
Detecting Data Races on Weak Memory Systemsf

Sarita V. Adve, Mark D. Hill, Barton P. Miller, Robert H.B. Netzer

Computer Sciences Department

University of Wisconsin

Madison, Wisconsin 53706

Sark@cs.wise.edu

ABSTRACT

For shared-memory systems, the most commonly

assumed programmer’s model of memory is sequential

consistency. The weaker models of weak ordering, release

consistency with sequentially consistent synchronization

operations, data-race-free-O, and data-race-free-1 provide

higher performance by guaranteeing sequential consistency

to only a restricted class of programs - mainly programs

that do not exhibit data races. To allow programmers to

use the intuition and algorithms already developed for

sequentially consistent systems, it is impontant to determine

when a program written for a weak system exhibits no data
races. In this paper, we investigate the extension of

dynamic data race detection techniques developed for

sequentially consistent systems to weak systems. A poten-

tial problem is that in the presence of a data race, weak sys-

tems fail to guarantee sequential consistency and therefore

dynamic techniques may not give meaningful results.

However, we reason that in practice a weak system will

preserve sequential consistency at least until the “first”

data races since it cannot predict if a data race will occur.

We formalize this condition and show that it allows data

races to be dynamically detected. Further, since this condi-

tion is already obeyed by all proposed implementations of

weak systems, the full performance of weak systems can be

exploited.

Keywords: data races, sequential consistency, weak order-

ing, release consistency, data-race-free-O, data-race-free- 1.

t Re~ear~h ~uppo~ed in pan by Nationat Science Foundaticm!Wnts

CCR-88 15928, CCR-8902536 and MIPS-8957278, Office of Naval

Research grant NOO014-89-J-1222, and external research 8rants

from A. T. & T. Belt Laboratories, Cray Research, Digital Equip-

ment Corporation and Texas Instruments.

Permission to copy without fee all or part of this material is granted
prowded that the cop]es are not made or distributed for dwect commercial

advantage, the ACM copyright notice and the title of the pubhcauon and
its date appear, and notice is gwen that copying is by permwon of the
Association for Computing Machinery To copy otherwise, or to republish,
requires a fee and/or specific perrmssion.

1. Introduction

The programmer’s model of common shared-

memory multiprocessor systems is a collection of sequen-

tial processors and a specification of the semantics of

shared memory. Intuitively, a read of shared memory

should return the value of the “last” write to the same

address. A specification of shared memory semantics,

called a memory model or memory consistency model, is

necessary to determine exactly which writes could be

“last”.

The most commonly and often implicitly assumed

memory model is sequential consistency [Lam79], a direct

extension of the way memory is viewed in a multipro-

grammed uniprocessor. An execution (of a program) on a

shared-memory multiprocessor is sequentially consistent if

reads return values such that all memory operations appem

to have occurred in a sequential order, where the order of

operations of an individual processor is as specified by its

program. A system provides sequential consistency if it

only allows sequentially consistent executions. Implement-

ing sequential consistency in shared-memory multiproces-

sors, however, restricts the use of many performance

enhancing features of uniprocessor systems, such as out-

of-order instruction issue and completion, write buffers,

and lockup-free caches [DSB86].

For higher performance, researchers have proposed

alternative memory models [AdH90, AdH91, DSB86,

GLL90, Go09 1]. These models, however, do not provide

sequential consistency to all programs. To allow program-

mers to use the intuition and algorithms already developed

for sequential consistency, it is important to characterize

the programs for which the models do provide sequential

consistency.

The models of weak ordering (WC)) [DSB86],

release consistency with sequentially consistent synchroni-

zation operations (RC,=) [GLL90], data-race-free-O (DRFO)

[AdH90], and data-race-free-1 (DRF1) [AdH91] are simi-

lar in the respect that they provide sequential consistency to

all programs that exhibit no data races in any execution on

sequential y consistent hardware (i.e., to data-race-free

programs). Informally, two memory operations in an exe-

cution form a data race if at least one of them is a data

@ 1991 ACM 0-89791 -394-9/91/0005/0234 $1.50 234

operation (as opposed to a synchronization operation), at

least one of them is a write (as opposed to a read), both

access the same memory location, and they are not ordered

by intervening synchronization operations. We would like

to determine when programs for the above models are

data-race-free, so programmers can assume sequential con-

sistency when designing and debugging their programs.

Henceforth, the systems specified by WO, RC,C, DRFO and

DRF1 will collectively be referred to as the weak systems

and an execution on a weak system will be referred to as a

weak execution.

The problem of detecting data races is not unique to

weak systems. Even on sequentially consistent systems,

the presence of data races makes it hard to reason about a

program and is usually considered to be a bug. Much

current research in parallel programming has therefore

been devoted to detecting data races in programs written

for sequentially consistent systems. Static techniques per-

form a compile-time analysis of the program text to detect

a superset of all possible data races that could potentially

occur in all possible sequentially consistent executions of

the program [BaK89, Tay83a]. In general, static analysis

must be conservative and slow, because detecting data

races is undecidable for arbitrary programs [Ber66] and is

NP-complete for even very restricted classes of programs

(e.g., those containing no branches) uay83b]. Dynamic

techniques, on the other hand, use a tracing mechanism to

detect whether a particular sequentially consistent execu-

tion of a program actually exhibited a data race

[A1P87, ChM91, DiS90, HKM90,NeM90, NeM91]. While

dynamic techniques provide precise information about a

single execution, they provide little information about other

executions, a serious disadvantage. For these reasons, the

general consensus among researchers investigating data

race detection is that tools should support both static and

dynamic techniques in a complementary fashion [PaE88].

