a GPU-based DBSCAN implementation,
obtaining this balance became difficult because the size of the
input data did not directly correlate with compute time on the
GPU. Identically sized input data could have more than a 10x
difference in run time due to the effect of input data density on
run-time complexity; denser datasets run closer to the worst-
case complexity of the DBSCAN algorithm. Achieving good
load balancing required that we take density into account when
partitioning data, as well as find ways to reduce the run-time
cost of clustering dense data regions. Load balancing of Mr.
Scan was achieved by using the GPU itself to identify dense
regions of data and to cluster them in a more efficient manner.

Machine and system-specific issues have a measurable
impact on Mr. Scan’s overall performance. The machine issues
are related to start-up and shutdown time. The cost of these
operations was surprisingly high at large scale. At 8192 nodes,
start-up of the application took more time than the entire
DBSCAN GPU computation phase. Unfortunately, this issue
is not one that can be resolved by a user since it requires
changes to the launching and shutdown process of the system
environment. However, techniques may be made available in
the future to reduce the cost of start-up. While most application
benchmarks do not include this time (and thus do not find it a
scalability concern), we included these numbers in our results.

Debugging was also a challenge with Mr. Scan due to the
inclusion of GPUs. The non-deterministic ordering of thread
block execution in the GPU increased the difficulty of verifying
the correctness of results after a change to the Mr. Scan code
base. Different thread block execution ordering on a node
would produce slightly different, yet algorithmically correct,
output. Validating results required the use of specially written
tools to check Mr. Scan output for correctness, which was
costly both in terms of programmer and computation time.

In Section II, we give a description of the DBSCAN
algorithm itself. In Section III, we describe the Mr. Scan
algorithm in more detail. We then discuss the scalability
challenges of Mr. Scan in Section IV. Finally, we wrap up
with our concluding thoughts.

II. THE DBSCAN ALGORITHM

The DBSCAN algorithm generates clusters of data points
based on density. The use of density as the metric allows
for the detection of irregularly shaped clusters without prior
knowledge of the number of clusters in the dataset. DBSCAN’s

notion of density comes from its two parameters, Eps and
MinPts. DBSCAN operates by finding the Eps-neighborhood
of each point. The Eps-neighborhood of a point p is the set of
points that are located within Eps distance of p. The point p is
considered a core point if there are at least MinPts points in its
Eps-neighborhood. All other points are classified as non-core
points. Non-core points can have two distinctions: a border
point or a noise point. A border point is a non-core point
that contains at least one core point in its Eps-neighborhood,
whereas a noise point does not.

Fig. 1: DBSCAN clustering example showing classification
of core and non-core points in a dataset.

A cluster is formed by the set of core and border points
reachable from a particular core point. Once an unvisited
core point is found, it is considered a new cluster along
with its Eps-neighborhood. The cluster is expanded by finding
the Eps-neighborhood of each point classified in the cluster
until all points that are reachable from the first core point
are found. For this reason, DBSCAN’s clustering results can
vary slightly if the order in which Eps-neighborhoods are
discovered is changed. Figure 1 shows an example of the
DBSCAN clustering process.

The performance of the DBSCAN algorithm varies greatly
based on the presence (or lack thereof) of a spatial index.
DBSCAN without a spatial index is O(n2) in time complexity.
This is due to not limiting the amount of points compared by
the distance function. Without a spatial index, all points in the
dataset must be compared with each other to determine which
points are core. A spatial index, however, reduces the number
of points that must be compared by limiting the search to a
smaller subset of points that are in the region of the point being
queried. The average case complexity improves to O(n log n)
by use of a spatial index (e.g., an R*-tree or KD-tree).

III. MR. SCAN ALGORITHM

Mr. Scan is a parallel implementation of the DBSCAN
algorithm with two phases, the partitioning phase and the
clustering phase. The partitioning phase distributes a raw
unordered input file containing point data to leaf nodes for the
clustering phase. The clustering phase performs the DBSCAN
clustering operation and generates an output file containing
the final clustered output. The input points are contained in
a single binary or text file. Each input point has a unique ID
number, coordinates, and an optional weight that can be used
for analysis of the clustered output. Figure 2 gives an overview
of the Mr. Scan algorithm.



