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Abstract. We present a three-part approach for diagnosing bugs and

performance problems in production distributed environments. First,

we introduce a novel execution monitoring technique that dynamically

injects a fragment of code, the agent, into an application process on

demand. The agent inserts instrumentation ahead of the control flow

within the process and propagates into other processes, following com-

munication events, crossing host boundaries, and collecting a distributed

function-level trace of the execution. Second, we present an algorithm

that separates the trace into user-meaningful activities called flows. This

step simplifies manual examination and enables automated analysis of

the trace. Finally, we describe our automated root cause analysis tech-

nique that compares the flows to help the analyst locate an anomalous

flow and identify a function in that flow that is a likely cause of the

anomaly. We demonstrate the effectiveness of our techniques by diagnos-

ing two complex problems in the Condor distributed scheduling system.
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strumentation, trace analysis, anomaly detection

1 Introduction

Quickly finding the cause of software bugs and performance problems in pro-
duction environments is a crucial capability. Despite its importance, the task of
problem diagnosis is still poorly automated, requiring substantial time and effort
of highly-skilled analysts. We believe that such diagnosis can be substantially
simplified with automated techniques that work on unmodified systems and use
limited application-specific knowledge. In this paper, we present our diagnostic
framework, demonstrate that it is able to work on complex distributed systems,
and describe real-world problems that it enabled us to diagnose in the Condor
distributed cluster management software [28, 41].

The ability to collect and analyze traces from unmodified and unfamiliar sys-
tems is crucial in production environments, where the following three challenges
significantly complicate problem investigation. First, many problems in produc-
tion environments are difficult to reproduce on another system. Such problems
require analysis in the field and demand collaboration between the customer
and the developers. Second, modern systems are built of interacting black box
components that often come from different vendors and provide limited support



for execution monitoring. Finally, if a system does support detailed execution
monitoring, the volume of collected data can be exceptionally high and often
impossible to analyze by hand.

Our diagnostic approach uses a previous observation that problems often
correspond to infrequent execution paths or paths that have properties devi-
ating from common behavior [5, 10, 17, 20, 27]. By finding where the execution
diverged from the norm, we may be able to determine the problem location.
Our approach monitors system execution at a fine granularity, discovering and
instrumenting communicating processes on-the-fly, and collecting function-level
traces in distributed environments. Our trace analysis algorithm automatically
compares traces to each other to identify unusual activities and point the analyst
to a possible root cause of the problem. While there are several projects that col-
lect event traces or profiles and analyze them automatically to simplify problem
diagnosis [5, 10, 11, 15, 16, 20, 27, 30, 44], the following features of our approach
make it suitable for on-demand diagnosis in production environments:

Dynamic binary instrumentation across processes and hosts. We
use self-propelled instrumentation to collect detailed function-level control flow
traces from unmodified and unfamiliar systems [34]. The corner stone of self-
propelled instrumentation is an autonomous fragment of code called the agent
that is injected into the system on a user-provided external event. After injection,
the agent starts monitoring system execution by inserting trace statements into
the system’s code ahead of the flow of control. With this technology, tracing can
be rapidly enabled on demand so that the users experience no overhead if the
system operates normally and no tracing is necessary.

This paper extends self-propelled instrumentation to propagate from one pro-
cess to another on inter-process communication. It allows us to discover com-
municating components and obtain distributed control flows. For example, we
can start tracing a Web browser and propagate into the Web server and other
components of an e-commerce system to obtain the complete control flow trace
from the request to the reply.

Identification of concurrent flows with limited system knowledge.
In a system that processes more than one request at a time, the collected trace
may contain events of concurrent requests arbitrarily interleaved. The presence of
unlabeled events from multiple unrelated activities may be confusing for manual
trace examination. Furthermore, events that belong to unrelated requests may
occur in a different order in different runs. This behavior complicates automated
analysis: a normal trace being examined may appear substantially different from
previous ones and thus marked as an anomaly. To overcome these limitations,
we decompose the trace into a collection of per-request traces that we call flows.
Each flow is user-meaningful and more deterministic than the original trace.

Our flow-construction approach uses application-independent rules where
possible but can incorporate application-specific knowledge into analysis. As
a result, our framework is likely to be easier to apply to a new system than pre-
vious application-specific techniques [5, 10, 24, 26]. Yet, unlike the application-
independent techniques of DPM [32] and Whodunit [9], the user can improve



the accuracy of flow construction by providing additional knowledge into analy-
sis. Unlike the technique of Aguilera et al. [3], our approach is not probabilistic
and can construct accurate flows even for infrequent requests.

Root cause analysis with limited user effort. Similar to dynamic pro-
gram dicing [11, 30], Triage [43], and Pinpoint [10], we focus our analysis on
differences in coverage between successful and failed flows. We look for functions
that have been executed only in the successful or only in the failed flows. Such
functions are correlated with the occurrence of the problem and often point to
its root cause. In our experiments however, the number of differences in call path
coverage perfectly correlated with failures proved to be large and most such dif-
ferences corresponded to normal variations between flows. The key feature of our
analysis is its ability to further reduce the number of differences to be examined
manually yet attempt to retain the cause of the problem. The following sections
discuss our approach in detail and show its effectiveness, finding the causes of
two non-trivial bugs in the Condor distributed batch scheduling system [28, 41].