Rather than start from scratch, we seek to apply the

data race detection techniques from sequentially consistent

systems to weak systems. Static techniques can be applied

to programs for weak systems unchanged, because they do

not rely on executing the program. Dynamic techniques,

however, depend on executing a program. If a program has

no data races, then all executions of it on a weak system

will be sequentially consistent, and the dynamic techniques

will correctly conclude that no data races occurred. If a

program has data races, on the other hand, an execution of

it on a weak system may not be sequentially consistent.

Applying the dynamic techniques to such an execution may

produce unpredictable results.

In this paper we develop a hardware condition for

weak systems that allows data races to be dynamically

detected. The key observation we use is that practical
implementations of weak systems give sequential con-

sistency at least until the first data races (those not affected

by others) because they cannot predict that a data race will

occur. We formalize this observation with a condhion that

all executions on weak systems have a sequentially con-

sistent prefi that extends to the first data races (or the end

of the execution). With this condition, we shc~whow to use

a dynamic approach that either (a) correctly determines no

data races wcurred and concludes that the execution was

sequentially consistent, or (b) identifies the first data races

that could have occurred in a sequentially consistent execu-

tion with approximately the same accuracy as on a sequen-

tially consistent system. Furthermore, since all implemen-

tations of WO and RC,C and all proposed implementations

of DRFO and DRF1 already exhibit the required sequen-

tially consistent prefix, we argue that the new condition is

obeyed for free in practice.

Alternatively, one could use dynamic I.echniques on

weak systems by having weak systems support a slower

sequentially consistent mode that is used for debugging.

The results of this paper, however, show that such a slower

mode is not necessary for detecting data races. Further-

more, we believe that our results also allow other debug-

ging tools for sequentially consistent systems to be used

unchanged on weak systems. If there are no data races in

the execution, then the execution is sequentially consistent

and other debugging tools can be directly applied. If there

are data races, then the presence of the sequentially con-

sistent prefix allows the tools to be applied to the part of the

execution that contains the first bugs of the program.

The rest of the paper is organized as :follows. Sec-

tion 2 formalizes the notion of a data race and briefly

reviews the weak models. Section 3 discusses the potential

problems in applying the current dynamic techniques to

weak systems, develops the hardware condition to over-

come these problems, and explains why all proposed

implementations of the weak systems already obey this

condition. Section 4 shows how data races can be dynami-

cally detected on a system obeying our condition. Section

5 discusses how the limitations of our dynamic technique

on weak hardware are similar to those that occur on

sequentially consistent hardware. Section 6 concludes the

paper.

2. Data Races and Weak Models

In this section, we formalize the notion of a data race

on sequentially consistent systems, and then briefly review

the weak models.

2.1. Formalizing Data Races

We first clarify some terminology used throughout

the paper. The term program refers to the program text (a
set of machine instructions) and the input data. A machine

instruction involves zero or more memory operations; each

memory operation either reads a memory location (a read

235

operation) or modifies a memory location (a write opera-

tion). Further, an operation is uniquely identified by the

location it accesses and the part of the program in which it

is specified; the value it reads or writes is not considered.

For each of its executions, a program defines a partial order

on the memory operations of that execution, called the pro-

gram order (denoted by -%). Finally, two memory

operations conj?ict if they access the same location and at

least one of them is a write operation.

Memory operations can be partitioned into two

groups: synchronization operations that are used to order

events, and the more frequent data operations that read and

write data. Often different instructions are used for the two

groups. We will caIl an operation a synchronization opera-

tion if it is recognized by the hardware as meant for syn-

chronization. For example, a synchronization operation

could be a read or a write operation by a special instruction

such as a Test&Set, or it could be an ordinary read or a

write operation to a special location known to the

hardware. Operations that are not recognized as synchroni-

zation by the hardware will be called data operations.

For a formal definition of a data race, we define a

happens-before-l or + relation for every sequentially

consistent execution of a program. Our definition is closely

related to the “happened-before” relation defined by Lam-

port [Lam78] for message-passing systems. The % re-

lation for a sequentially consistent execution is a partial

order on its memory operations. Two operations initiated

by the same processor are ordered by % according to

program order. Two operations initiated by different pro-

cessors are ordered by % only if there exist intervening

synchronization operations. Further, with the synchroniza-

tion operations that are allowed to be used for ordering,

there should be associated certain semantics. We encapsu-
late these semantics by using the classification of release

and acquire synchronization operations proposed in

[GLL901 and a pairing relation as follows:

Definition 2.1: Two synchronization operations, s ~

and S2, are paired iff the following are satisfied.

(1) Synchronization operation s ~ is a write and can

be used by a processor to communicate the comple-

tion of all its previous memory operations (in pro-

gram order) to a prcxessor that subsequently exe-
cutes operation sz. Such a write is called a release

operation.

(2) Synchronization operation S2 is a read and can

be used by a processor to conclude the completion

of previous operations of a processor that executed

an s ~ earlier in the execution. Such a read is called

an acquire operation.

and S2 returns the value written bys 1.

For every system, the classification of synchronization

operations into release and acquire operations that can po-

tentially be paired can be determined by the semantics that

are associated with the operations. For example, in a sys-

tem that provides the Unset and Test&Set instructions, a

write due to an Unset is a release that could be paired with

a read due to a Test&Set which is an acquire. However,

the write due to a Test&Set is not a release since it is not

meant to be used to communicate the completion of previ-

ous memory operations of its processor.

