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Using Dynamic Kernel Instrumentation for Kernel and Application Tuning1

Abstract
We have designed a new technology, fine-grained dynamic instrumentation of commodity operating system ker-

nels, which can insert runtime-generated code at almost any machine code instruction of an unmodified operating
system kernel. This technology is ideally suited for kernel performance profiling, debugging, code coverage, runtime
optimization, and extensibility. We have written a tool called KernInst that implements dynamic instrumentation on
a stock production Solaris 2.5.1 kernel running on an UltraSparc CPU. We have written a kernel performance pro-
filer on top of KernInst. Measuring kernel performance has a two-way benefit; it can suggest optimizations to both
the kernel and to applications that spend much of their time in kernel code. In this paper, we present our experiences
using KernInst to identify kernel bottlenecks when running a web proxy server. By profiling kernel routines, we were
able to understand performance bottlenecks inherent in the proxy’s disk cache organization. We used this understand-
ing to make two changes—one to the kernel and one to the application—that cumulatively reduce the percentage of
elapsed time that the proxy spends opening disk cache files for writing from 40% to 7%.

1 Introduction

Operating system kernels are complex entities whose internals are often difficult to understand, much less
measure and optimize. We have designed fine-grained dynamic kernel instrumentation, a low-level technol-
ogy that allows arbitrary code to be spliced (inserted) at almost any kernel machine code location during
runtime. Dynamic kernel instrumentation allows runtime measurements, optimizations, and extensibility
to be performed on unmodified commodity kernels.

Dynamic kernel instrumentation provides, in a single infrastructure, the means for monitoring func-
tionality (such as debugging and profiling) alongside mechanisms for extensibility and adaptability. When
used in this manner, a kernel becomes an evolving entity, able to measure and adapt itself to accommodate
real-world runtime usage patterns. Evolving operating systems can form the foundation of such dynamic
environments, since their code can adapt to demands. Performance profiling through dynamic kernel
instrumentation is a natural fit for meta-computing (Grid) environments, which place dynamic demands
on an operating system, making runtime performance gathering essential [7].

A previous paper describes the low-level technology of dynamic kernel instrumentation and its imple-
mentation on unmodified Solaris 2.5.1 kernel [18]. This paper presents a case study using KernInst to opti-
mize a web proxy server, by making changes to both the kernel and the proxy. We have found that
understanding kernel performance has a two-way benefit; it provides information useful for tuning both
the kernel and user processes. Thus, kernel profiling is useful to both kernel and application developers.

The remainder of this paper is organized as follows. Section 2 summarizes KernInst; Section 3 gives an
overview of the benchmark we used to drive the kernel; Section 4 is our study of kernel performance bot-
tlenecks when running the benchmark, our solutions, and ideas for future optimization; Section 5 dis-
cusses related work; and Section 6 concludes.

2 KernInst

We have designed and implemented a tool called KernInst that performs fine-grained dynamic instrumen-
tation of a stock, unmodified Solaris 2.5.1 kernel running on an UltraSparc CPU. KernInst allows desired
runtime-generated code to be inserted, removed, or changed almost anywhere in the kernel’s code space
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(at machine code instruction granularity), entirely at runtime. KernInst instruments dynamically; unlike a
kernel binary rewriter, no reboot is required for instrumentation to take effect.

We have built a kernel performance profiling tool using KernInst that allows a user to insert perfor-
mance-gathering primitives into in the kernel at runtime. Performance instrumentation is determined by
choosing a metric and a resource. A metric determines the type of measurement; a resource determines
what function is measured. In this paper, we use two metrics: the first measures the number of procedure
calls made to a specified function (“calls made to”), and the second measures the number of kernel threads
executing within a specified function (“concurrency”). Measuring a function’s concurrency is similar to
measuring its latency, and has more meaning in a multi-threaded environment. Total latency (with units of
seconds) only measures the total time spent in a function; if k threads simultaneously execute within a
function, the overlapping time is only counted once. Total concurrency (with units of thread-seconds) will
include the overlapping time interval k times. In a plot of concurrency over time (such as the bottom curve
in Figure 1), the x-axis denotes time and the y-axis denotes the number of threads executing within the
specified function at that moment (hence the metric name “concurrency”).