2 Propagation and Tracing

We locate bugs and performance problems by comparing control-flow traces for
normal and anomalous activities in a system, e.g., comparing per-request traces
in an e-commerce environment. Here, we describe our trace collection approach
that we call self-propelled instrumentation. The corner stone of self-propelled
instrumentation is an autonomous agent that is injected in the system upon
a user-provided external event (e.g., a keypress) and propagates through the
code carried by the flow of execution. Propagation is the process of inserting
monitoring statements ahead of the flow of execution within a process and across
boundaries between communicating processes. The key feature of this approach
is its ability to work on unmodified distributed systems and start collecting traces
on demand without a system restart. When the user decides to stop tracing, the
agent can be deactivated.

Within a process, we use the spTracer framework [34, 35] to intercept the
execution of an application at function call instructions, though finer-grained
branch-level instrumentation also can be implemented. The agent takes control
at a call site in the application’s code, generates a trace record, instruments the
next point of interest, and returns control to the application.

This paper extends the self-propelled instrumentation technology to propa-
gate across process and host boundaries on inter-process communication events.
We follow the flow of control within a process where the start event happened,
and carry the tracing over into another process when the two processes com-
municate. Each process generates an in-memory control-flow trace. When the
user-specified deactivation event happens, we stop trace collection, assemble all
per-host traces at a central location, and arrange observed events in a system-
wide Parallel Dynamic Program Dependence Graph (PDG) [13]. The PDG is
a DAG where nodes represent observed events and edges represent happened-
before dependences between the events [25].

To construct the PDG, we need to observe events in different processes and
establish the correspondence between matching send events in one process and



recv events in another. Our framework collects the necessary data dynamically,
using five steps to propagate from one component to another: intercept a send
event, identify the name of the destination process, inject the agent into the
destination process (possibly, on a remote host), detect the receipt at the des-
tination process, and follow the execution of the destination process. We begin
by describing these steps for the foundational case of communication via TCP
sockets and generalize it to other types of communication later.

2.1 Propagation over a TCP Socket

To enable the agent to propagate across host boundaries, we run daemon pro-
cesses, called spDaemons, on all hosts in the system. These daemons can be
started at system boot time, or they can be started by the agent on-demand,
if nodes in the system support remote operations such as SSH (Secure Shell).
Figure 1 shows how the agent in process P propagates into process Q. First,
the agent library, agent.so, instruments the send and write routines in P . When
reached, this instrumentation determines whether the accessed file descriptor
corresponds to a TCP socket, and in that case, intercepts control of the process
before it sends the message.

msg mark

a.out

recv(msg)  start propagation
if (got mark)

recv(msg)
jmp back

socket
send(msg)

jmp back

send(mark)
send(msg)

getpeer(ipB,portQ)
inject(ipB,portQ)

a.out agent.soProcess P Process Q

spDaemon

agent.so

Host A Host B

find process by port, inject agentspDaemon:

Fig. 1: Propagation of the agent from process P on host A to process Q on host
B when P attempts to send a message to Q over a TCP socket.

Second, the instrumentation determines the name of the peer process, a tuple
〈hostid, pid〉, where hostid is the IP address of the host and pid is the process
identifier on that host. The remote hostid for a given socket can be found with the
standard getpeername function. Since there is no standard mechanism for finding
the remote pid, we use a two-step process to determine it. We use getpeername
to find the remote port portid and send it to our spDaemon on the remote host.
That daemon uses a technique similar to that of the netstat utility to map portid
to pid : map port number to the inode number identifying the socket and scan
the /proc tree to locate processes that opened a socket with that inode.

Third, spDaemon injects a copy of the agent into the identified process using
the Hijack mechanism [45]. This mechanism causes the process to load our shared
library at run time. Fourth, the sender’s agent uses the TCP OOB (Out-of-band)
mechanism to mark the first byte of the message and lets the application proceed
with the send operation. At injection time, the receiver’s agent also instruments
the entry points for recv and read library calls to identify the moment when the
message arrives. When this instrumentation is executed, it checks whether the
file descriptor corresponds to the original socket and whether the OOB mark has
arrived. If so, the current recv event corresponds to the send event that triggered



cross-process propagation. Our agent instruments all functions on the stack, from
main to the recv and starts the propagation procedure on the receiver side.

Subsequent send and recv operations on this socket are matched using byte-
counting: counting the number of bytes sent and received by each endpoint.
A socket can be shared by multiple processes on a host, e.g., multiple HTTP
daemons often share the same listening socket to accept multiple concurrent
connections. To address this scenario, we keep byte counts in shared memory
and each agent updates them atomically.

Note that our technique does not send the code of the agent across the
boundaries: each host uses a locally-installed copy of the agent and does not need
to run untrusted downloaded code. This property can enable secure deployment
of self-propelled instrumentation across administrative domains. To support such
deployments, spDaemons could implement security policies specifying remote
users who can request propagation through processes on this host and users who
can download the resulting trace. This paper does not study this aspect further.

2.2 Other Communication Mechanisms

Similar to TCP sockets, our prototype propagates across UNIX pipes and UDP
sockets. The primary difference between our support for these communication
mechanisms lies in techniques for matching send and recv events. This task
is non-trivial in presence of in-flight messages or for mechanisms that do not
preserve the order of messages. In both cases, the first recv event observed after
the injection may not correspond to the send event that triggered the injection.

As mentioned above, we address this problem for TCP sockets by using the
OOB mechanism and subsequent byte-counting. The OOB mechanism is sup-
ported only for TCP sockets. For local order-preserving communication mecha-
nisms such as pipes and UNIX-domain sockets we can use a different technique
for dealing with in-flight messages. After injection, the agent in the receiving
process uses the FIONREAD ioctl interface [40] to determine the size of the
backlog (the number of bytes queued in the channel). After this number of bytes
have been received, the agent can start tracing the process. Further send and
recv operations on this channel are matched using byte-counting.

