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1. INTRODUCTION

The global Intemet provides users with an informa-
tion labyrinth - rich in resourees, yet confusing and
difficult to navigate. Many researchers are responding
with a desire to integrate all ~es, indeed all information,
into one global (file) tree. We know (and wonder how the
rest of the world fails to see) that hierarchical navigation is

an inadequate query facility. Non-pmeedural languages,
like relational query languages, offer users the hope of

breaking through the labyrinth to aeeess information
quickly and directly. The door is open for the database
community to make a major impact on the structure of

global computing, but current technology is inadequate to
the task. New research must overcome the problems of
scale, autonomy and availability to make global informa-
tion systems a reality.

Traditionally, distributed name services have

addressed the problems of locating resources, people, and
information in a network. The most successful name ser-
vices are hierarchical. For example, the X.5CK’Idirectory
standmd [4] provides a tree of objec~, each objeet has a
type and a collection of attributes. The authority to create
and control naming information is allocated by assigning
subdirectories of the tree to different organizations. Since
each organization has freedom in structuring its subtree,
the global network, with tens of thousands of organiza-
tions, generates a non-uniform tree structme. Users must
either guess the unique pathname for an object, or must
navigate and list the tree to find the object. Few of us can
find a particuhtr file in our own directory tree, so it is no
surprise that users cannot find objects in a global tree-
structured information space.
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The strength of the hierarchical organization of
information comes from the ease with which it distributes
authority to create and control information. Heterogene-
ous distributed database systems (multidatabases) also dis-
tribute authority to their component systems, and they
improve on hierarchical services by providing user-
fiiendly non-procedural query languages. Multidatabaaes
are positioned to help integrate the recent proliferation of
name seMces [16]. They could integrate hierarchical
name services, centralized name services with a more rela-
tional flavor like the CSNET name service [11], and
sources of public files like Archie [7] into one descriptive
(or relational) name service to make resource location
simpler for everyone, Several efforts already support
descriptive queries over tile trees and other hierarchical
name spaces [9, 17,21]. The challenge is not the integra-
tion of the &ta models of the component systems, but the
performance of the resulting name service.

The most frequent query for any descriptive name
service is the global selection query. To answer a global
seleetion query, the name service must locate objects
within a search space of tens or even hundreds of
thousands of &tabase partitions. The scale, autonomy and
availability characteristics of the environment make brute
force selection techniques, exhaustive searches, and global
synchronization impossible. The bottleneck for query per-
fortnance is not disk access or cpu power, but communica-
tions latency and throughput. The challenges of global
information systems force us to tixamine our model of
consistency and the role of databases in supporting
information-based enterprises. The very meaning of the
database is different in this global aren% because the data-
base is not an authority for database objects (e.g. your
bank balance) but a hint for finding objeets globally
without excessive cost. Database and name service
insights together provide a foundation for meeting the
challenges of world computing.

The following sections describe global information
sharing problems and possible research directions in more
detait. Section 2 describes the environment and the chal-
lenges it raises, Section 3 examines how models of con-
sistency impact the possible solutions. Finally, Section 4
summarizes fitmtiers of research for the information
infrastructure of the future.



2. GLOBAL INFORMATION ENVIRONMENT 2.2. Autonomy

Current mukidatabase research focuses on problems
of data integration and transaction processing [2,6, 12,22].
Data integration research seeks to combine information
from different databases despite differences in vocabulary,
completeness and representation. Transaction processing
research seeks to combine independent transaction pro-
cessing systems without major loss in the autonomy of
those systems. Even if we assume that we know how to
solve these problems (which are areas of active research),
have we reached the point where we can organize the
information in the world so we can find just the objects or
data we need? The answer is clearly NO. Scale, auton-
omy and availability prevent muki&tabases from deliver-
ing global computing.

2.1. Scale

The scale of the global Intemet is immense, both in
number of objects and in geographic dispersion. There are
now a million hosts on the Intemet belonging to tens of
thousands of organizations [13]. There are millions of
Intemet users distributed across every continent and tera-
bytes of publicly available data [18]. Moreover, potential
sources of information, like hosts and organizations, are
growing exponentially.

k this environment query processing can take hours
or even days. A query site that must contact tens of
thousands of database partitions will have major
bottlenecks that result from aending and receiving mes-
sages sequentially. Indices could reduce the problems of
scale by isolating queries to a subset of the data partitions,
but maintaining them raises additional autonomy issues
(see below). The increased scale in the number of users
makes global query rates of hundreds per second a real
possibility. Although contacting all data partitions may be
possible for a single query, it is certainly impossible for
any large number of queries. Research must identify
methods for delivering more parallelism in global query
processing, possibly through a tree of query processing
engines whose sole role is the forwarding of subqueries to
individual sites and the coalescing of results.

