
Using SchedFlow for Performance Evaluation of 
Workflow Applications* 

Gustavo Martinez\ Elisa Heymann\ Miguel Angel Senar\ Emilio Luque\ Barton P. Miller 
IDepartament d'Arquitectura de Computadors i Sistemes Operatius 

Universitat Autonoma de Barcelona, Spain 
gustavo.martinez@caos.uab.es, 

{elisa.heymman, miquelangel.senar, emilio.luque}@uab.es, 
2Computer Sciences Department 

University of Wisconsin 
bart@cs.wisc.edu 

Abstract- Computational science increasingly relies on the 
execution of workflows in distributed networks to solve complex 
applications. However, the heterogeneity of resources in these 
environments complicates resource management and the 
scheduling of such applications. Sophisticated scheduling policies 
are being developed for workflows, but they have had little 
impact in practice because their integration into existing 
workflow engines is complex and time consuming as each policy 
has to be individually ported to a particular workflow engine. In 
addition, choosing a particular scheduling policy is difficult, as 
factors like machine availability, workload, and communication 
volume between tasks are difficult to predict. In this paper, we 
describe SchedFlow, a tool that integrates scheduling policies into 
workflow engines such as Taverna, DAGMan or Karajan. We 
show how SchedFlow was used to take advantage of different 
scheduling policies at different times, depending on the dynamic 
workload of the workflows. Our experiments included two real 
workflow applications and four different scheduling policies. We 
show that no single scheduling policy is the best for all scenarios, 
so tools like SchedFlow can improve performance by providing 
flexibility when scheduling workflows. 

Keywords: Workflow Management, Scheduling Policies, 
Distributed Environments. 

I. INTRODUCTION 

Workflow-based technologies have become an important 
aid in the development of complex applications. For 
convenience and cost reasons, scientists typically run 
workflow applications [4] [13] in distributed environments 
such as multi clusters, Grids or Clouds. 

A workflow application consists of a collection of jobs to be 
executed in a partial order determined by control and data 
dependencies. Although the characteristics of workflows may 
vary, a simple approach to model a workflow is by means of a 
directed acyclic graph (DAG). 

Executing this type of application requires two components: 
a workflow scheduling policy and a workflow engine for 
ensuring the correct execution order of these tasks. 

Several workflow engines are currently being used to 
support the execution of workflow applications on clusters and 

Grid systems, including Condor DAGMan [1] [2], Taverna [3] 
[4], Triana [5], Karajan [6] and Pegasus [7]. 

Traditionally, significant effort has been put into developing 
scheduling policies for workflows, such as Heterogeneous 

Earliest Finish Time (HEFT) [8] [9], Balanced Minimum 
Completion Time (BMCT) [10], Min-Min [11], and DAGmap 
[12]. However, little attention has been paid to linking 
workflow scheduling policies with existing workflow engines. 

In addition, when studying scheduling policies, most 
research has been oriented towards evaluating and improving 
the application's makespan (the time difference between the 
start and finish of the workflow application). However, that 
research has not taken into account several factors that may 
affect the application performance (such as workload size, 
inaccurate computing and communication times, and machines 
appearing/disappearing dynamically). And not all of the 
studied scheduling policies can be reasonably implemented on 
several of the existing workflow engines. 

We used SchedFlow to systematically assess the influence 
of one of a key factor that affects the application makespan; 
specifically, we evaluated the effect of varying the initial 
workload for two different real workflow applications. By 
varying the initial workload we considered two different initial 
input data for each of the studied applications (400MB and 
1024MB). Not surprisingly, we found that under different 
workloads, an application will show different behaviors under 
a given scheduling policy. Therefore, applications can benefit 
from tools like SchedFlow as they allow applications 
dynamically to choose different scheduling policies for 
different applications depending on what is happening at 
execution time. 

SchedFlow allows users to specifY a wide variety of 
workflow scheduling policies through a well-defined API, and 
integrates the user-defined policy with a workflow engine 
system. SchedFlow transparently handles the various system 
events of the underlying workflow engine, and allows the user 
to focus on the main workflow scheduling algorithm. 

Based on a layered architecture, SchedFlow's 
implementation is portable across different workflow engine 

'
This work was supported by MEyC-Spain under contract TIN 2007-64974. 



systems. Currently SchedFlow works with Condor DAGMan, 
Taverna, and Karajan. 