To match send and recv operations on UDP sockets, we use a datagram-
marking technique similar to the approaches of Causeway [8] and SDI [37]. On
each send operation, we put a sequentially-numbered mark on the datagram
encoding it as a TS (timestamp) IP option and record the mark value in the
local trace. On each recv operation, we extract the mark from the datagram and
append it to the local trace. At the analysis time, send and recv operations with
equal mark values can be matched together. The limitation of this technique is
that routers and firewalls in some environments may remove IP options from
forwarded packets, drop packets with options, or process them slower than nor-
mal packets. Determining how common such environments are and developing
alternative solutions remain subjects for future work.

Shared memory communication creates other challenges, and for these situ-
ations, we plan to use the technique from Whodunit [9].



3 Reconstruction of Distributed Control Flows

Bugs and performance problems in complex systems are often manifested by
deviations of control flow from the common path. To identify such deviations
and determine the root cause of a problem, we collect control-flow traces and
analyze them manually or automatically. In distributed environments however,
collected traces may contain events that correspond to different concurrent activ-
ities such as HTTP requests, possibly of multiple users. Events that correspond
to one request are not explicitly labeled in the trace and can appear interleaved
with events from other requests. Such interleaving of unrelated activities compli-
cates manual trace analysis. It also increases trace variability and thus presents
challenges for automated analysis. Events from different activities may appear
in a different order in different runs. As a result, a normal trace may appear
substantially different from previous ones and can be marked as an anomaly.
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Fig. 2: Flows in a Web server executing requests from two Web browsers

To overcome these problems, we decompose the execution of an application
into units that correspond to different semantic activities, referred to as flows.
Flows are easier to analyze manually and automatically than the original trace.
They contain logically-related events and there is little trace variability within a
flow. For example, a Web server process can execute requests from two users in
an interleaved order, as shown in Figure 2. Flows are shown as disjoint shaded
areas in that figure. Unlike previous techniques for flow construction [3, 5, 9, 10,
24, 26, 32], our approach uses general rules to construct flows but can incorporate
application-specific knowledge into analysis when the rules are insufficient.

3.1 Flow-Construction Algorithm

Our prototype traces function calls, returns, and communication events. This
section describes our flow-construction algorithm in its general form since it
also applies to a wider class of events. We define an event as an execution
instance of an instruction in a process. Such an event can be represented by a
tuple 〈location, seq id〉, where location identifies the process and the instruction
address within that process, while seq id is a sequence number, i.e., the number of
executions of this instruction in the history preceding this event. This definition
includes message-passing send and recv events since they typically correspond
to execution of system call trap instructions.

In our representation, flows are sets of events, where x ∈ Φ denotes that
event x belongs to flow Φ. We formulate the task of constructing flows as a
graph problem. First, we represent a system-wide control-flow trace as a PDG.
This PDG is constructed from a set of start events S provided by the user



(e.g., request-arrival events). Then, we apply several graph transformations to
the PDG, removing and adding edges to the graph to partition it into disjoint
subgraphs. Each subgraph represents one flow.

To transform the graph, we apply two application-independent rules to each
pair of connected events u and v in the PDG. Both rules determine whether the
pair of events must belong to the same flow. If these events do not satisfy either
rule, we remove the edge u → v from the PDG. In the second step, we traverse
the transformed PDG to find events reachable from events in the start set S.
Events reachable from an event si ∈ S compose flow Φi.

The first rule is the communication-pair rule that dictates that the pair of
matching communication events belongs to the same flow: if s and r are matching
send and recv events, then Φ(s) = Φ(r). This rule implies that inter-process
edges in the PDG must not be removed. The second rule is the message-switch
rule that dictates that a process can switch from one flow to another only on
receiving a message. A pair of adjacent events xi−1 and xi in a process belong
to the same flow unless the second event is a recv (a node with more than one
immediate predecessor): if deg+(xi) = 1 then Φ(xi) = Φ(xi−1). Here, deg+(x) is
the in-degree of x, the number of immediate predecessors of x in the PDG.

To illustrate our algorithm, consider Figure 2. Both requests are serviced
by the same server process in the interleaved order. By locating all nodes in
the PDG with the in-degree of two and removing intra-process edges incidental
to such nodes, we obtain a transformed PDG where all edges satisfy our rules.
Inter-process edges satisfy the communication-pair rule and the remaining intra-
process edges satisfy the message-switch rule. Next, we traverse the transformed
PDG beginning from the start events and construct two disjoint components
that accurately represent the two user requests.

Our representation of flows is most similar to dependence trees of Magpie [5].
However, Magpie does not use such trees to separate events from different re-
quests. Instead, it relies on application-specific rules provided by the user and
builds a tree later to represent each already-separated request. In contrast, the
graph representation is central to our algorithm: we construct requests by sepa-
rating the PDG into disjoint subgraphs.

3.2 Custom Directives

Our application-independent algorithm may attribute some events to the wrong
flow. Consider a single-process server that receives requests from clients, en-
queues them, services them later, and replies to the clients. In Figure 3, the
process receives a request from client2, enqueues it, dequeues an earlier request
from client1, and handles it. While Figure 3 shows the correct assignment of
events to requests, this assignment could not be generated without knowing the
relationship between enQ and deQ operations. The enQ2 and following deQ1

events belong to different requests, but our message-switch rule would attribute
them to the same flow since they are not separated by a recv node.

