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ABSTRACT 
It is common to use servers to provide access to facilities in a distri- 
buted system and to use remote procedure call semantics to access 
these servers. Procedure calls provide a synchronous interface to 
call downward through successive layers of abstraction, and remote 
procedure calls allow the layers to reside in different address spaces. 
Servers, however, often need the ability to initiate asynchronous and 
independent actions. Examples of this asynchrony are when a net- 
work server needs to signal to an upper layer in a protocol, or when 
a window manager server needs to respond to user input. 

Upcalls are a facility that allows a lower level of abstraction to pass 
information to a higher level of abstract in a clean way. We 
describe a facility for distributed upcalls that allows upcalls to cross 
address space boundaries. The complement of remote procedure 
calls for handling synchronous Server requests and distributed up- 
calls for handling asynchronous server activities provide a powerful 
tool for structuring servers. These facilities, together with the abili- 
ty to dynamically load modules into a server, allow the user to arbi- 
trarily place abstractions in the server or in the client. 

Distributed Upcalls have been built into a server Structuring system 
called CLAM, which is currently being used to support an extensible 
window management system. The CLAM system, including distri- 
buted upcalls, remote procedure call extensions to C++, dynamic 
loading, and basic window classes, is currently running under 
4.3BSD UNIX on Microvax workstations. 

1. Introduction 
The server model is a common structure for providing access 

to facilities in a distributed system. Servers are typically accessed 
using procedure call semantics. Procedure calls provide a synchro- 
nous interface to call downward through successive layers of 
abstraction, and remote procedure calls[l] allow the layers to reside 
in different address spaces. A problem with layering using pro- 
cedure calls is that it does not allow for asynchronous and indepen- 
dent action on the part of the server. Actions generated at the 
lowest level of abstraction should be able to, in effect, call upwards 
through the layers of abstraction. There are natural applications for 
this upwards calling structure in servers supporting layered network 
protocols and user interface managers. 

A design for structuring asynchronous upward calls, called 
upcalls, was described by Clark [2]. Upcalls allow a programmer to 
specify, for each layer in a system, a routine that will be called by a 

lower layer in response to asynchronous events. Upcalls are imple- 
mented between layers that reside in the same address space. This 
paper describes a design for distributed upcalls, a mechanism for 
propagating upcalls across address space boundaries. Distributed 
upcalls provide a natural complement to remote procedure calls. 

Distributed upcalls extend the programmer’s flexibility in 
using layers. A server provides some abstraction to its clients, and 
this abstraction is often implemented in several layers. The clients 
(application processes) will layer their own abstractions on top of 
the base abstractions provided by a server. Distributed upcalls 
allow asynchronous actions to propagate upwards through any of 
these layers - in the server’s address space and then in the client’s. 

We have implemented a server structuring system called 
CLAM [3]. CLAM allows clients to dynamically load new layers 
(object modules) in the server, and then access these modules using 
remote procedure calls. Users can layer abstractions in the client 
processes (staticly bound) or dynamically load the layer into the 
server. CLAM allows upcalls to cross between layers in different 
address spaces. The user decides where to place a particular layer 
based on frequency of access, speed on communication channels, 
speed of client and server CPUs, and requirements for sharing, 
debugging, and protection. 

The next section describes the CLAM server and provides an 
example of the use of distributed upcalls. CLAM’S RPC facility 
directly affects the implementation of distributed upcalls. Section 3 
discusses the interaction between a client and the CLAM server, 
including the use of our RPC facility, parameter handling, and use 
of the C++ [4] programming language. Section 4 describes how 
CLAM supports distributed upcalls. This includes a discussion of 
the upcall mechanism and the use of asynchronous threads. Section 
5 describes the current status of CLAM, presents basic performance 
data, and provides some general conclusions. 

2. CLAM and an Example 
The CLAM server is currently being used for development of 

an extensible user interface (window) manager [3]. The server itself 
consists of approximately 30K bytes of (VAX) code and contains no 
code specific to window management. CLAM allows clicnt 
processes to request new object modules to be dynamically loaded 
into the server. These modules are then accessed by clients using 
remote procedure calls. Dynamically loaded procedures access 
other dynamically loaded procedures using normal procedure calls. 
The server is written in C++ and the dynamically loaded modules 
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are C++ classcs. The server contains classes to support the dynamic 
loading, version control, thread scheduling and synchronization, and 
distributed upcalls. All application specific code is dynamically 
loaded. 