The remainder of this paper is organized as follows. Section 
2 describes the general SchedFlow architecture and Section 3 
describes the Task Monitoring system we developed to deal 
with runtime events. Section 4 presents our experiments and 
the results we obtained. Section 5 sets out the related work. 
Finally, Section 6 concludes the paper. 

II. SCHEDFLOW ARCHITECTURE 

In this section, we describe the architecture and available 
interfaces in SchedFlow. We also explain how users can 
integrate new scheduling policies into SchedFlow without 
changing either the workflow engine architecture or the user 
application. Figure 1 shows the three main modules 
(Controller, Observer, and Scheduler), that allow the 
execution of a workflow's tasks. SchedFlow has two 
interfaces, one dedicated to the integration of scheduling 
policies, and another one to link our system to a workflow 
engine (Adaptors). 

Figure 1. SchedFlow General Architecture. 

Controller: This module is responsible for storing workflow 
tasks in the task _list, and sending these tasks to the Scheduler 
module for planning. The Controller module remains active 
waiting for the Scheduler module to send the result of 
mapping the tasks. Once received, tasks mappings are sent to 
the workflow engine to be executed. 

Observer: This module is responsible for managing the 
resource list used by the Scheduler module to schedule tasks. 
Additionally, this module monitors the logs in order to get 
information on the events that affect the tasks that are being 
executed, and informs the Controller module of the tasks that 
have finished correctly. 

After getting that information, another task is sent to the 
workflow engine if the scheduling is static or to the Scheduler 
if the scheduling policy is dynamic. If there is a failure in the 
execution of a task, the Observer will signal the Scheduler to 
remap the whole failed task's sub-tree in the static case, or 
only remap the failed tasks in the dynamic case. 

Scheduler: This module is responsible for mapping tasks 
onto machines. As shown in Figure 1, the Scheduler uses the 
scheduling policies defined by the user. The scheduler returns 
a list of scheduled tasks according to the scheduling algorithm 
selected to run the workflow. This mapping is sent to the 
Controller so it can send the scheduled tasks to the workflow 
engine to be run. 

API: SchedFlow provides an API to the user that allows the 
integration of scheduling policies for workflows without the 
need to modifY the workflow engine. The user has to 
implement their scheduling policy (or policies) as a C++ 
function that will call the appropriate methods provided by 
SchedFlow. This user scheduling policy is loaded as a 
dynamic library by the Scheduler module, which will invoke it 
as needed. Both static and dynamic policies can be integrated 
into SchedFlow. 

Adaptors: These modules provide an interface to allow the 
connection of different workflows engines, taking advantage 
of the services provided by those workflow engines (such as 
launching a task for its execution). So far SchedFlow includes 
adaptors for three workflow engines, namely DAGMan, 
Taverna, and Karajan. 

The adaptors link SchedFlow to the different workflow 
engines. Figure 2 shows the three main adaptor services that 
are used to obtain the information necessary to SchedFlow. 

WORKFLOW ENGINE 

Figure 2. Workflow Engine Interface. 

We now explain the services implemented by the Adaptors, 
and shown in Figure 2. 

Task's Adaptor: This service interacts with the Controller 
module, sending out the tasks mapped to the corresponding 
workflow engine. 

a. In the case of Condor DAGMan, the condor_submit_dag 
command is used. 



b. In the case of Triana, the run_worliflow command is 
used. 

c. In the case of Taverna, the job _submission command is 
used. 

Resource Adaptor: This service allows the Observer module 
to obtain the resources available from the execution 
environment as seen by the each workflow engine. 

a. In the case of Condor DAGMan, the condor_status 
command is used. 

b. In the case of Triana, the Triana V3Resources directory 
is used. 

c. In the case Taverna, the g_resource command is used. 

Event adaptor: This service is required for the Observer and 
Scheduler modules to reschedule tasks when an unexpected 
event occurs in the machine running them (these events are 
detailed in Section 3); this information is provided for each 
workflow engine accordingly. 

a. In the case of DAGMan, events are obtained from the 
information log indicating the task's status. 

b. In case of Triana, we use the show"'properties tool of 
the task's that provides their status at runtime. 

c. In the case of Taverna, the log_book_data content is 
used. 

III. TASK MONITORING 

In this section, we describe the task monitoring carried out 
by the Observer to allow SchedFlow to react to different 
events occurring while the tasks of the workflow are running. 
The Observer has the log_ monitorO function which allows 
dealing with dynamic scheduling policies and performing 
rescheduling. If a task finishes with a state different than 
Done, the Observer checks what event happened (events are 
described later in this section) and reacts accordingly. 