Fig. 2: The Mr. Scan algorithm

A. Partitioning Phase

In the partition phase, the input file is read by a partitioner
that creates one partition per clustering process (one partition
per leaf node). The input file can contain billions of points and
can reach sizes up to 300 GB, so the partitioner is distributed
using a hybrid MRNet/message passing model to parallelize
this step. Each leaf node process starts by reading a unique
section of the input file. Input points read from the file are
then used to construct a Eps × Eps grid on each leaf node.
The point counts of each grid cell are then sent by the leaf
nodes up to the root of the tree. At the root the grid cells
are then used to generate the partitions for DBSCAN. Each
partition contains a set of Eps-grid cells. The partition will
also contain a set of Eps-grid cells that overlap with adjacent
partitions called a shadow region. The shadow region allows
for DBSCAN to cluster each partition independently from
one another. The grid cells contained by each partition are
then sent back to the leaf nodes. The leaf nodes perform
a gather operation (all-to-all operation) to move the locally
stored points contained in each partition to the leaf node that
will process that DBSCAN partition. Each leaf node ends up
with a single complete partition of data.

B. Clustering Phase

The clustering phase consists of three steps: DBSCAN
clustering, result merging, and a sweep step to write the
output. The DBSCAN clustering phase is performed on the
leaf nodes. Each leaf node performs the DBSCAN clustering
independent of one another. Mr. Scan generates a set of
representative points for each cluster detected on the leaf
nodes. The representative points are used to reduce the amount
of data needed to perform the merge operation.

The merge step is used to combine clusters found on
different leaf nodes which contain overlapping core points. The
merge phase takes place in the non-leaf nodes of the tree. The
merge phase is needed because of the shadow region present
on leaf nodes. A cluster found on a leaf node that spans into the
shadow regions has a chance of being an extension of a cluster
found on a different leaf node. The merge algorithm uses the
representative points found during the clustering operation to
detect overlaps between regions. The merge is performed at
all non-leaf node levels of the tree.

Finally, the sweep step is performed to generate the output
file. The root node gives each cluster generated by the last
merge operation a unique identifier. The root then passes the
merged clusters back down the tree to the leaf nodes for writing
the final output.

IV. SCALING CHALLENGES OF MR. SCAN

Mr. Scans scaling limitations come from components out-
side of the main algorithm. Data distribution, load balancing,
and start-up time were the significant contributors to Mr. Scan’s
total run time, making the application show poor weak scaling
properties. While these issues are not specific to Mr. Scan
and are common among distributed applications, the use of
GPU processing increases the impact that each of these has on
application scalability. Without the use of end-to-end bench-
marking, performance issues outside of the main algorithm
component would not have been known. Figure 3 illustrates
why this type of comprehensive benchmark is necessary. The
algorithm component of Mr. Scan shows decent weak scaling
properties; however, the total run time shows poor overall weak
scaling. While the poor weak scaling numbers have obvious
implications for real world usage, another issue is comparing
results between implementations of the same algorithm. It



is not uncommon for other papers that describe a parallel
implementation of DBSCAN to only show the equivalent of
the algorithm component of Mr. Scan in their results. They
ignore the partitioning and pre-processing costs required before
running DBSCAN. Since these operations are implementation
specific, not having any idea what they cost to perform makes
comparisons between algorithms difficult.

In our end-to-end benchmarks of Mr. Scan, the importance
of the performance outside of the algorithm component proved
to be critical. In fact, the total run time of the algorithmic
component at our largest scale (8192 nodes with 6.5 billion
points from a dataset composed of geo-located tweets obtained
from Twitter [1]) was not the largest contributor to run time.
Partitioning and start-up costs accounted for more overall time
than DBSCAN itself. Figure 4 shows the breakdown of run
times for the components of the original implementation of
Mr. Scan.

While we have not been able to fully eliminate the scaling
issues brought up by both the partitioning and application start-
up phases of Mr. Scan, we have been able to make some
improvements. In Figure 5, we show a comparison between
the original Mr. Scan implementation and our improved imple-
mentation (running on both the Widow and Atlas file systems
on Cray Titan). We show a breakdown of performance of the
improved Mr. Scan in Figures 6 and 7. The majority of the
improvement we see is in data distribution time. We discuss
data distribution is a more detail in Section IV-A. We also go
over the other system specific costs of Mr. Scan in Section
IV-C.

A. Data distribution

The original Mr. Scan implementation used a partitioner
that was separate from the DBSCAN phase. The partition-
ing program acted completely independently from the actual
clustering as a seperate distributed application. Performing the
partitioning was done by reading the complete dataset, building
the partitions, and writing the complete set of partitions out to
disk which would then be read by the DBSCAN processes.
At 6.5 billion points the read operation by the partitioner took
229 seconds and the complete write of the partitioned data
took 489 seconds. The write operation alone took 39% of Mr.