Because instrumentation is deferred until the user requests it, kernel performance profiling using
KernInst is a completely interactive and dynamic activity. Metric/resource selections can be made, appro-
priate instrumentation inserted, and measurements gathered, at any time. Because finding bottlenecks is
an interactive activity involving successive refinement of the set of routines to be measured, it is essential
for a tool to allow the user to decide what measurements should be made at runtime. KernInst is ideally
suited to this paradigm.

3 Performance Study Parameters

As a case study in kernel performance profiling, we used KernInst to measure the performance of the
Solaris 2.5.1 kernel running the Squid web proxy server. In this section, we outline two major components
of the benchmark: Squid and the Wisconsin Proxy Benchmark.

3.1 Squid Web Proxy Server

Web proxy servers are an effective means for reducing the load on web servers. Web clients attach to a
local proxy (instead of the actual web server), which caches some of the web server’s contents. The proxy
retrieves files as needed from the web server when it cannot satisfy a client’s HTTP request from its cache.

We studied the performance of the Solaris 2.5.1 kernel while running version 1.1.22 of Squid, a freely
available web proxy server [12]. Squid provides two levels of cache: in-memory and on-disk. Incoming
requests are first searched in Squid’s memory cache. If it misses there, Squid tries its disk cache. If Squid
misses there, it fetches the file from the server. Squid’s disk cache was installed to a local disk running the
default Unix file system (UFS).

A heavily loaded proxy server can expect hundreds (or thousands) of simultaneous TCP connections,
which it must multiplex alongside any local disk activity of its own. Squid does not create a thread or pro-
cess to handle each request. Instead, a single thread of control multiplexes among all active TCP connec-
tions and pending file operations using non-blocking I/O operations.

3.2 Wisconsin Proxy Benchmark

We used version 1.0 of the Wisconsin Proxy Benchmark [1] to drive Squid. Thirty synthetic client pro-
cesses connect to a Squid proxy. Squid in turn connects to a synthetic server process. Three machines (cli-
ent, Squid, server) are used.

Each client process connects to Squid and makes HTTP GET requests with no thinking time in
between. Requests are sent in two stages. In the first stage, 100 requests are made for files. The same file is
never requested twice, so there is no locality. The purpose of this stage is to populate the cache and to
stress its cache replacement algorithm. In the second stage, the client sends 100 requests, but this time with
temporal locality pattern designed to lead to a proxy hit ratio of 50%.

The server process listens on a particular port number for HTTP requests. When one arrives, it parses
the URL to determine the appropriate file. If it has not yet been (synthetically) created, the server creates a
file. The file’s size will be uniformly distributed from 3K to 40K 99% of the time; the other 1% of the time, a
1 MB file size is used.
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4 Performance Study

We used KernInst to measure the performance of the Solaris 2.5.1 kernel running the above benchmark.
The search for an application (Squid) bottleneck led into the kernel, requiring a kernel profiling tool. This
section discusses two bottlenecks that we found, optimizations (one to the kernel and one to Squid) that
address them, and ideas for further optimization.

We found that kernel performance profiling has a two-way benefit. First, kernel performance profiling
allows us to understand kernel bottlenecks, leading to kernel optimizations. Second, because proxy serv-
ers spend much time in the kernel performing I/O, it is necessary to measure in-kernel performance to
understand its bottlenecks and optimize the application.

4.1 The First-Order Bottleneck: File Opens

Because the Wisconsin Proxy Benchmark has a working set size larger than Squid’s in-memory cache, we
hypothesized that Squid might be disk bound2. We first examined the Squid code that was causing the
disk thrashing. We hypothesized the bottleneck could be disk reads (files that missed in Squid’s in-mem-
ory cache but hit when reading from disk) or disk writes (files that missed in Squid’s on-disk cache also,
requiring the file be brought in from the true server). We ran the Quantify profiling tool [14] on Squid to
determine the source of this first-order bottleneck, and found it to be neither.

Squid’s bottleneck is in the routine storeSwapOutStart(), which is called to demote a file from Squid’s in-
memory cache to its on-disk cache. Interestingly, the bottleneck occurred not in writing the disk cache file,
but in the call to open()! Squid was spending 76% of its non-idle (i.e., excluding time spent waiting in a
select() statement) run time simply opening on-disk cache files for writing. To explain this result, we investi-
gated Squid’s cache organization.