The geographic dispersion of data partitions aromid
the planet produces long latencies. Latencies on the order
of hundreds of milliseconds area physical limitation of the
network. Name services can use disks as well as memory
to cache information near to the client, because wide area
Iatencies exceed disk latencies by at least an order of mag-
nitude. By reducing global system load, caches can
improve response times for all queries in the muhidata-
base. The question is what to cache, whereto cache, and
how to cache? Do we cache data or meta-data like
indices? Do we cache information at individual worksta-
tions or at some higher level of organization? How do we
keep caches consistent? Current database caching
research does not answer these questions [11, because it
assumes a local area environment where mtdticast and low
latency communication can be used to maintain cache
consistency.

Global name services are autonomous and hetero-
geneous, Organizations protect both their privacy and the
operational integrity of their environment by administering
name seMces locally. A name service is a valuable
organization resource that must be protected from tamperi-
ng. To understand this, one need only imagine the disas-
trous affects of failure to translate host names into
addresses on a network, or locate essential personnel in a
time of crisis. Organizations make some of their informa-
tion available for external communities to facilitate elec-
tronic mail connectivity, interactive collaboration, maket-
ing, publication, and other activities. Organizations only
share information if it does not threaten their privacy,
jeopardize the availability of local name services, or
require excessive software modifications and support.

Autonomy exacerbates problems of scale. Scale
and performance improve if we create a global index that
accepts a selection predicate and constrains it to a subset
of the partitions in the global multidatabase [15, 171.
Autonomy makes such an index virtually impossible,
because maintaining the traditional level of consistency
(serializabili~) of the index introduces a global synchroni-
zation bottleneck and requires changes in the component
systems. Interestingly, this tension betsveen autonomy and
consistency is presmt in the struggle to achieve global
transactions. The traditional model of consistency causes
us to violate the autonomy of component systems to pro-
vide transactions, and now tempts us to violate autonomy
to support indices. This continual tension calls us to reex-
amine the traditional model of consistency (see Section 3).

Arty successful multidatabase name service will
require minimal coopemtion from the existing name ser-
vices, but will reap the benefits of cooperation when it
occurs. We have been so caught up in requiring coopera-
tion that we have given little thought to encouraging it.
The Digital Library Project sees the Intemet as the great
electronic publisher of the future. [10] The network
locates and supplies relevant documents to users users
pay fees to publishers for the documents they receive.
Certainly publishers would cooperate if updating indices
meant selling books or articles. Commerce is just one of
the modeIs of cooperation we should consider for the new
global multidatabases.

2.3. Availability

Availability should perhaps be called “unavailabil-
ity” when we refer to the global network. If the probabil-
ity that a partition is available is .999, then the probability
that 10,000 independent partitions are available simuMme-
ously is .0000452 (or 24 minutes of availability per year).
Only 45% of X.500 partitions in the United States were
available at one time during experiments in 1991 [17].
Measurements of the DNS indicate that more than 10 per-
cent of the partitions at educational institutions are not
replicated, so the unavailability of a single system can
make one of those partitions unavailable [5]. The reasons
for unavailability are failure, abandonment, and
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intermittent availability, As scale grows, the chance of
failure in at least one system or network component
increases dramatically. Failure can sometimes be
addressed by replication, but there is a surprising absence

of replication in essential services. Data partitions are
often abandoned by their owners when interest in the

application wanes. The owners do not update the global

catalog of partitions, and users continue to query the parti-
tion but are never answered. Organizations often make
partitions unavailable intermittently due to maintenance
schedules or privacy concerns. We have a slightly pes-
simistic, but not unrealistic rule of thumb at any given
time, at least some of the partitions that you wish to query
will be unavailable.