Memory operations initiated by different processors

are ordered by % only if paired release and acquire

operations occur between them. For a more formal

definition, we use the program order (-%) relation, and

the synchronization-order- 1 (%) relation defined on

the synchronization operations of a sequentially consistent

execution as follows.

Definition 2.2: s ~ ~ S2 iffs * is a release opera-

tion ands z is a paired acquire operation.

Definition 2.3: The % relation for a sequential-

ly consistent execution is defined as (+ u ~

)+, the irreflexive transitive closure of % and

-=%.

The definitions of a data race, a data-race-free execution

and a data-race-free program follow.

Definition 2.4: Two memory operations, x and y, in

a sequentially consistent execution form a race

(x,y), iff x and y conflict, and they are not ordered

by the % relation of the execution. The race

(x,y), is a data race iff at least one of x or y is a data

operation. A sequentially consistent execution is

alzta-race-free iff none of its operations form a data

race. A program is data-race-free iff all its sequen-

tially consistent executions are data-race-free.

Figures la and lb respectively show sequentially consistent

executions with and without data races. The Pi’s denote

processors, op(x) denotes a memory operation on the loca-

tion x. Operations denoted by Read and Write are data

operations and the remaining are synchronization opera-

tions. A write operation due to an Unset can be paired with
a read operation due to a Test&Set. The execution of Fig-

ure la is not data-race-free since the conflicting write and
read data operations of P1 and P2 respectively are not or-

dered by -%. The execution of Figure 1(b) is data-

race-free because all conflicting data operations are ordered

by %, and no synchronization operation conflicts with a

data operation.

(3) Operations s ~ and Sz access the same location

236

PI

Write(x)

I
w

Write(y)

!
PO

Unset(s)

(a)

P2 PI P2

Read(y) write(x)

1PO

Read(x)

IP

wry)

1P

Tes~Set(s)

1PO

Read@)

1po

Read(x)

@)

Figure 1. Executions (a) with and (b) without data races.

2.2. Weak Memory Models

We now briefly review and compare the weak

memory models that we consider in this paper. For a data-

race-free program, between two conflicting data operations

of different processors there are explicit, hardware recog-

nizable synchronization operations. This allows most of

the actions to ensure sequential consistency to be delayed

from the data operation to the subsequent synchronization

operation, leading to higher performance. All four weak

models considered in this paper are based on this general

principle. For example, consider the data-race-free execu-

tion in Figure lb. A conventional implementation of

sequential consistency would stall on every memory opera-

tion until its completion. Specifically, P1 would stall on

each of its writes. However, the weak models only require

that either the writes of P1 are complete before the Unset is

issued or before the Test&Set of P2 succeeds. Either ap-

proach guarantees sequential consistency for the execution

in Figure lb. To see how sequential consistency may be

violated in a weak system in the presence of data races,

consider the execution in Figure 1a. In this execution, it is

possible that the new value of y written by PI is propagated

to P2 before the new value of x. Thus, it is possible for P2

to read the new value for y but the old value for x, thereby

violating sequential consistency.

We now discuss how the four weak models differ

from each other. The model of WO [DSB86] is specified

as a set of explicit conditions on hardware. It has been

shown that these conditions ensure sequential consistency

for all data-race-free programs [AdH90, AdH91]. The

model of RC,C [GLL90] is also specified as a set of condi-

tions on hardware. The main difference between the condi-
tions of WO and RC,C is that the latter exploit the distinc-

tion between acquire and release synchronization opera-

tions. The hardware conditions of RC,C are accompanied

by a formalization of the programs for which they ensure

sequential consistency. Such programs have been called
properly labeled with respect to sequential consistency, and

are the same as data-race-free programs [AdH9 1]. There

do exist some programs that exhibit certain restricted kinds

of data races for which WO and RC~C harclware ensure

sequential consistency [AdH90]. These programs, howev-

er, are few and are not formally characterized. Hence for

all practical purposes, we assume that for sequential con-

sistency to be guaranteed by these models, programs

should be data-race-free. DRFO [AdH90] and DRF1

[AdH91] are defined to include all hardware that guaran-

tees sequential consistency to programs that are data-race-

free. DRFO differs from DRF1 in that it does not distin-

guish between acquire and release operations.

3. A Hardware Condition for Dynamically Detecting

Data Races

In this section, we first describe the problems that

could potentially limit the use of current dynamic data race

detection techniques on weak systems. We then give a

hardware condition that addresses these limitations, and ex-

plain why this condition is already obeyed by all proposed

implementations of the weak systems.

3.1. Problems in Applying Dynamic Techniques to

Weak Systems

Existing dynamic data race detection techniques for

sequentially consistent systems [AlP87, ChM91, DiS90,

HKM90, NeM90, NeM91] instrument the program to

record information about the memory operations of its exe-

cution. This information allows the % relation to be

constructed, thereby allowing the detection of data races.

There are two approaches for recording and using this in-

formation. The post-mortem techniques generate trace files

containing the order of all synchronization operations to

the same location, and the memory locations accessed

between two synchronization operations in a given process.