Following is an example of the use of distributed upcalls, 
based on the CLAM user interface manager. Input in user intcrfaces 
has been done typicidly in one of several ways. One way to do 
input is to make it completely synchronous. An input request 
occurs at the highest level of abstraction. This request is propagated 
down through the layers until it blocks at the lowest level. When 
the low level input occurs, the return values from the procedures 
form an upward mapping of the input abstraction. This scheme 
make asynchronous input difficult. A second way to do input is to 
have the low level input event asynchronously intermpt the user 
task. The client will receive a low level input event containing 
information such as X-Y window coordinates. This information 
will thcn have to be passed down through the layers until wc find a 
ievc: that can interpret the inpu:. and then passed back up 
returns (ram procedures). This method is awkward because it force:; 
higher icvcls to dcal with the details oi‘ abstraction representations 
that they should no: see. 

Inpu: is inherently asynchronous at some level. Asynchronous 
inpu! events should be able to propagate up through the layers in 3 
system, with each layer given the opportunity to map the event: 
queue it, discard it, or pass it up to the next layer. Each successive 
laycr can decide whether to propagate the asynchrony (passing the 
event upwards) or limit the asynchronp (queuing the event). The 
rollowing example demonstrates the use of distributed upcalls in 
processing Inpur. 

2.1. Upcall Example 
A common operation supported by window managers is to 

allow the user to be able to “sweep” out a new window. The user 
invokes this function, and then uses the mouse to drag one comer of 
the window outline until it has the desired size and shape. Swecp- 
ing can be implemented in several places in a window system. One 
place for the swceping code is directly in the window server. The 
server can respond quickly to input evcnts and the dragging pro- 
duces a smooth visual effect. A disadvantage of building sweeping 
into the server is that options such as window alignment and tran- 
sparency of the sweep window are decided in the server design; lit- 
tle flexibility is provided to the client. A second place to put the 
sweeping function is in client code, as is done in the X [5j window 
manager. This allows flexibility in choosing implementation varia- 
tions, but passing every input event across between the scn‘cr pro- 
cess and a client process may be slow and can produce unpleasing 
visual effects. 

Upcalls provide a simple solution. The code to sweep OUI a 
window is dynamically loaded into the CLAM server. Clients can 
decide the details of window creation and load an appropriate vcr- 
sion of the sweeping code. Different clients could have different 
versions, depending on their application. Low level input routines 
would perform an upcall to the sweeping layer (module). This layer 
would process the event, redrawing the window border with new 
event. Events would be processcd quickly, since upcalls are basicly 
procedure calls. When the user finishes sweeping (indicated by 
pressing a mouse button), the sweeping layer makes an upcall to the 
next laycr, passing the single “window created” event. This last 
upcall could pass to an application layer loaded into the servcr or tx 

a distnbutcd upcall to a layer residing in a client. 

3. Remote Procedure Calls 
Our goal for the CLAM RPC mechanism is to minimize the 

distinction between local and remote procedure calls. As we 
minimize this distinction, we provide the programmer with more 
flexibility in placing abstractions in a distributed system. Further- 
more, CLAM does not require the use of an extemal specification 
language for bindings on remote calls. We integrated the RPC stub 
generator with the normal compiler, freeing the programmer from 
writing stub specifications in addition to the procedures themselves. 

Stubs are procedures added to the client and server to bundle 
and unbiindie parameters being passed to the remote procedure. 
Bundling is the task of converting a data object from its internal 
representation to a machine independent representation. Unbun- 
dling converts the data back into its internal representation. The 
compilcr uses the available syntactic and typing infomution to 
automatically generate bundlers for most remote parameterx. Wc 
addc3 an extension to the C++ syntax to specify paramcicr bundlers 
in tlie cases tha! cannot be handled automatically by the compile:. 

This section firs: discusses tlie differences between liic 
automatic and user-specified bundling of parameters to remote pro- 
cedures. Next, we present the C++ modifications used by CLAM to 
allow user-specified parameter bundling, and describe the implc- 
mentation of remote parameter bundling. Last, we describe how 
CLAM handles pointers that cross address space boundaries. If you 
are familiar wi’h the issues involved in bundling parameters and the 
basic operation of a remote procedure call mechanism, you may 
skip to scction 3.5, which discusses CLAM’S support for passing 
pointers and addresses, which is central to the support of remote 
upcalls. 

3.1. Automatic vs. User-defined Bundling 
Two ways of generating bundlers are to make the compiler 

automatically generate them, or to have the programmer write them. 
Among those systems that have compiler generated bundlcrs are the 
Lupine compiler in Grapevine[ll and Sun’s rpcgen[h]. Many, but 
not all, data types can be automatically bundled. Primitive data 
types, like integers and characters that are passed by value, and data 
structures containing only primitive types are easy to bundle. In 
thesc cases, the bundler just passes the parameter to its counterpart 
in the sewer. Both Lupine and rpcgcn allow these types of pass- 
by-value parameters. 