Squid maintains one file per HTTP object being cached on disk. Thus, Squid’s on-disk cache is not a
single (huge) fixed-size file, but a collection of all files being cached, with differing file sizes. This simplifies
Squid’s code, but as we will see, is the cause of severe bottlenecks.

Squid organizes its files into a hierarchy, to keep the number of files in any one directory manageable.
Squid uses a three level directory structure, fanned out based on fixed program constants. A hash function
maps a file table entry number to a full path name. If the file was used for a since-ejected cached object, the
old file will still be present. Squid truncates an existing file to zero size by passing the O_TRUNC flag to
open. By reusing files, Squid avoids the need to delete files; this avoids expensive meta-data I/O required
when deleting a UNIX file (updating the parent directory file and freeing the file’s inode and disk blocks)
[4]. However, since Squid is spending so much time in open, this strategy was clearly ineffective.

Any bottleneck in the open system call is serious in a program that multiplexes between many file
descriptors, because there is no interface for a non-blocking open system call. This contrasts with read and
write, which can return EWOULDBLOCK if they would block the process, allowing work to proceed on
other, ready file descriptors. Without non-blocking opens, the entire Squid process (which can include doz-
ens of open file descriptors) is blocked whenever open on any file blocks.

Further performance study required examining why open was slow. This in turn requires understand-
ing the operations that take place in an open system call. User-level performance profilers see systems calls
as a black box, and can offer little guidance in understanding kernel performance. So we used KernInst to
continue the performance study where user-level tools leave off: the user-kernel boundary.

4.2 Understanding Kernel Performance of open()

Given the dynamic nature of KernInst, we can interactively find kernel bottlenecks in much the same way
that bottlenecks are found in user programs. We start with a function that is performing slowly, and mea-
sure the latency of that routine and its callees. If measurement determines that a callee is a bottleneck, then
the process is repeated for the callee. We used KernInst to calculate the number of cycles spent in a routine
by instrumenting its entry and exit points with code that starts and stops a cycle counter, respectively.
Since KernInst allows instrumentation of an unmodified, running, commodity kernel, we were able to per-
form this iterative refinement on our stock Solaris 2.5.1 UltraSparc workstations while Squid was running.

2. An interesting symptom that tends to support this claim was the constant noise of disk seeks coming from the hard drive of the
computer running Squid.
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We first measured the kernel routine copen(), which implements both file creation and file opening3;
the results are shown in Figure 1. Although copen is only called 20-25 times per second, 40% of Squid’s

elapsed time is spent here4. We next examined where copen was spending its time. copen calls falloc(), to
allocate an available entry in the process’s file descriptor table, and then vn_open(), to perform the open.
Times for these routines are shown in Figure 2. We were surprised to find that falloc was taking negligible

time, because file table allocation has been reported to be a bottleneck under heavy disk load [5].
Since most of copen’s time was spent in vn_open, we examined it next. It is this routine where file cre-

ation and opening diverge, calling vn_create if the O_CREAT flag was passed to open. vn_open is called about

3. open() with the O_CREAT flag essentially performs a creat().

Figure 1: copen
Although called only 20-25 times/sec, copen() is a clear bottleneck. On average, 0.4 kernel threads are executing in this routine at any given time;

this translates to 40% of Squid’s elapsed time, since it is a single-threaded program.

4. The percentage of elapsed time differs from what Quantify reports for open() (76%) because Quantify’s percentage is of non-idle time
(elapsed wall time excluding time spent waiting idle in a select() call).

Figure 2: copen()’s major callees: falloc and vn_open
Negligible time is spent in falloc
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20-25 times per second; of these, about 8 go to vn_create when creating an on-disk cache file. The remaining
calls to vn_open are non-creating, indicating hits in the on-disk cache. However, an examination of the
latencies in Figure 3 show that the time spent in vn_open is almost entirely consumed by the time spent in
vn_create. Thus, the 8 file creations per second account for Squid’s file opening bottleneck.