These trace files are analyzed after the execution; the ord-

ering of the synchronization operations allows the ~

relation of the execution to be constructed from which the

% relation can be constructed. The pairs of conflicting

operations (at least one of which is data) that are not or-

dered by the % relation are reported as dam races. The

on-the-j7y techniques do not produce explicit trace files, but

buffer partial trace information in memory and detect data

races as they occur during the execution.

The difficulty in applying the above techniques on

weak systems is that the weak execution may not be

sequentially consistent (if the program is not data-race-
free). For such an execution, we first need to formalize the

237

PI n P3 PI P2 P3

comptie aoiir of region (missing Test&Set) work on region write(Q, lCO)---- wtite(O,. ..)

on which to work if (QEmpty=False) then
0...100

1 ‘:

‘.

{ missing Test&Set) addr:= DequeueO,
Enqueue(addrx

write(QErnpty,O) ---- -- , write(37,...)
else ... I , - read(QEmpty,O) //

.–.
work on region

aaiir...a&ir+1OO

QEmpty := Fslsq t
Unset(Sl

4 , I /~

Unset(S) Unset(s)
‘. * / , write(38,...)‘.-.

read(Q, 37) //:

I //.
& /’ / wnte(100,...)

Unset(s) I j

. --------
——.

I)

read(37,...) j ~j

1 / /
End of SCP+

%quentiatly consistent data races

Non-sequentially emsistent data races
J/

wnte(38,...)’
‘SCP is defined in Section 3.2.

(a) (b)

Figure 2. (a) Program fragment, and (b) example happens-before-1 graph showing data races and SCP

notion of a data race. This can be done in a manner analo-

gous to that for sequentially consistent executions by

defining the % and % relations. Note that since in

general, the synchronization operations of a weak system

are not constrained to be executed in a sequentially con-

sistent manner, the _ relation and hence the ~ re-

lation may contain cycles and hence not be partial orders.

Nevertheless, the current dynamic techniques for sequen-

tially consistent executions can still he applied to find the

data races of a weak execution.

Although data races of a weak execution can be easi-

ly detected with the current techniques, there are two po-

tential problems that need to be resolved for the reported

data races to be meaningful. The first problem is that on

arbitrary weak hardware, it is theoretically possible for an

execution to not exhibit, data races and yet not be sequen-

tially consistent. Fortunately, as we shall see later, the im-

plementations of the weak models proposed to date do not

exhibit this problem.

The seeond problem is that data races that maybe re-

ported from weak executions may never occur on any

sequentially consistent execution of the program. This
could easily occur on the current weak systems. Figure 2
illustrates a program fragment and one weak execution in

which such non-sequentially consistent data races occur. In

this program, processor P1 places the starting address of a
region for processor P2 to work on in a shared queue and

resets the QEmpty flag, Processor P2 checks to determine

if work is available, and dequeues an address if the queue

is not empty. Processor P3 works independently on some

part of the address space. Since P1 and P2 both access the

shared queue, operations manipulating the queue are en-

closed in critical sections, implemented with the Test&Set

and Unset instructions. However, due to an oversight, the

Test&Set instructions were omitted. The program is there-

fore not data-race-free. A sequentially consistent execution

of this program will exhibit data races between the

accesses to the queue and the variable QEmpty. Because

the program is not data-race-free, sequential consistency

can be violated in an execution on a weak system. One

such execution is shown in Figure 2b, where op(x,a)

represents a read or a write memory operation to location x

that respectively returns or stores the value a. In this exe-

cution, although processor P2 finds QEmpty to be reset, it

does not read the new value, 100, enqueued by PI. Instead

it reads an old value, in this case 37. The region that pro-

cessor P2 starts working on now overlaps with the region

accessed by P3. This gives rise to many data races

between the operations of P2 and P3 as shown. On a

sequentially consistent system, P2 could never have re-

turned the value 37, and hence these races would never

have occurred. Nevertheless, naively using the dynamic

techniques would report all of these data races.

For debugging programs for weak memory systems,
we are only interested in detecting data races that would

also occur in a sequentially consistent execution of the pro-

gram. Further, the motivation of deteeting data races was

to aIlow programmers to reason in terms of sequential con-

sistency. Therefore, reporting data races that cannot occur

in a sequentially consistent execution can be confusing to

the programmer and can complicate the task of debugging,

In the next sub-section, we develop a hardware condition

238

that addresses this problem.

3.2. A Hardware Condition for Dynamic Data Race

Detection

We develop a hardware condition such that for any

execution on a system that obeys this condition, a set of

data races that would also occur in some sequentially con-

sistent execution can be identified. In Section 4, we will

show how dynamic deteetion can be used to report this set.

Intuitively, our condition requires that an implemen-

tation guarantee sequential consistency until a data race ac-

tually occurs in the execution. Further, once a data race

occurs, sequential consistency should be violated only in

parts of the execution that are affected by the data race.

This will ensure that every execution has a sequentially

consistent prefix that contains the first data races (those not

affected by others) of the execution. Dynamic techniques

can then potentially be applied to this sequentially con-

sistent prefix to report the first races. We introduce the fol-
lowing terminology to formalize our condition.

Definition 3.1: A pre@ of an execution E is a sub-

set of the memory operations of E such that if y is in

the prefix and x % yin E, then x is in the prefix.

Definition 3.2: A prefix of an execution E of a pro-

gram P is a sequentially consistent prejix or SCP of

E iff

(1) it is also the prefix of a sequentially consistent

‘x~ution ES~~Of program P, and

(2) if x and y are in the prefix, then (x,y) is a data

race in E iff (x,y) is also a data race in E$eq.