Reference and pointer data types arc more difficult to bundle 
automatically, because processes typically do not share address 
spaces in an RPC system. Fuli reference parameter semantics are 
difficult to support when there is no shared memop. Lupine does 
not allow reference parameters to be passed to remote proccdurcs. 
Pointers can be supported automatically, but require complex bun- 
dling algorithms when they are part of a data structure. Consider, 
for example, the ways in which a node of a threaded, binary tree can 
be passed to a remote procedure. One way to pass the node would 
be to just pass the node itself, and nothing else. This bundling 
method will fail if the remote procedure wants to examine the 
node’s children as well. The other extreme is to take the transitive 
closure starting at the node by following its pointers recursively. 
Rpcgen I S  an example of a system which chooses this method. This 
method produces correct results but can have a significant perfor- 
mance penalty. Taking the transitive closure can cause the whole 
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tree to be passed remotely. When only the node itself is desired, the 
work to bundle the other nodes is wasted. 

The altemative to automatic stub generation is to have the pro- 
grammer write bundlers. This method solves the problems the 
automatic generators had with bundling pointers. Since the pro- 
grammer may know how the data is to be used in the remote pro- 
cedure, they can write the stubs to pass only as much data as neces- 
sary. While reference parameter semantics still cannot be sup- 
ported, the programmer can modify the program and the stubs so 
that reference parameters are not required. This method has its 
drawbacks. It is tedious, requiring the programmer to write addi- 
tional code and to deal with the underlying IPC support. Also, sim- 
ple data types can easily be bundled automatically, so requiring the 
programmer to do so is unnecessary. It introduces the possibility of 
additional programmer error while writing the bundlers. 

In the CLAM RPC facility, we chose the middle ground. Usu- 
ally, he compiler can generate appropriate stubs automatically. It 
can handle the primitive data types and data structures without 
pointers. When bundling pointers, the CLAM facility allows the 
programmer to specify their own bundlers. Because the C++ type 
system is rich, the compiler has sufficient information to generate 
the stubs directly (similar to Lupine). 

We wanted to have the compiler generate bundlers for all 
parameters, but pointer data types in C++ have several meanings 
and cannot be bundled correctly and efficiently in all cases. For 
example, in the declaration 

C h a r P o i n t e r  could denote a pointer to a single character, a C 
style string terminated by a NULL character, or a pointer to the first 
character of an array of characters of some arbitrary length. Also, if 
the stub generator is presented with a recursive data structure (a data 
stmcture containing pointers), it has no idea how much data to pass 
remotely. In both cases, passing too little data will produce 
incorrect results, passing too much will degrade performance. To 
alleviate this problem, we added a facility to allow the programmer 
to specify user-defined bundlers for such parameters. 

3.2. Grammar Modifications 
A stub generator can generate procedure stubs from the source 

code directly, or it can use a special stub specification language. 
We chose to integrate stub and bundler generation with the base 
compiler. Both altematives are used in other stub generators. 
Lupine takes a Mesa interface module, a standard part of the Mesa 
language, and generates the client and server bundlers directly from 
this specification. No modifications were made to Mesa to support 
RPC. Rpcgen is meant to work with the C language. Because C’s 
typing is inadequate, rpcgen requires the programmer to specify 
data types in a special language called WCL. It includes special 
types to describe fixed and variable length arrays and C character 
strings. Lupine, because it uses the Mesa interface module, cannot 
allow all data types to be passed remotely. Rpcgen, by using a spe- 
cial language, allows all types. Because rpcgen uses a separate 
language, the programmer must write both the program itself and 
the stub specification. 

As was described above, C++ pointers can take on a several 
meanings, necessitating programmer-specified bundlers. To 
integrate programmer-specified bundlers, we extended the C++ 
grammar. The modified syntax allows a bundler specification to be 

char* C h a r P o i n t e r ;  

made for each parameter and retum value. With this extension, 
almost all C++ data types may be passed to remote procedures. 

The extension takes two forms: an in place specification, used 
when declaring formal parameters and retum values, and a type 
definition specification, used when declaring a new data type. The 
first method gives the programmer the freedom to specify a different 
bundler each time a data type is used. The second method, which is 
a modified version of the t y p e d e f  statement, associates the 
bundler with the new type. Every time the new type is used as a 
parameter or a retum value, the specified bundler will be used. This 
is useful when a certain type of parameter is to be bundled in the 
same way every time it is used. The typedef specification has the 
additional benefit of making the body of a program look cleaner. If 
the type of a parameter has a bundler associated with it and a 
bundler is also specified in place, the in place bundler will be used. 