Chronic problems with availability require new
approaches to consistency and transaction processing. If

transactions require the availability of all data partitions,
transactions will never complete. We need a model of
consistency that allows incremental processing. A user
can be given partial results for a query, and the option to
have the query completed in the background when parti-
tions become available. In the absence of interdependen-
cies, updates can be processed as independent subtransac-
tions on the component systems. Automatic techniques
for identifying and removing component systems that will
never answer or have completely unreliable data are also
important,

3. MODELS OF CONSISTENCY

The difficulties of maintaining serializability in the
presence of scale, autonomy and chronic unavailability
lead us to reexamine this traditional model of consistency.
Some current name services do not use complete query
responses, but instead depend on samples of the name
space. With a flair for science fiction, name service
researchers have proposed sending processes out to scour
the network and return with useful tidbits of information
[10]. One name service snoops in news headers in an
effort to locate people [20]. Other name services look
around and return some answers to a query, but not all
answers and not necessarily the same ones as last time
[19, 20]. We could describe the semantics of this type of
query processing as luck semantics. Even if we must
depart from the traditional model of consistency, we
would like to improve on luck by supplying results that
can be interpreted and used without frustration.

Traditional consistency has three important charac-
teristics in the the global name service environment.
Traditional consistency treats the &tabase as the authority
for information, views the database as a sequence of con-

sistent states in time and transactions as transformations
between those states, and maintains consistency in the
presence of any data interdependencies. In this model for
example, the database is an authority for bank balances. It
starts in a consistent state and faithfully reflects bank
deposits and withdrawals. If your bank balance is wrong,
you need to expend considerable effort to prove the error
and correct the balance. Name services differ in substan-
tial ways fkom these characteristics of authority, consistent

Figure 1.
The name service database supplies a hint.

If the hint is invalid, the mail system notifis the user.

states in time, and interdependencies. We can use these
differences to develop alternative models of consistency
and query processing with better than luck semantics.

3.1. Name Service Characteristics

In name services the object, not the database, is the
authority for information. Name service responses are
hints [23] that speed binding with the object. Users vali-
date the hints when they contact the object, and recover if

the hint is incorrect. Since serializability of query
responses is so costly (if not impossible to obtain), sys-

tems with weaker consistency greatly improve perfor-
mance by supplying hints that are seldom wrong zmd
methods for nxovering from the errors that do occur. For
example, consider Figure 1. In this example a user asks
the database for Ordille’s electronic mail address. The
user validates the electronic mail address received ‘by
sending mail to that destination. If the mail is not
returned, then the address is valid. Externalities can cause

name service information to be invalid because objext
naming and binding are separate operations. For example,
it is possible for a person’s electronic mail address to
change between the time of the name service query and

the mail system’s subsequent attempt to deliver a message.
It is even mom common for a person’s address to change
before the new address is recorded in the name servic~.
Problems with invalid data can be reduced if external sys-
tems provide forwarding services to translate old binding
information to new binding information. In a system
where the database is inconsistent with the world, worries
about getting a true picture of a strictly consistent database
seem pointless. Moreover, such a state is hard to defin~
problems of scale, autonomy, and availability make glo-
bal synchronization impossible.

This is not say there is no sense of consistency in
contemporary name services. Name services guarantee
tuple level consistency, that a tuple will describe the stare
of an object at some time. (Forwarding can be used to
correct invalid hints, because each tuple is consistent.)
For example, art electronic mail address might ‘be
incorrect, but it was once the address of the person to ‘be

contacted. Name service queries are weaker than weakly
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consistent t-bound queries [8], providing consistency at
the level of a single tuple rather than a collection of tuples.

Collections of tuples are not updated in a single transac-
tion, because name service information has no interdepen-

dencies that require full transactions. The creation, dele-
tion, updating and reading of a tuple is atomic. Replicas

of partitions can diverge from the collection level con-

sistency of transactions as long as tuple level consistency
is maintained. In the Domain Name System [14], local

caches use timeouts to maintain tuples that contain host
name to address translations. If a query requests a tuple

that has timed out in the cache, the name service retrieves
the tuple again from the source partition. When a tuple is
updated in Grapevine [3], the system timestamps the
change and propagates the tuple to its replicas. Two dif-
ferent partitions can update an attribute in the same tuple

without knowing about each other’s updat~ Grapevine

uses the timestamp to identify the most recent change,
which it then keeps. When tuples are read from many par-

titions in a name service, the collection of tuples
represents information that may never have been current at
the same time.