Fig. 3: Mr. Scan algorithm only and total run time on a
Twitter dataset.

Scan’s total run time to perform (489 seconds out of total run
time of 1226 seconds).

We eliminate writing the partitioned data to the file system
by combining both the partitioner and the DBSCAN process
into a single application. Instead of writing the partitioned data
out to disk we pass the partitions directly to the processing
nodes. The total time to get partitioned data to the DBSCAN
processes has been reduced from 489 seconds down to 15
seconds at 6.5 billion points. In figure 8 we show the total
run time of the partitioning phase of Mr. Scan with message
passing. In the runs shown, 90% of the run time of the
partitioner is spent on the initial dataset read from the file
system.

B. GPU load balancing

Load balancing DBSCAN is a challenge due to the effect of
density on algorithm performance. When DBSCAN processes
a point, it searches for neighbor points within Eps distance.
The performance of the search operation is tied to the spatial
index used for neighbor lookup. Spatial indexes in common
use by DBSCAN perform at their worst in regions that
are exceptionally dense. Slow performance in dense regions
affects the spatial index used by Mr. Scan. Mr. Scan’s GPU
algorithm, which is a slightly modified version of the CUDA-
DClust DBSCAN implementation [5], performed at O(n2) in
extremely dense regions due to the spatial index used.

The spatial index in use by Mr. Scan is a modified KD-
Tree [4] with fixed height of two, one for each dimension of the
data. The major difference between the KD-Tree used by Mr.
Scan and a standard KD-Tree is that nodes represent regions
of data instead of single points. Leaf nodes in the KD-Tree
point to data within a (X,Y) value range while internal nodes
point to leaf nodes containing data in distinct non-overlapping
X value ranges. The nodes are stored in the tree in sorted
order relative to their parent; the left-most child node contains
the range with the lowest minimum value and the right-most
child node contains the range with the largest maximum value.
Each leaf node of the KD-Tree contains an offset that acts as a
pointer into a array where the point data is stored. In addition,
each leaf node of the KD-Tree also contains the number of
points inside the leaf node’s range. The leaf nodes are given

Fig. 4: A breakdown of the run times of various components
of the original implementation of Mr. Scan.



Fig. 5: Total run time for Mr. Scan on a Twitter dataset.

offsets in a sequential fashion, with the left-most leaf node of
the tree at offset 0 and the right-most at offset N (the total
number of points).

The purpose of the modified KD-Tree in Mr. Scan is to
reduce the number of possible neighbor points for the point
that is being processed. Since each possible neighbor point
has to be compared to the point being processed to determine
if they are within Eps distance of each other, reducing the
number of possible neighbor points can improve performance.
The KD-Tree reduces the number of possible neighbor points
by eliminating points that cannot be neighbors. The neighbor
search is done by performing two lookups in the KD-Tree. The
two lookups find both the starting node and the ending node
for neighbor comparison. The starting node is the leaf node of
the KD-Tree furthest left in the tree that contains a possible
neighbor point. The starting node’s offset becomes the offset
in the point array where DBSCAN begins search for neighbor
points. The ending node is the furthest node right (maximum
X and Y value range) in the tree that contains a possible
neighbor point generating the ending offset in the point array.
The point being processed is then compared to every point

Fig. 6: Breakdown of the Mr. Scan using message passing on
the Widow file system.

Fig. 7: Breakdown of the Mr. Scan using message passing on
the Atlas file system

between the starting and ending offset. In less dense regions,
the lookup operation will produce starting and ending offsets
that are closer to one another. In extremely dense regions, the
starting and ending offsets can span significant portions of the
dataset (in some cases all of the dataset).

Density makes load balancing complicated because the
Twitter dataset does not have uniform density, leading to
some of the GPU nodes performing more than an order of
magnitude slower (having to perform comparison operations
on significantly larger portions of the dataset). Even though
we could detect dense regions in the partitioner, the dense
regions detected could not be broken apart because they would
still need to be processed by a single GPU due to proper
point classification (core and non-core point classification) of
DBSCAN needing access to all neighbor points.