To provide application-specific knowledge to the analysis, we introduce the
concept of a mapping directive. Each directive identifies a pair of events that
should belong to the same flow. The added relation between two events allows us



to insert a new edge into the PDG. An important simplification is our observation
that each directive needs to connect two events within the same process (inter-
process dependences are correctly constructed by the communication-pair rule
already). To give directives preference over the message-switching rule, we insert
the edges first, treat them as inter-process edges, and then apply the local edge-
removing algorithm described in the previous section.

Since directives require knowledge of system internals, they can be provided
by system developers, rather than end users. To specify directives, we apply the
event-join formalism of Magpie [5] to control-flow traces: our directives have the
form 〈bb,jattr〉, where bb is the address of a basic block in the code, jattr is a
so-called join attribute, e.g., a program variable. The result of this directive is
labelling an event corresponding to execution of bb with the join attribute of
jattr. Control-flow events u and v with the same value of the join attribute are
assigned to the same flow: if v.jattr = u.jattr, then Φ(v) = Φ(u). We translate
each directive into a code fragment that is inserted into the basic block bb. When
executed, the fragment saves the value of jattr along with bb in the trace. At
analysis time, events with the same value of jattr are assigned to the same flow.

flow 1
event in

flow 2
event in

client1

server

client2

deQ2

enQ1 deQ1

enQ2
edge added by the directives

edge removed by the rules

Legend

Fig. 3: Flows constructed with the help of directives

To match the enqueue and dequeue events in Figure 3, we can provide a
simple directive: 〈enQ:entry,arg〉 → 〈deQ:exit,ret val〉. This directive assumes
that the argument to the enQ routine is the address of the request structure
to enqueue; the deQ routine returns that address on exit. At analysis time,
we identify trace records where the argument to enQ was equal to the return
value of deQ and introduce an artificial PDG edge between them. This operation
increases the in-degree of the deQ node, causing us to remove the original intra-
process edge incidental to deQ and allowing us to separate the two requests.

4 Identification of Anomalies and their Causes

Specialized techniques aim at locating a single type of bugs, such as buffer over-
runs, memory leaks, or race conditions. Our approach however, belongs to an-
other class of techniques that can locate a wide variety of problems, provided
that they are manifested by deviation of the execution from the norm.

Our approach looks for problems manifested by unusual control flow, such as
functions that only executed in failed flows or took substantially more time in
failed flows. To identify the causes of such problems, we use a two-step process.
First, we perform data categorization: identify anomalous flows, i.e., one or sev-
eral flows that are different from the rest and may correspond to failed requests.
Second, we perform root cause identification: examine the differences between
the anomalous flows and the normal ones to help the analyst identify the causes
of the anomalies. To reduce the required manual effort, we eliminate some dif-



ferences that are effects of earlier ones. We also rank the remaining differences
to estimate their importance to the analyst.

4.1 Data Categorization

Our framework can be deployed in two different scenarios: on-demand diagnosis
of a particular problem and always-on system monitoring. In the first scenario,
the end user often is able to categorize collected flows manually. If the problem
occurs for a particular HTTP request, the user can mark that request as an
anomaly. For always-on system monitoring however, manual categorization may
not be feasible. A flow may fail silently, without user-visible effects. A flow may
also start misbehaving after a non-fail-stop failure.

To identify anomalous flows, we started with the algorithm of spTracer [35]
and extended it to operate on distributed flows. spTracer summarizes each per-
process control flow trace as a fixed-length vector (a time profile), defines a
distance metric between pairs of profiles, and finds one or more profiles that are
most distant from the rest. To extend this approach to the distributed scenario,
we construct distributed per-flow profiles. Each profile now summarizes activities
in a single flow, spanning multiple processes where these activities occurred.
Profiles that are most distant from the rest correspond to flows whose behavior
is most different from common.

In this paper, we use two types of flow summaries: coverage and composite
profiles. The coverage profile for flow Φ is a bit vector p

v(Φ) = 〈v1, . . . , vF 〉 of
length F , where F is the number of different functions in all executed binaries.
Bit vi is set if and only if the corresponding function fi was executed in flow
Φ. Therefore, the difference between two coverage profiles identifies functions
present in one flow and absent from another. As a result, flows that execute
similar code will result in similar coverage profiles and vice versa. Our profiles
also include call path profiles if we treat different call paths from main to each
function as a separate function. For simplicity, we refer to components of profile
vectors as functions. The experiments in Section 5, use the path-based method
due to its higher accuracy.

The composite profiles capture both the temporal behavior and the commu-
nication structure of a distributed application. A composite profile for flow Φ

is a concatenation of two vectors: a multi-process time profile and a communi-
cation profile. The multi-process time profile p

t(Φ) = 〈t1, . . . , tF 〉 is a natural
extension of single-process time profiles used by spTracer. Here, ti is the frac-
tion of time flow Φ spends on path i. The communication profile, is a vector
p

s(Φ) = 〈s1, . . . , sF 〉. Here, si is the normalized number of bytes sent by path
i on flow Φ. The addition of the communication structure allows us to detect
anomalies that cause little change in the temporal behavior. For example, UDP
message loss and retransmission will be visible in the communication profile while
the time to handle this condition may not be noticeable in the time profile.

In Section 5, both composite and coverage profiles proved equally effective at
identifying anomalous flows. In other scenarios, composite profiles may be more
suitable for detecting problems that result in little change in function coverage:
indefinite blocking in system calls, infinite loops, and performance problems.