An example of an SCP is shown in Figure 2b. Thus,

for an execution E of any program, the operations of a pro-

cessor in its SCP are also the initial operations of the pro-

cessor in some sequentially consistent execution, E~eQ,of

the program. Further, a data race involving operations in

the SCP occurs in E iff it also occurs in E$g~. This implies

that the set of data races that have their operations in a par-

ticular SCP is a valid set of sequentially consistent data

races to report.

To enable the identification of data races in an SCP,

we propose a condition that in an execution, either a data

race has its operations in a specific SCP of the execution,

or the data race is affected by another data race with opera-

tions in the SCP, where “affected” is defined as follows.

Definition 3.3: A race (x,y) affects a memory

operation z, written (x,y) + z, iff

(1) z is the same memory operation as x or y, or

(2)x% z,ory% z,or

(3) there exists a race {x’,y’) such that (x’,y’) ~

z, and either (x,y) ~ x’ or (x,y) ~ y’.

A race (x,y) affects another race (x’,y’), written

(x,y) + (x’,y’), iff (x,y) > x’ or (x,y) % y’.

This implies that data races that are not affected by any

other data race (intuitively the first data races) should al-

ways be in an SCP of the execution, i.e., they should also

occur in a sequentially consistent execution. Thus, the data

races that are not affected by any others constitute a valid

set of data races that can be reported.

The formal hardware condition that we jpropose is as

follows. We say that a race (x,y) occurs in an SCP if the

operations x and y are in the SCP.

Condition 3.4: For any execution E of a program

P,

(1) if there are no data races in E, then E is a

sequentially consistent execution of program P, and

(2) there exists an SCP of E such that a data race in

E either occurs in the SCP, or is affected b y another

data race that occurs in the SCP.

Condition 3.4(1) ensures that if no data races are re-

ported, then the programmer can safely assume that the

hardware is sequentially consistent, overcoming the first

problem cited in the previous seetion. Condition 3.4(2) en-

sures that if a data race is detected in E, then there is a data

race in E that affeets this data race that also occurs in some

sequentially consistent execution of the program. Thus, the

set of data races that are not affected by any other data race

in E form a valid reportable set of data races that also occur

in some sequentially consistent execution.

3.3. Weak Hardware Already Obeys Condition for
Dynamic Data Race Detection

In this subsection, we give the most significant result

of our paper.

an

Theorem 3.5: Condition 3.4 for dynamic debug-

ging is already obeyed by all implementations of

WO and RC,C and all proposed implementations of

DRFO and DRF1.

Due to space constraints, in this paper, we only give

informal intuition for this result. A formal proof of the

theorem appears in [AHM9 1]. For brevity, we use the term

all weak implementations to imply all possible implementa-

tions of WO and RC,C and all implementations of DRFO

and DRF1 that have been proposed to date.

Condition 3.4(1) requires that for a data-race-free ex-

ecution on a weak system, the weak hardware should ap-

pear sequentially consistent. All weak implementations

guarantee sequential consistency to data-race-free pro-
grams. They achieve this by guaranteeing sequential con-

sistency to every data-race-free execution on the weak sys-

239

tern [AdH90,AdH91, GLL90], thereby obeying Condition

3.4(l).

Condition 3.4(2) requires that every data race in a

weak execution that is not affected by any other data race

should also occur in a specific sequentially consistent exe-

cution of the same program. The data races that are not af-
fected by any others are intuitively, the !lrst data races in an

execution. Therefore, Condition 3.4(2) can be obeyed by

ensuring that an execution provides sequential consistency

until a data race actually occurs. Even then, a violation of

sequential consistency should be allowed to occur only for

operations that are directly affected by the data race. Intui-

tively, this is true for all weak implementations for the fol-

lowing reason. Weak implementations are allowed to

violate sequential consistency only for executions that ex-

hibit data races. practically, however, we expect that it is

not possible to predict whether an execution will exhibit a

data race until a data race actually occurs in the execution.

Thus, all weak implementations provide sequential con-

sistency until a data race actually occurs in the execution,

and violate sequential consistency only in the parts of the

execution that are affected by the data races. The formal

proof for this condition shows the existence of an SCP for

every execution on a weak implementation such that either

all operations of a processor are in the SCP, or the first

operation of a processor not in the SCP is affected by a

data race in the SCP.

4. Detecting Data Races on Weak Hardware

In this section we show how Condition 3.4 can be

used to dynamically detect sequentially consistent data

races on weak systems. We employ a post-mortem ap-

proach to locate sets of data races, each of which contains

at least one that belongs to a specific SCP. Recall that a

data race occurs in an SCP only if it also occurs in the

corresponding sequentially consistent execution. Our ap-

proach thus directs the programmer to data races that

would have also occurred in some sequentially consistent

execution of the program. In Section 5 we argue that any

limitations of this technique are analogous to those that oc-

cur with dynamic detection on sequentially consistent

hardware. We also explore the possibility of using an on-

the-fly approach in Section 5.