Figure 3.1 shows examples of how bundlers are specified. 
Only a portion of the class definition is shown. Bundlers are 
specified following an at-sign ( “ @ ’ I ) .  P t - b u n d l e r  bundles a 
single point, and p t -a r ray-bundler ,  bundles an array of 
points. The bundler, p t - b u n d l e r ,  is associated with the type 
P o i n t p t r ,  and is implied whenever this type is used in the code. 
The procedures Drawpoin t  and D r a w p o i n t s  specify their 

struct Point ( 

1; 

extern Point* pt-bundler(Point*); 
extern Point* pt-array-bundler(Point*, int); 

typedef Point* PointPtr @ pt-bundler(); 

class 3Dgraphics ( 
public: 

short x, y, z; 

void drawpoint (Point* thept) ; 
void drawpoints(int number, Point* pts); 
void drawline(PointPtr startpt, PointPtr endpt); 
PointPtr get-cursor-pos(); 

void 3Dgraphics::drawline(PointPtr startpt, 

( / *  draw a l i n e  f r o m  startpt t o  a+t  * /  1 

void 3Dgraphics::drawpoint( 

{ / *  d r a w  a sinqle point */  1 

void SDgraphics::drawpoints(int number, 

( /* d r a w  number points  * /  1 

PointPtr endpt) 

const Point* thept @ pt-bundler()) 

const Point* points @ pt_array-bundler(number)) 

PointPtr 
3Dgraphics::get-cursorgos~) 
( / *  return the location of a 3D cursor * /  1 

Figure 3.1: C++ Procedure Declarations with Bundlers 



bundlers in place. These procedures also take advantage of the type 
specifier, const, to denote that the parameter is read-only. The 
compiler uses this information to only generate a bundler to pass the 
parameter from the client down to the server, because the parameter 
cannot change during the call. Two additional specifiers, out and 
inout, were added to the C++ syntax to allow the compiler to 
optimize the use of bundlers. Out tells the compiler to only gen- 
erate a bundler to pass that parameter from the server to the client (a 
result parameter); inout specifies that the associated parameter 
must be passed in both directions. The drawline and 
get-cursorgos declarations make use of the PointPtr type 
and its associated bundler. 

In most cases, we expect that bundlers will only take one 
parameter, the object to be bundled. The first parameter to the 
bundler is always implied; the programmer does not specify it. This 
also simplifies specifying a bundler with a typedef declaration, 
because the programmer may not know the name of the parameter 
to bundle, only its type. There are occasions when additional 
parameters are needed to bundle the data correctly. For example, 
when bundling an array of an arbitrary length with no well-known 
terminal value, as in the drawpoints procedure, the bundler 
needs to be passed the array length in addition to the data to be bun- 
dled. We do not limit the number of parameters to bundlers. 

3.3. Programmer-defined Parameter bundlers 
When the programmer writes a parameter bundler, certain 

rules must be followed. These rules are necessary because the com- 
piler expects all bundlers to behave the same way, allowing the 
compiler to use the bundlers at any time based on this behavior. 
The rules cover parameter specification, the communications proto- 
col, and the use of global variables. First, for parameter 
specification, the first parameter to the bundler and the bundler’s 
return value must have the same type as the parameter to be bun- 
dled. Second, to satisfy the communications protocol, the bundler 
must be bidirectional; that is, it must be able to both bundle its first 
parameter or unbundle data from its machine independent form and 
retum the unbundled data as the return value. This is pattemed after 
the SUN XDR[7] philosophy for data bundling. Third, the bundler 
must stand alone and must not access any global variables. The 
bundler is dynamically loaded into the CLAM server with the class 
that uses it, so extemal references will not be satisfied. Further- 
more, since the server may have multiple threads of execution, glo- 
bal state might change unpredictably. The programmer must follow 
these three rules, if their bundlers are to function properly. 

As an example of a bundler definition, Figure 3.2 shows the 
definition of the pt-bundler used in Figure 3.1. This bundler is 
used to bundle Point* data types. so the first parameter and the 
return value are both of this type. The lowest level data bundling is 
performed by the bidirectional SUN XDR filters, which have been 
embedded in a C++ class. The variable, RPC-XDR-stream, 
denotes the IPC connection on which the bundler will send the 
Point when it is bundling, and from which it will read a bundled 
Point when it is unbundling. Except for the special case of allo- 
cating space when unbundling data, the bundler is symmetric. The 
same code is used for both bundling and unbundling, and a 
Point* is retumed, making the pointerbundler bidirec- 
tional. Pointerbundler uses no global variables to store the 
data when it unbundles a Point. When the bundler has no place 
to store the return value (when it is passed a NLL pointer), it 

allocates additional storage. More complex bundlers follow the 
same rules and structure as our example in Figure 3.2. 

3.4. Compiler and Runtime Operation 
The CLAM RPC runtime system depends on the compiler to 

provide it with the appropriate stubs and bundlers to make remote 
calls work. The compiler, given a procedure declaration, will gen- 
erate a pair of stubs, one for clients and one for the server, and the 
code for the procedure itself. The stubs are used whenever a process 
makes a remote procedure call. Bundlers and stubs have no effect 
on local procedure calls. The client stub contains code to bundle 
each parameter to the procedure and code to unbundle any return 
value or result parameter. The server stub is complementary. The 
stubs contain additional code to synchronize the IPC channel and to 
interact with the Rpc runtime code. 