In contrast, coverage profiles may be more effective for locating anomalies in
workloads with large normal variations in time or bytes sent on each flow. Fur-
thermore, we use coverage profiles at the second stage of our diagnosis. They
allow us to identify a problem even if it was in a short-running function that did
not involve communication activities (e.g., a double free causing a later crash).

Once profiles are constructed, we compute a distance metric between each
pair of profiles as the Manhattan norm of their per-component difference. Then,
we use the pair-wise distance metric to compute the suspect score of a profile,
that is the distance of the profile to common or known-normal behavior. Finally,
we report the profile with the highest score to the analyst as the most unusual.
An important feature of this algorithm is its ability to integrate prior examples
of known-normal behavior into analysis and thus avoid reporting unusual but
normal behaviors as anomalies.

4.2 Root Cause Identification

spTracer focused on finding the most visible symptom of a problem (the func-
tion where the most unusual amount of time was spent). This paper presents a
root cause analysis approach that may identify more subtle problem causes oc-
curring long before the failure. To locate such causes, we examine differences in
coverage between normal and anomalous flows. Namely, we construct the set ∆a

containing call paths that are present in the anomalous profiles and absent from
all normal ones, the set ∆n containing call paths that are present in the normal
profiles and absent from all anomalous ones, and their union ∆ = ∆a ∪ ∆n. By
inspecting each path in ∆ and determining why it is present only in normal or
only in anomalous flows, the analyst may be able to find the problem cause. For
example, an intermittent double free bug would manifest itself by an extra call
to free in anomalous flows, thus adding a path to ∆a. Similarly, an attempt to
reference unallocated memory would result in an extra call to malloc in ∆n.

In our experience however, the number of call paths in ∆ is often large. In
addition to the call path corresponding to the root cause of the problem, ∆ may
contain subsequent symptoms of the same problem. We refer to such call paths
as problem-induced variations in coverage. ∆ may also contain unrelated paths
that are caused by slight differences in system load or program input between
flows. We refer to such call paths as normal variations in coverage.

While we cannot distinguish problem-induced variations from normal vari-
ations automatically, we can substantially reduce the number of variations of
each type. In our experience, a single variation in the execution can generate
multiple call paths in ∆. We attempt to retain one path for each cause by using
two transformations of set ∆. We present these transformations on the example
of ∆a; the same techniques also apply to ∆n.

First, assume that function main called functions A and D only in the
anomalous run; function A also called functions B and C. As a result, set ∆a

will contain call paths main → A, main → A → B, main → A → C, and
main → D. The corresponding call tree is shown in Figure 4a. To understand
why the anomalous run was different from the normal run, we must explain why
paths main → A and main → D are part of ∆a. Longer paths, main → A → B



DA

CB

main

(a) ∆a

DA

main

(b) ∆
′
a

main

A,D

(c) ∆
′′
a

Fig. 4: Call tree before and after the transformations

and main → A → C would become part of ∆a automatically: since main → A

was never observed in a normal run, any longer path also could not be observed
in a normal run. Our first transformation examines each path π ∈ ∆a and dis-
cards all longer paths that contain π as a prefix. We denote the transformed set
∆a as ∆′

a and show it in Figure 4b.

Second, we merge call paths in ∆′
a

that differ only in the last call as such
paths typically correspond to a single cause. The reason why functions A and
D were invoked only in the anomalous flow is located in their parent, function
main, thus making the parent, not the leaves, a potential problem location.
We can therefore replace the two paths in ∆′

a with a single composite path
main → [A, D], creating ∆′′

a
shown in Figure 4c. If the application exhibited

more than one problem in a single function, this optimization might hide one
of the problems. However, we believe this case to be quite rare and the merging
optimization to be widely beneficial.

To further simplify examination of call paths in ∆′′
a, we introduce two com-

peting ranking techniques. The first technique arranges call paths in the order of
their first occurrence in the trace. It assumes that the earlier differences between
anomalous and normal flows are more likely to correspond to the root cause of
a problem. This assumption holds for problem-induced variations in coverage
(since all symptoms happen after the root cause). However, it may be violated
for normal variations that can occur even before the root cause. Our second
technique orders shorter call paths before longer ones. Shorter paths are easier
to analyze. Furthermore, they often represent more substantial differences in the
execution than longer paths.

5 Experience

Our earlier prototype proved useful for diagnosing bugs and performance prob-
lems in single-process scenarios and in a collection of identical processes [34,
35]. To evaluate our techniques in a distributed environment, we applied them
to finding the causes of two bugs in the Condor distributed scheduling system.
Condor provides batch scheduling, execution, and monitoring facilities for high-
throughput computing tasks [28, 41]. It can schedule sequential and parallel jobs.
Condor operates in a variety of environments from loosely-connected networks
of desktop workstations to large-scale supercomputers and the Grid.

Condor is a complex system that has a multi-tier architecture where different
services are performed by different daemons communicating over the network.
A simple user job requires cooperation of six different daemons on multiple
hosts and also several auxiliary programs. In complex Grid environments, it



involves even more services. Internally, Condor uses several standard commu-
nication mechanisms including pipes, TCP sockets, and UDP sockets. It also
implements custom primitives such as queues and timers for deferring actions.

5.1 File Transfer Problem

Condor allows the user to specify multiple jobs to be run as part of a single
submission. Such a submission is referred to as a cluster. A recent bug caused
the output files for some jobs in a cluster to be created in a wrong directory.
The output for the first job is placed at the correct location, but the output
for all subsequent jobs are created in the current working directory rather than
the directory specified by the user. This problem has been fixed by Condor
developers. Here, we describe how we found it with the help of our techniques.

submit schedd

startd

collector

starter rm tmp_dir

negotiator

job

shadow mail

Fig. 5: Communication diagram for scheduling a Condor job. Manually anno-
tated with process names.