In the previous section, we defined the requirements for a 
workflow engine, and now we describe the flow that each task 
must follow to be executed. We also describe what happens 
when an event occurs at runtime. 

Runtime events, such as task suspensions, are monitored by 
SchedFlow. When a task belonging to the workflow is ready 
to be executed (ready state) as its dependencies are satisfied, 
SchedFlow assigns the task to a computing resource through 
the Scheduler module, putting this task on the list of mapped 
tasks (mapped_list). 

Then, using the Controller module, the task is submitted to 
the workflow engine, so that it will be run (Run state). When a 
task completes these steps, it will successfully finish (done 
state) and be put on the done _list. Our system also manages 
unexpected events, by reacting dynamically. 

We basically detect, throughout the Observer module, two 
different events: 

Suspended Tasks: a task sent to a computing resource may be 
interrupted and suspended when local processes are run on the 

executing machine, so that the task is suspended for a random 
period of time. 

The consequence is a delay in the conclusion of the whole 
application. To support this event, SchedFlow uses the 
Observer module, so when this event occurs, the task might be 
rescheduled to a new resource, using the unmapO function. 
The Scheduler is responsible for performing this corrective 
action. 

Failed Task: a task that was sent to a computing resource 
and running might fail due to a variety of reasons (evicted 
from the system, due to a machine or network failure, for 
example). In all these cases, the task will be considered as 
failed because SchedFlow can no longer wait for it to finish 
successfully. SchedFlow manages this event by rescheduling 
the task to a new resource, using the unmapO function. 

These actions are carried out by SchedFlow in a transparent 
way and no user intervention is needed. It is worth noting that 
this Task Monitoring option can be switch off by the user, but 
that would mean that the user should be aware of the task that 
fails and resubmit it. Given that workflows may have 
thousands of tasks, manual error handling can be difficult. 

While each workflow engine has its own notation for 
representing workflows, ShedFlow is capable of reading the 
these different notations by using the corresponding adaptor 
(by using the set_wofliflowO function). SchedFlow will 
translate the workflow into an internal structure that contains 
all the details about workflow tasks and their dependencies. 
Similarly, the resources, specific to each Workflow Engine, 
are obtained with the get JesourceO function, which will 
translate the information provided by each workflow engine 
into an internal structure. 

Scheduling algorithms for workflows usually need accurate 
estimates of the execution time of the task on each potential 
machine, as well as accurate estimates of the communication 
time between each pair of connected tasks in the workflow. 
This data is needed because execution time is commonly a 
function of the size and properties of the input data. And 
communication times depend on the volume of data 
transferred. 

In the homogeneous case, it can be assumed that each task 
performs identically on each target machine. Therefore, a 
single estimate of the execution time of each task is required, 
and is fairly easy to obtain. This situation, however, is not true 
for heterogeneous and dynamic systems since an execution 
time estimate is required for each task-machine pair, and there 
are many factors unique to heterogeneous systems that can 
affect the execution time. SchedFlow includes two methods 
that can be used to include estimates of execution and 
communication times, (get_com_tO and get_comm_tO), 
respectively. 

Unfortunately, current Workflow Engines do not provide 
such estimates (only some synthetic performance information 
is provided for available machines). Therefore, execution and 



communication time estimates must be computed by external 
mechanisms. SchedFlow currently includes a simple 
mechanism based on historical information from past 
executions and we are currently working on the integration of 
a more sophisticated method based on nonparametric 
regression techniques [19]. 

In next section before describing the experimentation 
carried out, we comment on some of the factors that have 
effect on the scheduling policy to choose for a workflow 
application. 

IV. EXPERIMENTAL DESIGN AND RESULTS 

In this section we describe our experiments and the results 
that we obtained. 

Different factors may affect the choice of scheduling policy 
for specific set of tasks belonging to a specific workflow. One 
of these factors is the initial workload supplied to the tasks. In 
the experiments that we performed, we confirmed that the size 
of the workload, strongly influence which scheduling policies 
performed better, i.e., resulted in a lower makespan. One of 
our objectives was to quantifY this effect by executing two 
different applications with the same workload engine and 
similar execution environments, and changing the initial 
workload and considering different scheduling policies. The 
environment was one in which 90% of the machines are the 
same for all the executions, while the other 10% may change 
dynamically. 