4.1. Program Instrumentation

So far, data races and hardware constraints have

been expressed in terms of individual operations. Detect-

ing data races at such a low level would require tracing the

program order of all memory operations performed by each

processor, which in general would be impractical. Instead,

higher-level information about the execution can be record-

ed and used for data race detection. The execution of each

processor can be viewed as a sequence of events that

represent groups of memory operations. We adopt the ap-

proach used by previous data race detection methods

[ALP87, ChM91,DiS90, HKM90,NeM90,NeM91] and

define an event to be either a single synchronization opera-

tion (a synchronization event), or a group of consecutively

executed data operations (a computation event). For exam-
ple, the events of the execution in Figure 2b are shown in

Figure 3 as sets of memory operations enclosed within rec-

tangles. Each event, A, has two attributes, READ (A) and

WRITE (A), the sets of memory locations read and written

by the event (upper case letters denote events). Such a

higher-level view is useful since recording the READ and

WRITE sets is in general more efficient than tracing every

memory operation performed by the event. For example,

bit-vectors representing those (shared) variables that might

be accessed between two synchronization events can be

constructed, and when a variable is accessed, the

corresponding bit is set. The bit-vector is then written to a

trace file at the end of each computation event. Such an

approach avoids writing a trace record for every memory

operation.

PI P2 P3
, -------------- ,.

‘.

\ write(Q, 100) \

y

write(O,...)

; write(QEmpty,O) “------
------------ .,

VJ

------- -------- \ ‘,
‘, read(QEmpt y,O) ‘,

Unset(s) read(Q, 37) ;

! d,

,’ “---- ”-----’..,’‘. ‘, \
------- ------- .’, write(37,...) ‘,

First partition
Unset(s)

write(38,...) j

,’
.’I

End of SCP ,-------- -_ ----” /1
Ji

!

Non-first partition ~ I I .<

Figure 3. Augmented happens-before-1 graph showing

first and non-first data race partitions

We assume that the program is instrumented to pro-

duce trace files containing (1) the execution order of events
issued by the same processor, (2) the relative execution

order of synchronization events involving the same loca-

tion, and (3) the READ and WRITE sets for each computa-

tion event. From (1) and (2), the % relation (defined

over events, instead of operations) can be represented by

constructing the happens-before-1 graph, which contains

one node for every event, and edges between nodes to

represent the J% and J% relations. Data races are

240

defined for computation events in the same way as they

were defined for data operations: a data race between two

computation events, (A,B), exists if A and B access a com-

mon location that at least one of them writes, and no path

connects A and B in the happens-before-1 graph. We use

the term lower-level data race to refer to a data race among

memory operations (e.g., (a,b)), and the term higher-level

data race (or just data race) to refer to a data race among

events (e.g., (A,B)). Since A and B represent groups of

memory operations, the data race (A,E!) may represent

man y lower-level data races among the individual opera-

tions comprising A and B. If at least one of these lower-

level data races belongs to an SCP, then we say that the

higher-level data race does also.

4.2. Locating Data Races in an SCP

We now show how to locate data races that are in an

SCP. Intuitively, we try to identify the first data races that

occurred.

We add edges to the happens-before-1 graph, G, to

construct an augmented graph, G‘. The purpose of these

edges is to capture the possible effect one data race may

have on another. For each race, we add a doubly directed

edge between the two nodes involved in the race. Then,

given two races, (AJ?) and (C,D), a path exists in G’ from

A (or B) to C (or D) iff (A,B) ~ (C,D). The graph G’

for the execution in Figure 2b is shown in Figure 3.

If for an execution, the augmented graph G’ were

acyclic, it would define a partial ordering among the data
races. By construction, the first data races as given by the

partial order would not be affected by any other races, and

hence by Condition 3.4(2) these races would be guaranteed

to belong to an SCP. However, since G’ may contain cy-

cles, we need to partition the data races and define a partial

ordering among the partitions. The partitions will be

defined so that at least one data race in each partition is

guaranteed to belong to an SCP.

We use the strongly connected components of G’ to

partition the data races; two data races belong to the same

partition if and only if the events involved in the races be-

long to the same strongly connected component. The first

partitions are then identified by defining a partial ordering,

+, on the partitions as follows:

Definition 4.1: Part 1 % Part2 iff a path exists

in G‘ from some event in Part ~ to some event in

Part z.

1. A strongly connected component of a directed graph has the

propeny that paths exist between each pair of rmdes irt the com-

ponent, but no paths exist from a node in one compnnent to a nnde

m another component and bdck.

A partition isjlrst if it is not ordered by %} after

any other partitions containing at least one data

race.

For the execution of Figure 2b, the partitions and

their ordering are shown in Figure 3. We now state the fol-

lowing theorems regarding the first partitions. ‘The proofs

of these theorems are relatively straightforward and appear

in [AHM9 1].

Theorem 4.1: There are no first partitions contain-

ing data races iff no data races were exhibited in the

execution.

Theorem 4.2: In each first partition containing data

races, at least one data race belongs to an SCP.

We now claim that for an execution on a~weak sys-

tem, only the first partitions containing data races should be

reported to the programmer. This is sufficient because of

the following reason. If for some execution, no first parti-

tions are reported, then by Theorem 4.1, no data races must

have occurred in the execution and by Condition 3.4(l),

this execution must be sequentially consistent. 1f first parti-

tions are reported, then by Theorem 4.2, at least one of the

data races in each of these partitions would occur on a

sequentially consistent execution of the program.

A limitation of our method is that for first partitions

with more than one data race, we cannot detect precisely

which race is sequentially consistent. Nevertheless, the

portion of the execution that has to be examinecl by the pro-

grammer to detect the sequentially consistent data race is

significantly narrowed, making debugging much easier. In

the next section, we discuss how dynamic race detection

techniques in sequentially consistent systems suffer from

an analogous limitation.