To diagnose this problem, we submitted a cluster of five jobs to Condor (Ver-
sion 6.7.17) and collected the traces starting from the condor submit command.
Our tracer propagated through all the daemons and auxiliary programs involved
in handling the jobs. When the last job in the cluster terminated, we saved the
traces to disk. Collected traces allowed us to construct the PDG for the execu-
tion. Figure 5 shows a summary diagram that we created automatically from the
PDG and visualized the resulting graph with the Graphviz package [18]. It shows
the traces for a single-job submission since a five-job diagram and the full PDG
are more complex. Each node in this diagram corresponds to a process that our
agent traced. Each edge corresponds to one or several repeating communication
events: sending a message, forking a child, or waiting for a child’s completion.

This diagram allows us to understand the job scheduling process: condor sub-
mit contacts the schedd daemon on the local host, and schedd adds the job to
its scheduling queue. Next, the schedd contacts the negotiator daemon to find a
matching execution host for the job. The negotiator uses information maintained
by the collector daemon to find an idle execution host and contact its startd
daemon. The startd spawns an auxiliary process called the starter, and the schedd
on the submitting machine spawns a process called the shadow. The starter and
the shadow communicate to transfer the job input to the execution machine,
start and monitor the job, and transfer the output files to the submitting machine
on job completion. Finally, Condor notifies the user via email.

Once all five jobs completed, we attributed collected events to separate flows,
where each flow represented processing one user job. While following component
interactions did not use Condor-specific knowledge, flow construction required di-



rectives. Without directives, communication diagrams for two consecutive identi-
cal jobs appeared substantially different from each other. By examining detailed
flow graphs, we identified two instances where schedd switched from working on
one job to another without a recv event. After introducing simple directives, the
flows for identical jobs became visually similar.

To quantify the accuracy of flow construction, we reused the core of our
anomaly detection algorithm. We computed the distance metric between cover-
age profiles for two known-different jobs and the distance between two known-
similar jobs. The distance between different jobs was 4.7 times higher than that
between similar jobs. That is, our algorithm constructed similar flows for similar
activities and substantially different flows for different activities. Another ap-
proach for validating the results of flow construction is to use high-level knowl-
edge about the system. Consider a system for example, where the event of send-
ing a packet from the server to the client always belongs to the same flow as the
earlier incoming request from the client. If the results of the automated algorithm
satisfy this property, we obtain additional assurance that flows are constructed
accurately. Such properties can be naturally expressed by our custom directives.
The effectiveness of this technique remains to be seen.

Next, we obtained the profiles for each flow. In this study, profiles were al-
ready classified: the first job corresponded to the normal profile, subsequent
ones corresponded to problem profiles. Therefore, we did not need to perform
the anomaly detection step and directly applied our root cause identification
technique. Namely, we compared the call path coverage profiles for the normal
flow and the anomalous flow with the most similar coverage (corresponding to
the second job). Each profile contained more than 80,000 distinct call paths.

We represented each call path as a string of function addresses, sorted them
lexicographically, and found strings present in one flow but not the other. This
technique identified more than 21,000 differences between the flows; examining
them manually would be infeasible. However, the transformations described in
Section 4.2 were able to reduce the number of differences to 107 paths, a factor of
200 reduction, thus enabling manual path investigation. This result shows that
filtering is essential for analysis of detailed coverage data in distributed systems.

To locate the cause of the problem, we examined the remaining paths in the
order of their first occurrence in the flow. Several early paths corresponded to
normal variations in coverage: processing of the first job in the cluster requires
additional initialization tasks. However, the 15th earliest difference pointed us
to the root cause of the problem. The path (main → read condor file → queue
→ SetTransferFiles → InsertJobExpr → HashTable〈MyString, int〉::lookup) in
condor submit was present in the anomalous flow but not in the normal one.
By examining the source code for SetTransferFiles and InsertJobExpr, we found
that the name of the output file was incorrectly registered in a hash table as a
per-cluster attribute. Per-cluster attributes are shared among all jobs in a cluster
while the output file has to be unique for each job. Changing SetTransferFiles
to treat the output file name as a per-job attribute fixed the problem.



This study also uncovered a limitation of our current prototype. After fixing
the problem, we discovered that the discussed path to HashTable〈MyString, int〉
::lookup was still part of the difference between the first and the second flow. Al-
though this path was no longer taken when constructing the output file attribute,
it was taken for several unrelated attributes that were correctly marked as per-
cluster. Function SetTransferFiles invoked InsertJobExpr from several call sites,
but our prototype did not distinguish these invocations as different paths. Un-
like the path for the output file attribute however, these paths corresponded to
normal variations between flows and must be ignored.

Such variations did not prevent us from finding the cause of this problem.
However, finding the causes of other problems may require analysis of paths that
are distinguished by the call site information. Since our agent already uses call
site instrumentation, augmenting our approach to record the site address for
each function call is straightforward. Our analyses would be able to handle call
paths of the form (main → site1 → A → site2 → B) without any modification.

5.2 Job-run-twice Problem

Techniques that allowed us to find the cause of the file-transfer problem also
proved useful for finding another previously-diagnosed problem in the Condor
environment. The shadow daemon contained an intermittent bug that could
cause it to crash after reporting successful job completion. In such cases, the
schedd daemon restarted the shadow and the job was run for the second time.
Re-running the job after reporting its successful completion caused a higher-level
work-flow management component built on top of Condor to abort; reporting
job completion twice also was confusing for the end user.