Our solution to load balancing was to focus on reducing the
performance penalty of these dense regions. Load balancing
was achieved by using an algorithm we developed called dense
box, which detects these dense regions and groups them as a
cluster prior to running DBSCAN. Dense box detects these
regions by looking at the leaf nodes of the modified KD-Tree
spatial index, looking for regions with point counts greater than
MinPts in size with a area of less then Eps. When these regions
are detected, the points inside of these regions are marked
as being members of a the same cluster. When these points
are processed by DBSCAN, no neighbor lookup is performed.
The effect of dense box on run times can be seen at relatively
small scales. At 512 nodes (409 million points), the slowest
node in processing DBSCAN with dense box was 94 seconds,
while the slowest node without dense box on the same dataset
was 743 seconds. The time disparity gets progressively worse
at larger scales; at 1024 nodes the difference is around 26
minutes.

C. System challenges

One of the more surprising elements uncovered in our
testing of Mr. Scan was the effect that the Cray application
launcher had on performance. Application start-up consumed



10% of the total run time of Mr. Scan at the largest scale tested.
The time consumed by start-up comes from two sources: a file
system storm resulting from all nodes attempting to simultane-
ously load Mr. Scans dynamically-linked shared objects from
the file system, and zeroing the GPU memory before execution
of a user binary. While static linking could solve the first
problem, Cray does not allow use of static linking for some
critical libraries such as MPI and CUDA. Later versions of the
Cray operating system than we had available to us (version 5.1)
have methods that may reduce the penalty of loading shared
libraries. We plan to evaluate the facility once it is available
to us. The second problems comes from the system zeroing
the GPU memory on the nodes in a user’s allocation when
the application is first launched. This security features is set
by system administrators as a system-wide policy, and is not
modifiable by the users.

D. Debugging Challenges of Mr. Scan

Non-deterministic execution order of thread blocks in the
GPU made debugging Mr. Scan challenging. Different thread
block execution orders can result in different, yet algorith-
mically correct, output. The variation in output produced by
different runs makes it difficult to determine if a code change to
Mr. Scan maintained result quality. There are two properties of
DBSCAN that cause the variation in output: by different runs
is cluster identifier selection and cluster selection of non-core
border points (non-core points within an Eps radius of two or
more clusters). Naive methods of validating output (such as
checksumming) were not usable due to different output being
produced from each run. We had to create special validation
tools to help determine the quality of the result. Developing,
maintaining, and executing Mr. Scans validation tools is a
time consuming process. Having to develop validation tools
specifically for Mr. Scan is less than ideal and we would have
preferred a more generic method of ensuring correctness.

V. UNRESOLVED ISSUES

There are still a few remaining performance issues that
have yet to be addressed. File I/O continues to be an issue
even though we have resolved the distribution problem. While

Fig. 8: Partitioner times with the original file system based
partitioner and message passing partitioner.

the performance of the I/O sections (initial file read and
writing output) of Mr. Scan is acceptable, the performance
is slower than we anticipated. The simple strategy that we use
for reading and writing data (having every node read/write
a separate section of a file in a contiguous fashion) does
not seem to be well-suited for high node counts. Resolution
of the I/O issue may require finding the correct number of
nodes reading/writing for high efficiency or using dedicated
I/O forwarders to reduce the number of nodes interacting with
the file system.

An issue that we have not addressed is how to recover
from failures in Mr. Scan. Since we are focusing on real world
performance, we consider failure recovery a key unresolved
issue. While there are methods for failure recovery discussed in
a variety of other distributed systems, including the distribution
framework used for Mr. Scan [3], there has been little work on
GPU-specific failure recovery at extreme scales. While generic
failure recovery methods will work for Mr. Scan, these generic
systems do not take advantage of the finer decomposition at
which the computation is defined for the GPU (by kernel
executions and thread groups). The natural decomposition pro-
vided by the GPU may allow for an opportunity to accelerate
failure recovery (for example by spreading the computation
from the failed GPU node across all remaining nodes).

VI. CONCLUSION

GPUs have the ability to vastly increase the performance
of distributed applications. Getting full real world benefit from
the inclusion of GPUs requires that application developers take
into account the effect that the inclusion of GPU processing
in a distributed application will have on the other portions
of the application. In the case of Mr. Scan, we used end-to-
end benchmarking to successfully identify and solve several
problem areas where performance was impacting scalability.
Data distribution, which accounted for 68% of run time in
our unoptimized version of Mr. Scan, was reduced to only
26% of total run time. The use of message passing instead
of writing intermediary files to the file system was responsible
for the reduction in data distribution time. GPU load balancing
was also improved by reduced by increasing the efficiency of
processing extremely large regions of data. While resolution
of performance issues found by end-to-end testing has led to
performance gains there are still some unanswered problems.
File I/O and failure recovery remain two unsolved issues with
real world performance implications.
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