Since file creation is a bottleneck, we next examined the vn_create routine. vn_create calls lookuppn() (bet-
ter known as namei) to translate the file path name to a vnode. It then passes the vnode to the file system-spe-
cific creation routine; since we ran Squid on the local disk’s default Unix File System (UFS), vn_create
invokes ufs_create(). The results are shown in Figure 4, and reveal that file creation has two distinct bottle-
necks: path name lookup (lookuppn) and UFS file creation (ufs_create). We will return to the bottleneck in

lookuppn later; for now we turn our attention to ufs_create.
We were surprised to find that ufs_create was a bottleneck, because file creation on UFS performs only

local meta-data operations. As shown in Figure 4, Squid is spending about 20% of its time there. We traced
the time spent in ufs_create to ufs_itrunc, which is invoked by ufs_create when the O_TRUNC flag is passed to

Figure 3: vn_open spends most of its time in vn_create
The concurrency curves for vn_open and vn_create overlap (averaging about 0.4 threads in them at any given time)

Figure 4: vn_create and its two main callees: lookuppn() and ufs_create()
Both lookuppn and ufs_create are (distinct) bottlenecks (each about 20% of elapsed time)
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the open system call. The two routines have nearly identical performance numbers, as shown in Figure 5.

Thus, about 20% of Squid’s elapsed time is spent truncating existing files to zero size when opening them.
To determine why ufs_itrunc was so slow, we next looked at its callees; the results are shown in Figure 6.

Most of ufs_itrunc’s time is spent in ufs_iupdat, which synchronously writes to disk any pending updates to
the file’s inode. That is, truncation is slow because inode changes are made synchronously. This is in keep-
ing with Unix file semantics that dictate synchronous updates to meta-data, to ensure file system integrity
in case of a crash. Squid’s strategy of overwriting existing cache files to avoid the expensive meta-data updates
required in file deletion is backfiring. We present an optimization that addresses this bottleneck in Section 4.4.

Recall from Figure 4 that lookuppn is a bottleneck. To some extent, this is not surprising, since obtaining
a vnode from a path name can require, for each path name component, reading a directory file to obtain an
inode disk location, and reading the inode. Solaris tries to optimize path name lookup through the direc-
tory name lookup cache, or DNLC [5]. The DNLC is a hash table, indexed by path name component, contain-
ing a pointer to an entry in another cache, the inode cache. A hit in the DNLC allows the operating system to

Figure 5: ufs_create time is mostly spent in ufs_itrunc
UFS file creation time is dominated by inode truncation; the latency curves for ufs_create and ufs_itrunc almost completely overlap

Figure 6: Most of ufs_itrunc’s time is spent in ufs_iupdat
File truncation is slow because UFS meta-data updates are made synchronous by ufs_itrunc
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bypass both reading the directory file (ufs_dirlook()) and reading the inode (ufs_iget()). As shown in Figure 7,
the DNLC hit ratio is about 90%. Unfortunately, the miss penalty (execution of ufs_dirlook) is sufficiently

high to account for the ufs_lookup bottleneck, as shown in Figure 8.

4.3 Addressing the Pathname Lookup Bottleneck

The DNLC, by default, contains 2181 entries on our machine. Since there are over 6,000 Squid cache files
in our benchmark plus hundreds of subdirectories in the three-level cache hierarchy, the DNLC was ineffec-
tive because Squid’s preponderance of small files overwhelmed it. Since Solaris 2.5.1 sets the DNLC size
based on the kernel variable maxusers, we were able to increase the DNLC size to 17,498 by increasing max-
users to 2048 in /etc/system (the maximum allowed [5]) and rebooting.

The effects of increasing the DNLC size can be seen in Figure 9. Once the benchmark has run long
enough to warm up Squid’s disk cache (about one minute), the DNLC miss rate, once 10%, drops to 1%.
Correspondingly, the total time spent in the miss routine (ufs_dirlook) drops to a negligible percentage of
Squid’s running time. Best of all, ufs_lookup (and by implication lookuppn) is no longer a bottleneck.

Figure 7: The DNLC hit ratio is about 90%
The miss routine, ufs_dirlook, is only invoked once per 10 calls to ufs_lookup

Figure 8: ufs_lookup spends most of its time in ufs_dirlook
Despite a low miss rate, the DNLC miss penalty (ufs_dirlook) is high enough to account for the entire ufs_lookup bottleneck (the ufs_dirlook and
ufs_lookup curves almost completely overlap). The dnlc_lookup curve is essentially zero because checking for a DNLC hit or miss is always quick.
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4.4 Addressing the File Truncation Bottleneck

We now address the ufs_create bottleneck: synchronous inode updates when truncating a file to zero size.
We modified Squid to reduce this bottleneck.