We used SchedFlow to run our experiments on a real cluster 
so these experiments went beyond the classical results 
obtained by simulation. With SchedFlow the user-defined 
scheduling policies are applied by the desired workflow 
engines. Without SchedFlow the user would have to provide a 
scheduling policy workflow engine interface, and it would be 
difficult to try a scheduling policy under different engines. So 
it is common that the user ends up just using the default 
scheduling policy provided by a workflow engine, and 
therefore pays a price in performance. 

A. Experimental Environments 

Our experiments were carried out on an opportunistic and 
non-dedicated environment, composed of 140 Intel-based 
computing nodes running Linux Fedora Core 5. According to 
the data benchmark provided by Condor, machine 
performance in this environment ranged from 0.25 to 0.75 
GFlops. 

We used SchedFlow for running different scheduling 
policies feeding different workflow engines. The scheduling 
policies implemented were Random, Min-Min[11], HEFT [8, 
9] , and BMCT [10]. The workflow engines used were 
Taverna, Karajan, and Condor DAGMan. We ran our 
experiments with two applications, Montage (with 53 tasks) 
and LIGO (with 81 tasks), and varied the input workload 
(400MB and 1024MB) and studied the effect of the scheduling 
policies depending on the workload. 

As we had hypothesized, we found that no single scheduling 
policy worked better for all the scenarios, therefore 
SchedFlow can be a useful tool that allows scientists to obtain 
better performance when executing their workflows, allowing 
it to choose the scheduling policy to be used depending on 
dynamic factors of a particular run. 

In our experiments we used the rescheduling option of 
SchedFlow, which means that in case of unexpected events 
(suspensions or failures) the associated task is rescheduled and 
executed on a different machine. 

B. W orkjlow Applications 

Montage [17] is an astronomical toolkit for assembling 
flexible image transport system (FITS) images into custom 
mosaics. The Montage workflow is divided into levels (as 
seen in Figure 3). Levels 1, 2 and 5 have 12, 23 and 12 nodes, 
respectively, while other levels have only one node. 

To execute this application it is necessary to include the 
input images in FITS format (this is the standard format used 
by the astronomical community), with e a header file that 
specifies the mosaic type that is to be built. 

This workflow operates in three steps. First, input images are 
the re-projected; second, re-projected images are refined; and 
last, of the re-projected images are superimposed and refined 
to obtain the mosaic in JPEG format. 

Figure 3: Montage's Workflow. 

I mProject I 

I mDiffFit I 

mConcatFit I 

mBgModel 1 

mBackground I 

mlmgtbl l 

I mAdd I 
I mShrink I 

I mJPEG I 

LIGO (Laser Interferometer Gravitational Wave 
Observatory) is aimed at detecting gravitational waves 
produced by violent events in the universe, such as the 
collision of two black holes or the explosion of supernovae 
[20]. 

We used a small part of LIGO with 81 nodes, as shown in 
Figure 4. 



C. Experimentation and Results 

We carried out four sets of experiments using the execution 
environment above described. In summary, the results from 
our experiments showed that we were able to effectively use 
different scheduling policies with different workflow engines 
in a transparent and flexible way. 

.:.. 

.:.. . : ';,..;.,. '�-.. ' .. ,. 

Figure 4: LIGO's Workflow. 

Our experiments were designed to study the performance 
obtained with different scheduling policies when the initial 
workload supplied to the application is changed. Indeed, we 
wanted to see the results when changing the initial workload 
while using the same workflow engine, workflow application 
and scheduling policy. Our performance measure for these 
applications makespan, that is, the execution time it takes to 
run from the first node of the workflow up to the completion 
of the last one. 

Our first scenario consisted of the Montage workflow run on 
the three different workflow engines considered, Taverna, 
DAGMan, and Karajan. In this scenario, we used their default­
and very simple-scheduling schemes. This was our reference 
point for comparison when we introduced different scheduling 
policies and workloads. 

For this experiment we used a 400MB workload. We 
performed 120 executions of a Montage application with 53 
tasks. The corrective measures in the presence of failures are 
those provided by the workflow engine, and the execution 
environment was stable. That means that we submitted 
workflow for execution only if 45 computing resources (out of 
a total of 140) were available for our application. 