5. Data Race Detection on Sequentially Consistent Sys-

tems vs. Weak Systems

The limitations of our approach for detecting data

races on weak systems are analogous to those for detecting

data races on sequentially consistent systems. ‘We next dis-

cuss these analogies, focusing on accuracy and overhead.

The effectiveness of data race detection depends on

the accuracy with which the reported data races reflect pro-

gram bugs. Our method reports partitions of data races,

where each partition contains at least one sequentially con-

sistent or SCP data race, i.e., a true program bug. However,

the method suffers from the following limitations: (1) we

cannot always pinpoint exactly which data races in each

first partition belong to the SCP and hence are the valid

races, and (2) we do not locate data races in non-first parti-

tions that may also belong to the SCP.

Dynamic techniques for sequentially consistent sys-

tems also suffer from limitations analogous to the above.

241

There is an analogy lxtween data races in weak systems

that are not in an SCP and data races in sequentially con-

sistent systems that are artifacts of other data races. A data

race is an artifact if it occurs only because a previous data

race left the program’s data in an inconsistent state unex-

pected by the programmer, and hence is not a direct man-
ifestation of a program bug. Methods for accurately locat-

ing data races on sequentially consistent systems

[NeM90, NeM91] also order partitions of data races to en-

able detection of the non-artifact races. These methods

also suffer from the above limitation~ (1) they identify par-

titions of data races, each of which is guaranteed to contain

at least one non-artifact data race, but cannot determine

precisely which races within each partition are not artifacts

meM91], and (2) they cannot identify non-artifact data
races that happen to belong to non-first partitions. When

using the first partitions, we expect that the difference

between debugging on weak or sequentially consistent sys-

tems will be insignificant; we believe reasoning about an

artifact data race on a sequentially consistent system is as

difficult as reasoning about non-SCP data races on weak

systems. Nevertheless, for both the sequentially consistent

and weak systems, identifying the first partitions

significantly narrows the portion of the execution that must

be investigated to locate the non-artifact or the SCP data

races.

Another issue impacting accuracy is the reliability of

the trace data. Again, sequentially consistent systems and

weak systems share common limitations. Program instru-

mentation can be added by a trusted facility (such as a

compiler) and so can generally be assumed correct. How-

ever, pathological programs can be constructed that behave

unpredictably after a data race (because the program’s data

is left in an inconsistent state) and randomly overwrite the

program’s own address space. In the worst case, the traces

can be overwritten with erroneous data suggesting that no

data races were exhibited, when in fact data races occurred.

Such pathological cases can be constructed for both weak

and sequentially consistent systems; the reliability problem

is no worse in weak systems. In practice, however, we ex-

pect trace corruption to rarely occur.

Another important factor influencing the effective-

ness of data race detection is overhead. Section 4 present-

ed a post-mortem approach in which trace files are written

during execution and analyzed during a post-mortem

phase. Overhead is incurred both during execution and
during post-mortem anatysis. However, the overhead of

our method is no worse than post-mortem methods on

sequentially consistent systems: we require no more

execution-time information that these methods, and our

analysis requires computation similar to the more accurate

techniques for sequentially consistent systems

[NeM90, NeM91].

Another approach for locating data races is on-the--y

detection. On-the-fly approaches have the advantage of not

consuming secondary storage [ChM91, DiS90, HKM90],

but existing methods are typiczdly less accurate and have

higher run-time overhead than post-mortem techniques.

The loss of accuracy is a result of attempts to keep space

overhead low by only buffering limited trace information

in memory. As a result, some of the first data races can

remain undetected. This is a problem for both sequentially

consistent systems (where non-first data races can be ar-

tifacts) and weak systems (where non-first data races may

not belong to an SCP). Future work includes investigating

how our method might be employed on-the-fly to locate the

first data races.

We believe that once data races are detected using

our methods, other debugging tools for sequentially con-

sistent systems can be effectively applied on weak systems

as well. This is because the part of the execution that con-

tains the “first” bugs is sequentially consistent and can be

debugged as on a sequentially consistent execution. Since

the overhead and accuracy of our data race detection

method on weak systems are similar to that on sequentially

consistent systems, we expect that debugging in geneml on

weak systems will also be no more difficult, Programs for

weak systems can therefore be debugged while taking ad-

vantage of the performance gains achieved by these sys-

tems; a slower sequentially consistent mode for debugging

is not necessary.

6. Conclusions

The shared memory models of weak ordering,

release consistency with sequentially consistent synchroni-

zation operations, data-race-free-O and data-race-free- 1

provide high performance by guaranteeing sequential con-

sistency mainly to programs that do not exhibit data races

on sequentially consistent hardware. To allow program-
mers to use the intuition and algorithms already developed

for sequentially consistent systems, it is important to deter-

mine when a program is data-race-free, and when it is not,

to identify the parts where data races could occur.

Detecting data races is also crucial for programs

written for sequentially consistent systems. Static tech-

niques for sequentially consistent systems can be directly

applied to weak systems as well. Dynamic techniques, on

the other hand, may report data races that could never oc-
cur on sequentially consistent systems. This can complicate

debugging because programmers can no longer assume the

model of sequential consistency.