3.2. Better than Luck Semantics

Tuple consistency still leaves us with luck seman-

tics, because we do not have a good idea of how the data-
base changes with time. When we suspect that tuples are
missing from a response or tlnd that a tuple is invalid, we
would like a clearer notion of how to obtain the correct
information from the name service. Consider the response
in Figure 2 for a query about Ordille’s electronic mail
address. What information might we add to this response
to get a clearer understanding of its usefidness? This is
the information we would like to capture in the model of
consistency. If the name service makes information about
consistency visible to the user, the user will be better able
to recover horn bad hints.

Temporal information provides one possible meas-
ure of consistency. If the information in Figure 2 included
the last modification time for each tuple, it would be possi-
ble to choose the electronic mail address from the most
recent tuple. Tuple modification times are already sup
pIied by name services like X.500 and the CSNET name
service. A name service could also provide the
modification time for the collection of tuples in a
response; tuples added after the collection modification

time might not be reflected in the response. The collection
modification time can indicate when a global index was
last constructed or when the collection waa creatcid for the
local cache. The collection modification time is simple to
obtain from a database with traditional consistency
because each replica is current. It is also simple to obtain
ftom systems with timestamped replicas like X.500, but
may not be simple to obtain in a system like Grapevine
where updates arrive out of order. This measure of
modification time differs from the types of consistency

discussed for quasi copies [1] because the user discovers
the inconsistency of the hint and demands more current
information. In quasi copies, the system automatically

Name Email Address

Joann J. Ordille joann@kontiki .CS. wise.edu

Joann J. Ordille joann@cs .wisc .edu

Joann J. Ordille joann@research .att .com

Figure 2.
Name service responses containing Joann J. Ordille’s

electronic mail address.

updates caches to reflect a consistency requirement
specified in advance by the user. Updating the user’s
information on demand consumes less system resources

and is simpler for the user than specifying abstract con-
sistency requirements.

Visible measures of consistency, such as
modification time, make it possible to process parts of
queries in the background. If a partition is unavailable,
partial results can be given to the client and optionally the
remainder of the results can be delivered when they
become available. The results are easy to interpret
because they contain their own consistency information.
In the case where consistency is measured with
modification times, users can request more recent informa-
tion ffom the name service when they suspect information
to be missing or invalid. Visible measures of consistency
also provide more freedom for addressing the problems of
scale and autonomy. If modification time measures are
used, indices can be constructed periodically using the
same query facilities that component systems supply to
users. Since individurd tuples in the name service change
intkquently, the name service can periodically update its
indices and caches while still maintaining high accuracy

for users [23]. Autonomy is not violated, global synchron-
ization is not necessary, and query performance is
improved.

Other types of consistency are possible. Terry uses
the expected lifetime of an object to estimate the probabi-
lity that information about the object is current [23]. If we
automate the validation of tuples (perhaps by using
methods in an object-oriented paradigm), we could record
the relative tkquency of invalid information in different
components of the multidatabase. This could lead to a
consumer rating service for the information in component
systems. As we consider expanding name services to sup-
port electronic publishing, rating the reliability and com-
pleteness of competing indices of the same information

would be invaluable. The ultimate goal should be a sys-
tematic treatment of measures of consistency, their interre-
lationships, and effects on performance. It maybe possi-
ble to structure the consistency of global multidatabases
hierarchically. The top level of the multidatabase would
support a weak form of consistency that is derived from

stronger forms of consistency in the component systems.
For example, modification time consistency information is
simple to obtain from component databases that are
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strictly consistent. This type of approach is more likely to
respect the autonomy of component systems, and remove

the constant tension between consistency and autonomy in
multidatabase research.

4. SUMMARY

Global computing presents new challenges of scale,
autonomy, and availability to multidatabase systems.
Database research can make a significant impact on global
computing by providing fast selection queries in search
spaces of tens of thousands of database partitions. New
wide area techniques for query processing parallelism,
caching, and partially delayed queries are necessary.
Name service applications provide a good initial arena for
wide area research, because they require a simpler model
of consistency than traditional serializability. As we
develop name seMces for global computing, we can
develop an understanding of different meastues and
models of consistency, their interrelationships, and their
effects on performance, It is reasomble to expect that the
semantics of query prcwessing will be significantly dif-
ferent in the global computing environment. The new

semantics will rely on weaker forms of consistency, new
models of cooperation, and visible scale, availability and
consistency information.
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