Figure 5 shows the obtained results in the basic case, when 
the default scheduling policies of the workload engines were 
used. The X axis contains shows the workflow engine used, 
and the Y axis is the average makespan for the 120 executions, 
shown in seconds (the makespan for the two workloads was in 
the range from 5000 to 7300, with a standard deviation of 
around 180). 

Our next step consisted of running the same experiments, 

but this time using SchedFlow to select the scheduling 

policies, These experiments not only provide a comparison 

between using a fix and dynamically-chosen scheduling 

policy; they also provide insight as to which scheduling policy 

is more effective for a given application. 

All other aspects of the scenario are kept the same. We still 

guarantee 45 machines, and the workload is 400MB. The only 

change is that now we can choose between different well 

known scheduling policies (min-min [11], HEFT [8, 9] and 

BMCT [10]), and the support for rescheduling is managed by 

SchedFlow. The engines are used for dependency 

management and monitoring. The information provided by the 

workflow engine is used by SchedFlow to improve the 

makespan. Figure 6 shows us the results obtained. 

The engines are used for dependency management and 

monitoring. The information provided by the workflow engine 

is used by SchedFlow to improve the makespan. Figure 6 

shows us the results obtained . 

The results show that when using user-supplied scheduling 

policies (instead of the engine default scheduling policy), the 

makespan is reduced on all workflow engines. This fact 

confirms that frameworks like SchedFlow are useful for 

improving performance, with the benefit of dynamically 

selecting the algorithm outweighing the cost of choosing or 

rescheduling. 

We also noted that, independently from the workflow engine 

used, the policy that gives best results with the 400 MB 

workload is BMCT. The results in DAGMan and Karajan are 

strikingly similar, which seems to indicate that they manage 

the applications in a similar fashion, distinctively from that of 

Taverna. However, the important fact here is that by using 

more sophisticated policies the makespan is reduced by 

around 30%. 

In the next experiments we varied the input workload from 

400MB to 1024MB. Figures 7 and 8 correspond to these 

results. It can be seen that the results when using the workflow 

engines and their default scheduling policies are in par with 

that of the previous ones, of course with much bigger times, 

given the bigger initial workload. 

However, when we perform the comparison with the 

different scheduling policies and SchedFlow, we can see 

important changes regarding the results. The first one is that 

BMCT is no longer the best policy. HEFT schedules better 

when workloads are bigger, as can be seen in Figure 8. 

BMCT delivered lower performance because its scheduling 

is based in a parameter called rank, which gives priorities to 

tasks. If this parameter is not properly adjusted, the policy 

works poorly, leading to a worse makespan. 

We repeated the same experiments using the LIGO 

application. Though the makespan for LIGO was 

approximately five times larger than the makespan for 



Montage, the results obtained with LIGO when the workload 

changed were similar to the ones obtained with the Montage 

application. The experiments show that as scheduling policies 

are sensitive to initial input workloads, there is not a single 

best policy for a given application. With SchedFlow, we were 

able to quantify the effect of different scheduling policies on 

different workflow engines, therefore demonstrate the 

potential of our framework. With SchedFlow the user can use 

the desired scheduling policies depending on dynamic and 

application specific conditions in an transparent and flexible 

way. This can be especially useful in dynamic environments 

such as Grids and Clouds. 

13000 

12000 

'1000 

10000 

..,. 9000 
u " 
.!!. 8000 
" '" 7000 

� 6000 .. 
Iii 5000 
g. 4000 " 

x 

� 3000 

2000 

1000 

Taverna DAGMan Karajan 

Workflow engine with default scheduling policies 

Figure 5. Montage execution using the default scheduling 

policies with a workload of 400MB. 

U 
� 
" '" 

� .. 
Iii 

� 
� 

I Dmin-min -HEFT oSMel I 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

Taverna DAGMan Karajan 

Workflow engine with differents scheduling policies 

Figure 6. Montage execution using SchedFlow with a 
workload of 400MB. 

30000 
28000 
26000 
24000 
22000 

i' 20000 

!!!. 18000 
" 16000 

� 14000 
.. 12000 
Iii 
g. 10000 
" 8000 x 

� 6000 
4000 
2000 

Taverna DAGMan Karajan 

Workflow engine with default scheduling policies 

Figure 7. Montage execution using the default scheduling 
policies with a workload of 1024MB. 

..,. 
u " 
.!!. 
" '" 

� .. 
" .. 

j .. 
::;; 

I "min-min -HEFT oBMeT I 
16000 

14000 

12000 

10000 

8000 

&000 

4000 

2000 

Taverna DAGMan Karajan 

Worflow engine with differents scheduling policies 

Figure 8. Montage execution using SchedFlow with a 
workload of 1024MB. 