We have shown how a post-mortem dynamic ap-

proach can be used to detect data races effectively even on

weak systems, The key observation we make is that in

practice weak systems preserve sequential consistency at

least until the first data races (those not affected by any oth-

242

ers) since they cannot predict if a data race will occur. We

formalize this condition by using the notion of a sequential-

ly consistent prefix. For an execution on a system that

obeys this condition, we show how we cart either (1)

correctly report no data races and conclude the execution to

be sequentially consistent or (2) report the first data races

that also occur on a sequentially consistent execution

(within the limitation discussed in Section 4.2). Since our

condition is already met by all implementations of WO and

RC,C and all proposed implementations of DRFO and

DRF1, our technique can exploit the full performance of

the weak systems. Further, we have shown that any limita-

tions of our technique are also shared by dynamic tech-

niques on sequentially consistent systems. Finally, we be-

lieve that the presence of the sequentially consistent prefix

also allows other debugging tools of sequentially consistent

systems to be used on weak systems.

We have demonstrated the use of our hardware con-

dition with a post-mortem dynamic technique. Using on-

the-fly techniques for weak systems has problems analo-

gous to those on sequentially consistent systems and is a
subject of future work.

Although the definitions and theorems presented in

this paper may be considered complex, only those who

wish to verify our results must confront this complexity.

Designers of memory systems can simply check that their

hardware obeys Condition 3.4, while users of our data race

detection technique can reason about their program as if

the hardware were sequentially consistent.

References

[AdH90]

[AHM91]

[AdH91]

[A1P87]

[BaK89]

[Ber66]

[chM911

S. V. Am% and M. D. HILL, Weak Ordering - A New

Definition, Proc. 17th Annual Intl. Symp. on
Computer Architecture, May 1990,2-14.

S. V. Arm, M. D. HILL, B. P. MILLER and R. H. B.

NETZER, Detecting Data Races on Weak Memory

Systems, Computer Sciences Technical Report, To be

Published University of Wisconsin, Madison, 1991.

S. V. ADW and M. D. HILL, An Approach for

Specifying Shared Memory Models, Computer

Sciences Technicat Report, To be Published,

University of Wisconsin, Madison, 1991.

T. R. ALLEN and D. A. PADUA, Debugging Fortran on

a Shared Memory Machine, Proc. Inil. C’onf. on

Parallel Processing, August 1987,721-727.

V. BALASUNDARAM and K. KENNEDY, Compile-time
Detection of Race Conditions in a Parallel Program,
3rd Intl. Corrf. on Supercomputing, June 1989, 175-
185.

A. J. BERNSTEIN, Analysis of Programs for Parallel

Processing, IEEE Trans. on Electronic Computers
EC-15, 5 (October 1966), 757-763.

J. CHOI and S. L. Mm, Race Frontier: Reproducing

Data Races in Parallel Program Debugging, Proc. 3rd

ACM Symp. on Principles and Practice of Parallel

[DiS90]

[DSB86]

[GLL90]

[Go091]

[HKM90]

[Larn78]

Programming, April 1991.

A. DINNSNG and E. SCHONBERG, An Empirical
Comparison of Monitoring Algorithms for Access
Anomaly Deteetion, Proc. ACM SIGPLAN Notices
Symp. on Principles and Practice of Parallel
Programming, March 1990, 1-10.

M. DuaoIs, C, SCHEUIUCH and F. A. BRtGGS,

Memory Access Buffering in Multiprocessors, Proc.

13th Annual Intl. Symp. on Computer Architecture

14,2 (June 1986), 434-442.

K. Gwm.mtowoo, D. LENOSKt, J. LAUDON, P.
GSBBONS, A. GmA and J. HENNESSY, Memory

Consistency and Event Ordering in Statable Shared-

Memory Multiprocessors, Proc. 17th Annual Intl.

Symp. on Computer Architecture, May 1990, 15-26.

J. R. GOODMAN, Cache Consistency and Sequential

Consistency, Computer Sciences Technical Report
#1006, Univ. of Wisconsin, Madison, February 1991.

R. HOOD, K. KmmY and J. MELLOR-CRUMMEY,
Parallel Program Debugging with On-the-fly
Anomaly Detection, Supercomputing ’90, November
1990,74-81.

L. LAMPORT, Time, Clocks, and the Ordering of
Events in a Distributed System, Communications of

the ACM21, 7 (July 1978), 558-565.

[Lam79] L. LAMPGRT, How to Make a Multiprocessor

Computer That Correctly Executes Multiprocess

Programs, IEEE Trans. on Computers C-28, 9

(September 1979), 690-691.

[NeM90] R. H. B. NETZER and B. P. MtLLER, Detecting Data

Races in Parallel Program Executions, To appear in
Research Monographs in Parallel and Distributed
Computing, MIT Press, 1991. Also available as Proc.

3rd Workshop on Programming Languages and

Compilers for Parallel Computing, August 1990.

[NeM91] R. H. B. NETZER and B. P. MILLER, Improving the
Accuracy of Data Race Detection, Proc. 3rd ACM
Symp. on Principles and Practice of Parallel
Programming, April 1991.

[PaE88] D. A. PADUA and P. A. EMRATH,, Automatic

Detection of Nondeterminacy in Parallel Programs ,
Proc. SIGOPS Workshop on Parallel and Distributed
Debugging, May 1988, 89-99. Also appears in
SIGPLANNotices 24(1) (January 1989).

[Tay83a] R. N. TAYLOR A General-Purpose Algorithm for

Analyzing Concurrent programs, Communications of

the ACM 26, 5 (May 1983), 362-376.

[Tay83b] R. N. TAYLOR, Complexity of Analyzing the
Synchronization Structure of Concurrent Programs,
Acts Informatica 19(1983), 57-84.

243