Squid has a bottleneck in ufs_create because it truncates existing cache files to zero size when overwrit-
ing them. This involves updating the file’s inode, which is done synchronously in keeping with UFS
semantics. We note that truncation is redundant because data blocks will be added (and again, synchro-
nously) as the new version of the file is written. If the file’s new size is greater than or equal to the original
size, then truncating the file is superfluous, because every data block that is deleted will be re-created. If
the file’s new size is less than the original size, a variant of the optimization presents itself: only truncate
the extra blocks at the end of the file, representing the change in file size.

Only three minor changes to Squid, totalling 15 lines of source code, were needed to implement these
changes. First, when opening a disk cache file, the O_TRUNC flag has been removed. The new contents of
the file are then written (we removed Squid code that always seeked to the end-of-file before writing).
When done writing, an fcntl() call with the parameter F_FREESP was used to truncate the file size to the
present location of the file pointer. Thus, if the new file size is smaller than the previous file size, the inodes
representing the now-unused end of the file are deleted. If the new file size is greater than or equal to the
original file size, the fcntl will have no effect.

After optimization, we re-ran KernInst to examine file creation performance. As shown in Figure 10,
performance has improved; less than 20% of Squid’s time is spent creating cache files, compared with 40%
earlier.

File truncation latency in the optimized version of Squid is shown in Figure 11. Calls to ufs_itrunc are
no longer made by the open system call, because Squid no longer passes the O_TRUNC flag when opening
cache files for writing. Instead, before the file is closed, Squid invokes an fcntl with the F_FREESP flag to
truncate the portion of the file that is not needed. This results in kernel code ufs_freesp() being executed.
With the smarter truncation policy, time that Squid spends updating meta-data has reduced from about
20% to about 6%.

4.5 Combined Effects of Both Optimizations

In Section 4.3, we saw that increasing the DNLC size reduced path name lookup time from about 20% of
Squid’s run time to about 1%; in Section 4.4, we saw that avoiding unnecessary file truncation in Squid
reduced UFS file creation time from about 20% of Squid’s run time to a negligible value. The combined
effects of the two optimizations are shown in Figure 12. File creation, which once took about 40% of

Figure 9: The effect of increasing DNLC size on ufs_lookup latency
For the first twenty seconds of the benchmark, there are enough DNLC misses to account for 10% of Squid’s run time. As file names are reused

more often, however, the DNLC hits become more frequent, and the ufs_dirlook bottleneck is gone (compare to Figure 8).
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Squid’s run time, now takes less than 1%. To this must be added the time spent explicitly truncating inodes
via fcntl (ufs_freesp), which (from Figure 11) is about 6%. Thus, what once took 40% of Squid’s elapsed run
time now takes about 7%.

We re-ran Quantify on Squid, and found that only 15% of Squid’s elapsed time (excluding idle time in
select) was now being spent in storeSwapOutStart, opening cache files for writing; this contrasts with 76%
before optimization. The first-order bottleneck in Squid is now in write(), which takes 44% of Squid’s non-
idle elapsed time.

4.6 Further Ideas for Squid Optimization

Both of the bottlenecks identified by KernInst involve meta-data updates when opening a local disk file for
writing. Although we have presented optimizations that significantly reduced these bottlenecks, 7% of
Squid’s elapsed time is still spent waiting for the open system call to complete. We believe that a funda-
mental redesign of Squid’s disk cache would further improve performance. Instead of one on-disk cache

Figure 10: File creation performance when the truncation bottleneck is addressed
File creation once took 40% of Squid’s run time; the inode truncation optimization reduces it to 20%.

Figure 11: ufs_itrunc in optimized Squid
Because we no longer use the O_TRUNC flag in Squid when opening cache files, truncation is now mostly performed when explicitly requested

via fcntl (ufs_freesp()).
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file per cached HTTP object, Squid should use one huge fixed-sized file for its disk cache, and manage the
blocks of this file using its own policies, thus effectively bypassing the overhead of UFS operations.