To model this hard-to-reproduce problem in our test environment, we in-
serted a controlled intermittent fault in the Condor source code. If the fault
occurs, it terminates the execution of the shadow daemon after it writes the job
completion entry in the log; if the fault does not occur, the shadow completes
successfully. Similar to the file-transfer problem, we then submitted a cluster
of five identical jobs to Condor, obtained the system-wide trace that began at
condor submit, and separated the trace into flows. One of the flows contained
an instance of the problem and our anomaly detection algorithm was able to
identify such a flow as follows.

Figure 6a shows the suspect scores computed for composite profiles of all
flows without prior reference traces. Flows 1 and 5 have higher scores than the
rest of the flows. Detailed examination of their differences from the common
behavior showed that these differences corresponded to normal variations in
activities performed only for the first and the last job in the cluster. Therefore,
this approach is unable to locate the true anomaly. Coverage profiles performed
similarly to the composite profiles and also could not locate the anomaly.

Unlike the file-transfer scenario however, this problem was intermittent. As a
result, we were able to obtain a set of known-correct traces, where the problem
did not happen, and used them to improve the accuracy of anomaly detection.
Figure 6b shows the suspect scores for all flows computed using such known-
correct traces as a reference. Flows 1 and 5 receive low suspect scores because



similar flows were present in the normal run. In contrast, Flow 3 exhibits an
anomalous behavior; it has not been observed in previous normal executions.
Analysis of coverage profiles showed similar results. By examining Condor job-
completion log records, we confirmed that our automated approach identified
the correct anomaly: Flow 3 corresponded to the job that was run twice.
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Fig. 6: Suspect scores for five jobs with and without reference traces

To identify the root cause of this problem, we analyzed differences in call
path coverage between Flow 3 in the anomalous run and Flow 3 in the known-
normal previous run. The total number of paths present only in the anomalous
flow or only in the normal flow was 964. After applying our filtering techniques,
we reduced the number of paths to inspect to 37, a factor of 26. While substan-
tial, the reduction factor was lower than that in the file-transfer problem since
most differences corresponded to functions with smaller call path subtrees. Our
techniques still enabled us to examine the remaining ones manually.

We ranked all the paths by time of first occurrence. Similar to the file-transfer
problem, several early paths corresponded to normal variations in the work-
load rather than anomalies. However, the 14th path corresponded to an immedi-
ate effect of the fault: schedd ’s function Scheduler::child exit invoked Daemon-
Core::GetExceptionString only in the anomalous flow. By examining the source
code, we determined that child exit calls GetExceptionString when the shadow
crashes or aborts. Next, this function writes a warning record to the schedd log
file and reschedules the job. Due to the large log file, and the large number of
log files from other Condor components, finding this record via manual inspec-
tion of the logs would be difficult. In contrast, our approach presented a small
number of reports to the analyst and significantly simplified locating the failed
component. To find the location of the fault in the shadow, we examined the
last functions the shadow called in the anomalous Flow 3. The call path at the
crash time pointed to the location where we previously inserted the fault thus
correctly identifying the cause of the problem.

To compare our ranking strategies, we also ordered call paths by their length.
This strategy placed the call path to DaemonCore::GetExceptionString in the
first position: this path was the shortest among the differences. Here, ranking by
length was more effective than ranking by time of occurrence. In the file-transfer
problem however, the true cause was ranked 31st by length and 15th by time.
Determining which ranking technique works better in most environments and
designing alternative ranking techniques remains future work.



5.3 Run-time overhead

In our previous experiments with real-life applications, the overhead of function-
level instrumentation ranged from 35% for a call-intensive workload to less than
1% for an I/O-bound workload [33–35]. While some elusive problems may be
masked by any amount of overhead, this limitation exists in all run-time diagnos-
tic tools. Yet, they are still widely used and effective in many cases. Furthermore,
the overhead of our tool might be lowered by using static structural analysis to
reduce tracing of functions in inner loops. Another alternative is to combine our
distributed propagation infrastructure with hardware branch-tracing capabili-
ties available in recent Intel R© processors [19]. Whether tracing every branch in
hardware introduces less run-time overhead than tracing every function call with
instrumentation is likely workload-specific. The efficacy of these optimizations is
yet to be studied. Most importantly, the key feature of our approach is dynamic
deployment in distributed environments, introducing zero overhead in normal
execution, where no diagnosis is required.

6 Related Work

Our framework collects event traces, identifies semantic activities in the traces,
such as requests, locates anomalous activities, and attempts to explain the causes
of the anomalies. While several previous diagnostic approaches follow the same
steps, we use substantially different techniques to target unmodified production
environments. Below, we survey related work at each of these steps.

6.1 Techniques for Data Collection

Our approach can collect detailed traces from already-running unmodified dis-
tributed systems and it introduces zero overhead when disabled. AjaxScope di-
agnoses problems in a client’s browser by instrumenting the JavaScript source
passing through a proxy server [22]. This approach works on unmodified systems
but applies only to scripting environments. Within a single host, our technique is
most similar to dynamic binary translation [1, 7, 12, 29, 31, 36, 39]. Triage com-
bines binary translation of PIN [29] with record-replay capabilities [43]. The
novel feature of our approach however, is its ability to cross host boundaries,
propagating from one process into another in a distributed system. This prop-
erty enables system-wide on-demand analysis of individual requests in the field.