The RPC protocol departs slightly from the traditional RPC 
semantics by allowing remote calls to proceed asynchronously. 
This departure allows the CLAM RPC facility to achieve greater 
performance than a traditional system. In other RPC systems, such 
as Grapevine[l], remote calls are fully synchronous; the client 
makes a remote call and waits until that call finishes before continu- 
ing. This is necessary whenever there are retum values, but, when 
no return values are needed, the remote call can be delayed, and put 
in a batch with other calls. To further improve performance, the 
CLAM RPC facility batches several asynchronous calls together 
into a single message. Batching reduces the amount of interprocess 
communication, and introduces asynchrony into the RPC model. 
Our underlying communication medium guarantees reliable, in- 
order delivery of messages, so batched calls will amve in the 
correct order. To force synchronization, the client program can 
either call a procedure that returns a value, or call a special syn- 
chronization procedure, which flushes the current batch to the 
server. 

struct Point ( 

1; 

Point* point-bundler(Point* p) 
( 

short x, y, z ;  

/ /  allocate some space if unbundling 
/ /  and the passed a NIL pointer 
if (p -- 0 & &  

RPC-XDR-stream->xget-op() -3 XDR-DECODE) 
p = new Point: 

// (un)bundle each member of the Point structure 
RPC-XDR-stream->xint (&p->x) ; 
WC-XDR-st ream->xint (&p->y) ; 
RPC-XDR-s t ream->xint ( &p->z ) : 

return p; 
1 

~ 

Figure 3.2: A Bundler Definition 
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35. Pointers and Addresses - Crossing Address Spaces 

An example of the way bundlers are used in our RPC system 
is in the way pointers and addresses are bundled. If the programmer 
does not specify a bundler for a pointer data type, the compiler pro- 
vides a default bundler. This bundler does not make a transitive 
closure of pointers; it bundles only the object referred to by the 
pointer. Because this bundling method is not always appropriate, as 
was described in section 3.1, user-specified bundlers are useful here 
to achieve the correct semantics. 

The compiler automatically provides special bundlers for two 
types of pointers, pointers to objects (i.e. class instances) and 
pointers to procedures. Object pointers are common because of our 
object-oriented design, and procedure pointers are common because 
of our emphasis on distributed upcalls. These bundlers are used 
automatically by the compiler, so the programmer can use object 
and procedure pointers without specifying bundlers. Like all other 
bundlers, these bundlers follow the three rules laid out above and 
still provide the semantics the programmer expects from object and 
procedure pointers. The way in which these semantics are 
preserved is described below. 

35.1. Pointers to Objects 
Our system operates under three basic assumptions that affect 

the bundling of object pointers. First, each process has its own 
address space, implying that an address is local to only one address 
space. Second, we assume that all objects are created dynamically, 
during program execution. Third, an object pointer must be passed 
out of the server before a client attempts to pass it in, except for nil 
pointers, which are handled specially. When a pointer to an object 
is retumed to the client, it must be retumed in such a way that when 
the client performs a class member operation on this object, the 
operation becomes an RPC back into the server. 

Remote operations on objects are achieved by converting a 
pointer to an object into a handle when passing it to a client. A han- 
dle is a capability for an object. The handle contains an object 
identifier and a tag, an arbitrary bit pattem for checking the validity 
of the handle. The object identifier refers to the object itself in the 
server, and is the only information needed to make remote object 
references work. 

Since handles, not object pointers, cross address space boun- 
daries, the compiler generates code to automatically bundle object 
pointers that are passed out of the server to a client. The use of such 
pointers is easy to detect. They include the object pointers that are 
retum values of procedures, and those that are o u t  parameters. 
For every such parameter, the compiler generates a call to an object 
pointer bundler. The server version of this bundler will pass a han- 
dle for the object back to the client. The client bundler assumes that 
an incoming object pointer is a handle, stores the handle, and 
retums a pointer to the stored handle. 

The compiler must also detect when an object pointer is being 
passed to the server from the client and generate the appropriate 
bundler calls. The client bundler assumes that the pointer it is bun- 
dling points to a handle and passes the handle to the server. The 
sewer unbundles the handle and uses it to find its local pointer to 
the object. Figure 3.3 shows this operation. The object identifier in 
the handle is a pointer to a data structure in the server containing a 
class identifier, a version number and the tag, and a pointer to the 
object itself. The class identifier and version number are used to 
locate the correct version of the correct class of the object. The tag 

in the object identifier is compared with the tag in the handle and, if 
they match, the real object’s address can be returned by the bundler 
inside the server. Because we assume object pointers must be 
passed out of the server before they can be passed back in, it is not 
possible for the client to pass a pointer to an object of a class that is 
not loaded into the server. 