This optimization would eliminate meta-data update bottlenecks, for several reasons. First, there is no
need to synchronously update meta-data in a web proxy server because any file corruption, assuming it
can be detected, can be worked around by re-fetching the affected file from the server. Similarly, Squid has
no use for the UFS feature of synchronously updating time of last modification when writing files. Our
measurements suggest that bypassing UFS by managing disk space manually would yield major perfor-
mance improvements—though at the cost of significantly increasing Squid’s code complexity.

5 Related Work

KernInst can insert any dynamically generated code into an unmodified commodity kernel’s code space at
runtime. Extensible operating systems [3, 6, 15] allow processes to download code into a kernel, but differ
from our approach in several ways. First, they are not unmodified commodity kernels. Second, they per-
form coarse-grained instrumentation; for example, VINO allows C++ classes to customize object methods
[16]. Third, they have a limited number of instrumentation points, that must be pre-coded in a manner that
allows easy instrumentation; for example, Synthetix [13] replaces a function that is called through a level
of indirection by overwriting the appropriate function pointer. We note that KernInst can complement
extensible kernels.

Digital’s Continuous Profiling (dcpi) [2] measures detailed performance metrics (such as cycles and
instruction cache misses) at a fine grain (instruction level) of a commodity kernel, Digital UNIX. Unlike
KernInst, dcpi does instrument kernel code in any way. This precludes performance metrics that cannot be
readily sampled. KernInst can use dynamic instrumentation to create software-based metrics, which can
then be sampled. Furthermore, such metrics gather exact performance data, not statically accurate sam-
ples; the accuracy of performance data gathered by KernInst depends on the instrumentation code that
writes to various software timers and counters, not on the rate at which they are sampled. KernInst could
be used in concert with continuous profiling to provide access to a greater range of performance data.

Paradyn [9] dynamically instruments user programs. Our work differs from Paradyn in several ways:
it applies to kernels; instrumentation is fine-grained, whereas Paradyn limits instrumentation points to
procedure entry, exit, and call sites; and KernInst instruments without pausing, whereas Paradyn incurs
substantial overhead by pausing the application and walking the stack to ensure safe splicing for each
instrumentation request.

Static binary rewriters such as EEL [11] and ATOM [17] are fine-grained and allow arbitrary code to be
inserted into user programs (and potentially to kernels). However, static rewriting requires the program

Figure 12: vn_create time with both the file truncation and DNLC optimizations applied
vn_create once took 40% of Squid’s run time (Figure 4); it now takes less than 1%
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being instrumented to be taken off-line, instrumented, and re-run for instrumentation to take effect. Kern-
Inst, by contrast, is dynamic; instrumentation is deferred until it is needed. Static instrumentation requires
instrumenting everything in case it may turn out to be of interest. Dynamic instrumentation allows the
user to refine, during runtime, what instrumentation code is of interest.

Kitrace [10] traces kernel code locations. It replaces instructions being traced with a trap, which trans-
fers control to a custom handler. The handler appends an entry to the trace log and resumes execution.
Because trap instructions can be inserted at most instructions, kitrace is fine-grained. KernInst differs from
kitrace is several ways. First, KernInst does not require a kernel recompile, as does the most recent version
of kitrace. Second, kitrace does not insert any code into the kernel. Third, resuming execution after a
kitrace trap is more expensive than in dynamic instrumentation. Fine-grained dynamic instrumentation
subsumes kitrace because it can insert arbitrary code, instead of just trace-gathering code.

6 Conclusion

We have used dynamic kernel instrumentation to understand two bottlenecks caused by running a
heavily loaded Squid web proxy server on Solaris. This case study demonstrates a two-way benefit from
kernel measurement, providing information useful for both kernel and application tuning. One of the bot-
tlenecks we found, poor DNLC performance, was addressed by changing the kernel (increasing the DNLC
size); this shows that kernel profiling is useful to kernel developers. Another bottleneck, superfluous file
truncation, was addressed by changing application code; this shows that kernel profiling is useful to appli-
cation developers. In both cases, optimization was made possible only through the detailed understanding
of the kernel’s inner workings provided by KernInst; without knowing why the open system call had such
high latency, we would not have thought of either optimization.
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