V. RELATEDWORK 

In this section we review related research in workflow 
management, and we review how SchedFlow narrows the 
existing gap between scheduling policies for workflows and 
workflow engines. 

Condor DAGMan [6] is a meta-scheduler for Condor. It 

manages job dependencies at a higher level than the Condor 
Scheduler. Condor DAGMan is a dynamic system that uses a 
random scheduling policy. Additionally, with Condor 
DAGMan it is difficult to execute tasks in a specific order to 
minimize the makespan. 

In Taverna [10], the workflow manager allows users to 
construct complex analysis workflows from components 
located on both remote and local machines, run these 
workflows with their own data, and visualized the results. The 
scheduling policy of Taverna is heuristic scheduling based on 
performance models (CPU speed), which means that tasks are 
sent to the machines with better performance. 



Karajan [6] is an extensible workflow framework derived 
from GridAnt [14] which supports loops of workflow 
structures. Its default scheduler cycles through a list of 
available resources and uses the first resource suitable for the 
given task. The resource search for the next task begins with 
the resource immediately following the last resource used in 
the list. If the end of the list is reached, the search continues 
from the beginning of the list. Its fault-tolerance scheme is 
based on task retries in alternating resources. Karajan does not 
support the integration of new scheduling policies. The 
resource search for the next task begins with the resource 
immediately following the last resource used in the list. If the 
end of the list is reached, the search continues from the 
beginning of the list. Its fault-tolerance scheme is based on 
task retries in alternating resources. Karajan does not support 
the integration of new scheduling policies. 

Pegasus [12] is a system that maps an abstract workflow to 
the set of available Grid resources and generates an executable 
workflow. An abstract workflow can be constructed by 
querying Chimera, a virtual data system, is provided by users 
in DAX (a DAG XML description). Pegasus consults various 
Grid information services to find the resources, software, and 
data required for the workflow. The Replica Location Service 
(RLS) is used to used to locate the replicas of the required 
data, and the Transformation Catalog (TC) is used to locate 
the logical application components. There are two techniques 
used in Pegasus for resource selection: one uses random 
allocation, and the other uses performance prediction 

A complete taxonomy and classification of workflow 
systems are described [16] according to their main functions 
and architecture of workflow systems. Existing workflow 
engines provide very simple scheduling mechanisms. Current 
experiences with more sophisticated strategies imply 
introducing important changes to the underlying workflow 
engine. 

SchedFlow is intended to be a general framework that is not 
targeted to either a specific workflow engine or to a particular 
application. This generality makes it possible to integrate 
different policies using a single tool and the end user does not 
need to change whole architectures to be able to efficiently run 
a workflow. Furthermore, our tool can be linked with other 
workflow managers. 

VI. CONCLUSIONS 

In this work, we showed that for the same workflow 
applications and workflow engines, the choice of scheduling 
policy should depend on dynamic and difficult to control 
factors such as the initial workload supplied to the 
applications. 

As our experimental environment was mostly 
homogeneous, we predict that, in more heterogeneous and 
opportunistic environments such as Grids and Clouds, this 
effect will be magnified. That means that no single scheduling 
policy will be the most advantageous to use when executing 
workflow applications. 

SchedFlow allowed us to implement and execute different 
scheduling policies (both dynamic and static), as well as 
integrate them with different workflow engines in an easy and 
flexible way, therefore significantly narrowing the current gap 
existing between scheduling policies and workflow engines. 

SchedFlow is available for 
http://code.google.com/p/schedflow/. 

ACKNOWLEDGMENT 

download at: 

Special thanks to Daniel S. Katz for his valuable aid with the 
Montage application. 

REFERENCES 

[1] GriPhyn, http://www. griphyn.org. 

[2] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. 
Blackburn, P Ehrens, A Lazzarini, R Williams, and S. Koranda, 
"GriPhyN and LIGO, Building a Virtual Data Grid for Gravitational 
Wave Scientists," Proceedings of the 11th IntI. Symposium on High 
Peiformance Distributed Computing, Edinburgh-Scotland, July 2002, 
pp. 225. 

[3] SCECsCM, http://www.scec.org/cme. 