3.5.2. Pointers to Procedures 

The other common type of pointer that the compiler automati- 
cally bundles is a pointer to a procedure. We are interested in pro- 
cedure pointers that a client passes into the server. It is assumed 
that the procedure pointer will be used inside the server to perform a 
distributed upcall. While the server might pass a procedure pointer 
to the client, we have not implemented any automatic means of han- 
dling these pointers. 

A procedure pointer requires the compiler to generate more 
code than pointers to other data types. Code to bundle and unbun- 
dle the pointer itself must be generated, just like other pointers. In 
addition, because we expect the pointer to be used in a distributed 
upcall. a pair of stubs must be generated to bundle and unbundle the 
parameters when the upcall is made. Here, the server stub bundles 
parameters and unbundles xtum values, like the client stub in a nor- 
mal procedure call. The standard C++ syntax requires that the 
declaration of a procedure pointer include a specification of the type 
of each parameter the procedure expects to be passed. The compiler 
uses this specification to generate the upcall stubs. The parameter 
specification also allows the programmer to specify bundlers for the 
parameters of an upcalled Procedure. 

The compiler detects when a procedure pointer is an incoming 
parameter to a procedure in the same way as it detects incoming 
object pointers. The compiler first generates stubs for the client and 
server to bundle the parameters when the upcall occurs. It then gen- 
erates calls to bundle the procedure pointer. The client bundler bun- 
dles the procedure pointer and a pointer to a stub that unbundles 

Read From Data Stream 

Handle 1-1 

Server 
Object 

7- 
Locate Procedure List Retuned by 

HandleBundler 

Figure 3.3: Handle Operation 
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upcalls of this type. The server bundler does most of the work, 
because the procedure pointer appears to be an arbitrary bit pattem 
in its address space. It stores the client’s procedure pointer, a 
pointer to the server’s upcall bundler, and the client’s IPC connec- 
tion identifier in a object of a Remote Upcall (RUC) class. The pur- 
pose of the RUC class is to control distributed upcalls. Finally, the 
compiler generates code to call a procedure in the RUC class when- 
ever this procedure pointer is used, and returns the pointer to the 
start of this code, which looks like a normal procedure pointer. 
When the procedure pointer is used, this RUC procedure is exe- 
cuted. 

This procedure, called the upcallhandler is passed the object 
that the procedure pointer bundler created when the pointer was sent 
down to the server. It bundles the pointer to the client’s upcall stub 
and the client’s procedure pointer, passing them over the IPC con- 
nection saved in the RUC object. It then calls the server upcall stub 
to bundle the parameters themselves and unbundle any retum 
values. The compiler-provided bundlers and the RUC class are the 
basis upon which distributed upcalls are implemented. 

4. Distributed Upcalls 
Remote procedure calls provide for the downward flow 

through the layers of abstraction. Distributed upcalls provide the 
flow of information upwards through these layers. We divide the 
description of upcalls into three parts. First, an upper layer must 
inform a lower layer of its intent to receive upcalls. This part con- 
sists of a registration mechanism. Second, there are the actual 
upcalls that pass information up to the upper layers. This part sup- 
ports calls that flow upwards through the layers. Third, is a 
mechanism to support asynchronous activities within an address 
space. In CLAM, these activities are called tusk. 

Since CLAM allows layers of abstraction to be linked either 
(statically) in the client or (dynamically) in the server, both registra- 
tion and upcalls must be able to travel between the client and server 
address spaces. The flow of information associated with a task must 
also be able to span address spaces. Distributed upcalls are concep- 
tually the same as basic upcalls and the goal is to make the differ- 
ence between local and distributed upcalls transparent to the user. 
The RF’C mechanisms described in the previous section are used to 
achieve this goal. 

4.1. Upcall Mechanism 
This section describes thc upcall mechanism for both basic 

and distributed upcalls. The registration process and support for 
upward calls is described. 

Registration involves informing a lower level object how to 
call a higher level object when an event occurs. The lower level 
object provides the upper level object with a registration procedure 
to call. When its registration procedure is called, a lower level 
object stores the information it receives in its own state. When an 
event occurs that requires an upcall to be made, the lower level 
object uses this stored information to determine which higher level 
object should receive the call. It is possible that zero or more higher 
layers maybe registered to receive the upcall. If there are no higher 
layers interested in the event, then the lower level object decides 
what to do with the event. For example, it may queue up the event 
for later use or may throw it away. 

When both the upper and lower level objects are in the same 
address space, registration is a matter of passing a procedure pointer 

to the registration procedure in the lower level object. Registration 
is a simple procedure call. When the appropriate event occurs, the 
lower level object will use a simple procedure call to call the 
registered procedure. 