Unlike the single-host case, previous techniques for distributed tracing could
not be applied to an already-running system and they typically collect coarse-
grained traces that may be insufficient for accurate diagnosis. Magpie obtains
traces of kernel events using probes already available in Windows and relies on
binary rewriting for application-level tracing. Similarly, SysProf relies on static
Linux kernel instrumentation [2]. Pinpoint and Stardust [42] collect traces of
communication events by modifying middleware and applications.

Some mechanisms can obtain more detailed traces, but they still require sys-
tem modification and restart. Traceback uses offline binary-rewriting to instru-
ment application components [4]. King and Chen obtain system-wide dependence
graphs from applications that communicate via standard UNIX mechanisms [23].
To intercept all communication operations, they run the entire system inside a



virtual machine and modify the virtual machine monitor to capture all system
calls made inside the guest operating system. Whodunit tracks communications
through shared memory by running critical sections of the application in an in-
struction emulator [9]. To intercept message-passing communications, Whodunit
uses send and recv wrappers in all components.

6.2 Techniques for Flow Reconstruction

A trace from a real-world distributed system may contain interleaved events from
several concurrent user requests. To simplify trace analysis, several previous ap-
proaches attempted to separate events from different requests into flows [3, 5, 9,
10, 24, 26, 32, 42]. Our approach aims to support many systems with application-
independent rules. These rules are similar to the algorithms of DPM [32] and
Whodunit [9]. In scenarios where such rules are insufficient however, we allow the
analyst to provide additional application-specific directives to analysis. These di-
rectives have the form similar to the event-join schema of Magpie [5]. The key
feature of our flow-reconstruction approach is its ability to combine generic and
application-specific knowledge in a uniform algorithm.

Aguilera et al. studied probabilistic techniques for building causal flows with-
out application-specific knowledge [3]. This approach looks for frequent causal
paths in the system and thus may be used for locating performance bottlenecks.
However, results presented by the authors indicate that this probabilistic ap-
proach generates many false paths for rare requests. As a result, it may not be
accurate for locating the causes of infrequent bugs and performance anomalies.

Another approach for flow construction is to assign a unique identifier to
each request-arrival event and modify the source code of the system to pass
this identifier to other components on inter-component communications. This
technique has been used by Pinpoint [10], Stardust [42], the works of Li [26], and
Krempel [24]. These projects can accurately track the paths of requests through
components. However, they require extensive middleware modifications.

6.3 Techniques for Data Analysis

Our data analyses contain two steps. First, we use an anomaly detection al-
gorithm to find an unusual request. In this step, we use the algorithm of sp-
Tracer [35], extended to operate on distributed rather than per-process flows.
Second, we perform root cause analysis to find why the identified request is un-
usual. Below, we focus on this step, surveying techniques for root cause analysis.

Several projects attempt to diagnose problems by correlating observed events
with failures. Pinpoint looks for components (hosts or software modules) that are
present only in failed requests. Jones et al. apply a similar idea at the program
statement level, identifying statements that are frequently present in failed runs
and absent in passing runs [20]. Dynamic program dicing [11, 30] and Triage [43]
compare the dynamic backward slice for a variable with an incorrect value (a
set of program statements or basic blocks affecting the variable) to the slice
for a variable with a correct value, e.g., the same variable in a successful run.
Finally, Cooperative Bug Isolation CBI) samples various predicates during pro-



gram runs (e.g., whether each conditional branch in the code was taken) and
reports predicates correlated with failures to the analyst [27].

We apply a similar approach to function-level coverage data in a distributed
system. Triage and dynamic program dicing have a finer level of detail, but they
work in a single process. Another important feature of our approach is its ability
to substantially reduce the number of differences to examine. In distributed envi-
ronments, slicing-based approaches may also require similar filtering techniques
though it remains to be seen. Similar to CBI and Jones et al., we also rank the
differences so that more likely problem causes are ranked higher. However, our
scheme can order even functions that are perfectly correlated with the failure
rather than assigning the same highest rank to them.

Magpie attempts to locate the cause of the problem from raw traces rather
than trace summaries [6]. It automatically builds a probabilistic state machine
that accepts the collection of traces, processes each anomalous trace with the
machine, and marks events that correspond to state transitions with low proba-
bilities as the causes of anomalies. Pip also operates on raw traces of events and
checks them against a manually-constructed model [38]. These techniques could
also be applied to our function-level traces. In our experience however, function-
level traces in distributed systems are highly variable and the first difference is
often caused by minor variations in workload for different runs. We eliminate
most of such variations by summarizing traces as call path profiles.

Yuan et al. propose a supervised technique for identifying known problems in
failure reports coming from the field [44]. They summarize the system call trace
for a failed run and find an already-diagnosed problem with the most similar
summary. Cohen et al. construct signatures of application performance met-
rics and search the collection of signatures for previously-diagnosed performance
problems [15]. Unlike both approaches, we operate on detailed function-level
traces and thus can perform diagnosis with higher precision. Furthermore, these
techniques target known problems and would be unable to diagnose new failures.

Finally, there are several approaches that attempt to localize the root cause of
a problem via repetitive modification of system parameters. Delta Debugging [46]
and the first stage of Triage look for the minimum change in program input that
cause the incorrect run to complete successfully. Delta Debugging also attempts
to isolate the problem to a minimum set of program variables. Choi and Zeller
diagnose race conditions by finding the minimum change in thread schedules
that would make the problem disappear [14]. Whether these techniques can be
generalized to handle production distributed systems remains to be seen.
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