[4] 1. Annis, Y. Zhao, 1. Voeckler, M. Wilde, S. Kent, and L Foster, 
"Applying Chimera Virtual Data Concepts to Cluster Finding in the 
Sloan Sky Survey," Proceedings of the 2002 ACMlIEEE Conference on 
Supercomputing, Baltimore, MD-USA, November 2002, pp. 1-14. 

[5] NPACI, https://gridport.npaci.eduJTelescience. 

[6] DAGMan, http://www.cs.wisc.edulcondor/dagman. 

[7] E. Ceyhan, G. Allen and Christopher White and Tevfik Kosar, "A grid­
enabled workflow system for reservoir uncertainty analysis", 
Proceedings of the 6th International Workshop on Challenges of Large 
Applications in Distributed Environments, Boston, MA-USA, June 
2008, pp. 45-52. 

[8] M. Brahm, and H. Pargmann, "Workflow Management with Sap 
Webflow: A Practical Manual", Springer Verlag, California-USA, 
2004. 

[9] Z. Guan, F. Hernandez, P. Bangalore, 1. Gray, A Skjellum, V. 
Velusamy, and Y. Liu, "Grid-Flow: a Grid-enabled scientific workflow 
system with a Petri-net-based interface", Concurrency and 
Computation: Practice and Experience 18, 10, Chichester-UK, August 
2006,pp. 1115-1140. 

[10] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M.Greenwood, T. 
Carver and K. Glover, M.R Pocock, A Wipat, and P. Li, "Taverna: a 
tool for the composition and enactment of bioinformatics workflows", 
Journal-Bioinformatics 20,17 Oxford Univ Press, London-UK, 2004, 
pp. 3045-3054. 

[11] L Taylor, M. Shields, L Wang and A Harrison, "Visual Grid workflow 
in Triana", Journal of Grid Computing, Netherlands, 3, 3-4, 2005, pp. 
153-169. 

[12] G. Singh, M. H. Su, K. Vahi, E. Deelman, B. Berriman, 1. Good, D. 
Katz, G. Mehta, "Workflow task clustering for best effort system with 
Pegasus ", Proceedings of the 15th ACM Mardi Gras Coriference, Baton 
Rouge, LA-USA, January 2008, pp. 1-8. 



[13] H Topcuoglu, S. Hariri, and M. Wu, "Performance-Effective and Low­
Complexity Task Scheduling for Heterogeneous Computing", IEEE 
Trans on Parallel and Distributed System, 13, 3, 2002, pp. 260-274. 

[14] R. Sakellariou, and H Zhao, "A Hybrid Heuristic for DAG Scheduling 
on Heterogeneous System," Proceedings of 18th International Parallel 
and Distributed Processing Symposium, Santa fe, New Mexico-USA, 
April 2004, pp. 111. 

[15] H. Xiaoshan, X. Sun, and G. Laszewski, "QoS guided min-min heuristic 
for grid task scheduling". International Journal of Computer Science 
and Technology 18, 4, Beijing-China, 2003, pp. 442-451. 

[16] J. Yu, and R. Buyya. "Taxonomy of Workflow Management Systems 
for Grid Computing", Journal of Grid Computing 3, 3, 2005, pp. 171-
200. 

[17] G. Berriman, A Laity, J. Good, J. Jacob, D. Katz, E. Deeiman, G. 
Singh, and T. Prince, "Montage: The Architecture and Scientific 
Applications of a National Virtual Observatory Service for Computing 
Astronomical Image Mosaics," Proceedings of Earth Sciences 
Technology Coriference, Hyattsville, Maryland-USA, June 2006. 

[18] F. Berman, R. Wolski, H Casanova, W. Cime, H. Dail, M. Faerman, S. 
Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. 
Spring, A. Su, and D. Zagorodnov, "Adaptive Computing on the Grid 
Using AppLeS", IEEE Trans on Parallel and Distributed System, Vol. 
14, 4, April 2003, pp. 369-382. 

[19] Michael A. Iverson, Gregory J. Follen, "Run-time statistical estimation 
of task execution times for heterogeneous distributed computing", 
Proceedings of the High Peiformance Distributed Computing 
Conference, Syracuse, New York- USA, August 1996, pp. 263-270. 

[20] Brown, D. A. and Brady, P.R. and Dietz, A and Cao, J. and Johnson, B. 
and McNabb, J. "A case study on the use of workflow technologies for 
scientific analysis: Gravitational wave data analysis", Worliflows for e­
Science, 2007, pp. 39-59. 