The mechanisms that support distributed upcalls are more 
complex than for local calls, information must be passed between 
address spaces. The goal is to make distributed and local upcalls 
look the same to the applications. During registration, the upper 
level makes a remote procedure call to the lower level’s registration 
procedure. The higher level object passes the address of a pro- 
cedure for the lower level object to call. Using the RPC described 
in Section 3, this remote procedure call looks like a local procedure 
call to the user. The lower level object can not simply store the pro- 
cedure address it received from the higher level object. This 
address is only valid in the higher level object’s address space. The 
RUC class, described in Section 3, provides the necessary address 
translation for the procedure addresses. The lower level object actu- 
ally stores the address for a procedure in the RUC class. Through 
the intervention of the RUC class, the lower level object cannot dis- 
tinguish between registration requests from local objects and those 
from remote objects. When the appropriate event occurs, the lower 
level object will call the RUC procedure to pass on the information 
to the higher level object. The RUC procedure will make the neces- 
sary remote call back to the higher level object. The lower level 
object views the upcall as a simple procedure call. The higher level 
object behaves the same in a distributed upcall as it would for a 
local upcall. Distributed upcalls, in most cases, are indistinguish- 
able from the local upcalls to applications. 

A final issue is how procedures are typechecked when they are 
registered with a lower level abstraction. When a pointer to a pro- 
cedure is declared as parameter to another procedure in C++ (as is 
the case in the registration procedure), the types of the parameters 
must be specified when declaring the pointer. The lower level pro- 
cedure specifies exactly what kind of procedure is allowed to regis- 
ter itself to receive upcalls. Therefore, typing issues are resolved at 
compile time. 

4.2. An Example 
This section presents an example of the use of upcalls. It 

illustrates the behavior of the upcall mechanism for distributed 
upcalls. This includes a description of the registration process and 
the flow of information during an upward call. The example is 
taken from the CLAM of window manager. 

In this example there are two system classes, window and 
screen, shown in Figure 4.1, and two additional application defined 
classes, user1 and user2. Screen is a low level class that handles 
updates to the display screen. The window class provides a window 
abstraction layered over the screen abstraction. User1 is a class 
linked into a client process and accesses the window class using a 
remote upcall. Used has been dynamically loaded into the server. 

When the server begins execution, it creates an instance, S, of 
the screen class and an instance, BaseW, of the window class. 
While creating BaseW, the window class registers the 
window::mouse procedure with S (by calling Spstinput) to handle 
all mouse button events. S.postinput saves the pointer to BaseW 
and window::mouse in S’s state. Later, an instance, U2, of the 
used class is created. It creates an instance, W2, of the window 
class and registers its user2::mouse procedure to receive mouse 
events by calling W2.postinput. Let us assume that creating W2 
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Figure 4.1: Registering Distributed Upcalls 

notifies BaseW of the new window, so it can pass events to objects 
that have registered themselves with W2. An instance, U1, of the 
client class user1 is also created. U1 creates a window, W1, and 
registers its user1::mouse procedure to receive mouse events. 
Notice that the parameter bundler will automatically translate the 
procedure pointer into a pointer to the RUC class. For each transla- 
tion, an object instance is created in the RUC class. 

At this point, the state of the system is ready to handle mouse 
events. If a mouse button is pressed, the screen::mouse procedurc 
sees the event and, using the previous registration, makes an upcall 
to the BaseWmouse procedure. This procedure determines if the 
mouse was inside any other windows and, if so, makes upcalls to 
them as well. If the mouse was in the region covered by W1, 
BaseW then attempts to make an upcall to Ul.mouse. This actually 
involves the RemCall procedure to make a remote procedure call to 
the client process containing U1. 

43. Tasks 

CLAM uses lightweight processes, called tusks, to create asyn- 
chrony in the server and clients. Tasks are provided by a thread 
class, which supports tasks at the user level, (as opposed to imple- 
menting them at the kernel level.) The thread class includes func- 
tions for the creation, deletion, blocking and resumption of tasks. 
Tasks are created by an asynchronous call to a procedure in the 
thread class. Tasks are non-preemptive, but a task can voluntarily 

block itself by waiting on a specific event. The task is reactivated 
when that event occurs. 

Both the client and the server processes are multithreaded. 
Like distributed upcalls, the flow of information associated with a 
task must span address spaces. When a task in the server (a server 
task) makes a distributed upcall, the flow of information crosses 
address space boundaries. While the server task cannot span this 
boundary, the flow of information must continue in the client. A 
new task is start in the client (a client task) to cany out the work on 
the client. The flow of control has crossed the address space boun- 
dary into the client. While the client task is active the server task is 
blocked, waiting for the client task to finish. When the client task 
completes, it informs the server (usually by making a WC)  and then 
terminates. The server task becomes active, and the flow of control 
returns to the server. 

CLAM uses tasks to create a new thread for objects that handle 
input events. A new task is started in the server in response to input 
from the external devices, such as the keyboard and mouse. This 
task propagates the information from the input event upward 
through layers of abstraction by using upcalls. If the higher layers 
of the abstraction are in a client process, a task is started in the 
client to continue handling of the input event. The task on the 
server waits for the client task to complete. 

Another application of upcalls and tasks is for error reporting. 
The CLAM server can protect itself from user bugs by catching error 
signals (such as memory faults or divide by zero.) Once the server 
has determined that an error exists in a dynamically loaded class, it 
must decide what to do with the class. The server can choose to 
notify a client that it tried to use a faulty class. A new task is 
created in the sewer that handles the error reporting. This task will 
make an upcall and then wait for any response the client may have. 

4.4. CIiedServer Channels 
Conceptually there are many channels of communication 

between the server and clients. There would be one channel for 
each client’s Rpc requests and one channel for each upcall between 
a client ana the server. In CLAM, we allow only one upcall to be 
active per client process. This limitation simplifies our first imple- 
mentation and may be relaxed in future designs, So there are actu- 
ally at most two channels of communication between each client 
and the server. One channel is used for RPC requests from the 
client and the other is used for upcalls from the scrver. Without 
typed messages, multiplexing mulhplc channels of communication 
onto one unix stream is difficult, and requires extra information to 
be passed to specify which conversation is currently active. There- 
fore, CLAM provides separate unix streams for each communication 
channel. 

Each client requires at least two tasks, which are created when 
the client initially connects with the server. The first task executes 
the code of the application. This task blocks during W C  requests, 
while waiting for the retum value. The second task handles all 
upcalls. The second task is initially blocked, and is unblocked on 
receipt of an upcall. After handling the event, any return value is 
sent back to the server, and then the task is blocked again. 

The server can have multiple tasks active at any given time. 
The main task handles RPC requests from clients. A new task is 
started in response to input events and performs upcalls to handle 
the input. If the upcall is distributed, the task is blocked while the 
client task is active, The task is terminated after the final remote 
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procedure call related to the input event has completed. Tasks are 
reused, instead of being newly created on each input event to reduce 
overhead. 

5. Status and Performance 
CLAM is a running system. The C++ remote procedure call 

facility, the dynamic loading facility in the server, and the distri- 
buted upcalls facility are all working. The initial use of CLAM was 
to build an extensible user interface manager, and the basic classes 
for screen and window management are running. This includes 10 
main classes, representing about 10,OOO lines of code. This system 
makes use of all of the features we described in this paper, making 
extensive use of remote upcalls for propagating user input and other 
window management events to client programs. Current work is to 
experiment with CLAM in building interactive user interfaces [8]. 

An important motivation for providing flexibility in placing 
layers is the cost of interactions between layers. We have taken 
measurements of the CLAM system to compare the costs of remote 
calls (calls between address spaces) to that of local calls. These 
results are summarized in Figure 5.1. 

The results in Figure 5.1 show that local calls within the 
CLAM server are cheap. Dynamically loaded procedures can call 
built-in procedures or other dynamically loaded procedures at a cost 
similar to that of static procedure calls. Calls that cross address 
spaces, even on the same machine, are significantly more expensive. 
Dynamically loading classes into the server can have a significant 
performance benefit. The performance numbers in Figure 5.1 are 
similar to those found in other systems. For example, the Argus[9] 
and Mach[lO] systems show local and remote calls costs of similar 
magnitude. 

Time per call 
(pets) 

Staticly linked procedure calls 

Dynamically loaded procedure calling another 
dynamically loaded procedure 

Upcall - both procedures dynamically loaded in 
the server 

Remote call - both process on same machine 
(UNIX domain connection) 

Remote upcall - both process on same machine 
(UNIX domain connection) 

Remote call - both process on same machine 
(TCP/IF’ connection) 

Remote upcall - both process on same machine 
(TCP/IP connection) 

Remote call - process on different machines 
(TCP/IP connection) 

Remote uvcall - process on different machines 
(TCPD connection) 

Figure 5.1: Procedure Call Costs 
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6. Conclusions 
CLAM provides flexibility by allowing the programmer to 

specify the placements of layers between the clients and the server. 
The remote procedure call facility hides most of the details of cross- 
ing address spaces, and distributed upcalls provide a clean mechan- 
ism for layering input abstractions and hide the details of upward 
address space crossings. The RPC and distributed upcalls together 
form a powerful for structuring servers. Remote procedure calls 
provide the synchronous access associated with requests to a server, 
and the distributed upcalls allow the server to initiate asynchronous 
operations. Both of these mechanism allow the programmer to 
work within a clean, layered structure. 
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