
IPS: An Interactive and Automatic Performance
Measurement Tool for Parallel and Distributed Programs

Barton P. Miller
Cui-Qing, Yang

Computer Sciences Department
University of Wisconsin

1210 West Dayton Street
Madison, WI 53706

ABSTRACT

We have designed an interactive tool, called IPS, for perfor
mance measurement and analysis of parallel and distributed pro
grams. IPS is based on two main principles. First, programmers
should be supplied with the maximum information about the execu
tion of their program. This information should be available from all
levels of abstraction - from the statement level up to the process
interaction level. To prevent the programmer from being inundated
with irrelevant details, there must be a logical and intuitive organi
zation to this data. Second, programmers should be supplied with
answers, not numbers. The performance tool should be able to
guide the programmer to the location of the performance problem,
and describe the problem in terms of the source program.

IPS uses a hierarchical model as the framework for perfor
mance measurement. The hierarchical model maps program's
behavior to different levels of abstraction, and unifies performance
data from the whole program level down to procedure and statement
level. IPS allows the programmer to interactively evaluate the per
formance history of a distributed program. Users are able to
maneuver through the hierarchy and analyze the program measure
ment results at various levels of detail. The regular organization of
the hierarchy allows us to easily reason about the program's execu
tion and provides information to automatically guide the program
mer to the cause of performance bottlenecks. Critical path analysis,
in conjunction with hierarchically organized performance metrics, is
one method used to direct the programmer in identifying
bottlenecks.

An initial implementation of IPS has been made on the Char
lotte distributed operating system and a new implementation is
currently being built on 4.3BSD UNIX.

1. INTRODUCTION

An important motivation for writing parallel and distributed
programs is to achieve performance speed-up. There is a steadily
increasing number of systems that support loosely-coupled or
tightly-coupled parallel programming, and there is an increasing
number of parallel applications. The techniques and tools needed to
aid in program performance evaluation and debugging are lagging
behind the development of parallel programs. In this paper, we
present a performance measurement system for distributed programs
that provides a broad range of performance information for evaluat
ing the behavior of program's execution.

Our research in the area of performance measurement
emphasizes two points. First, we must supply the programmer with
a complete picture of a program's execution. Information must be
available about all aspects of the program's behavior and the pro
grammer should be able to view this information from different lev
els of abstraction. We must supply this large body of performance
information in such a way that the programmer is not overwhelmed
and can easily and intuitively access the information. Second, pro-

CH2439-8/87/0000/0482$01.00 © 1987 IEEE

482

grammers need more than a tool that provides extensive lists of per
formance metrics; they need tools that will direct them to the loca
tion of performance problems. Performance tools must be able to
summarize a program's behavior and automatically guide the pro
grammer to the cause of performance bottlenecks. These results
should be presented to the programmer in terms of the source pro
gram and able to be viewed from different levels of abstraction. A
system that incorporates these ideas will provide an integrated per
formance system.

The basis of our performance system is to provide a regular
structure to the performance data. We define a hierarchical model
of the execution of distributed programs as a framework for the per
formance measurement. We use the hierarchy to organize perfor
mance information, provide views of performance data at different
levels of abstraction, give the programmer an intuitive way to view
and manipulate the data, and simplify the construction of tools that
automatically reason about a program's behavior.

A hierarchical model naturally fits the way in which we con
struct and define distributed and parallel programs. Our hierarchy is
a regular structure that reflects the semantics and organization of the
program. A complete picture of the program's execution can be
presented at different levels of detail in the hierarchy. An interac
tive interface allows users to easily traverse through the hierarchy
and zoom-in/zoom-out at different levels of abstraction. Users can
always concentrate on the spots in the picture where the most
interesting activities have occurred and interactively shift that focus.
Our efforts are aimed at integrating the performance tool with
automatic guiding techniques for locating performance problems.

Much of the research on performance measurement of distri
buted systems and programs[l-6] shows that we can describe a
program's behavior at many levels of detail and abstraction. These

levels include the hardware architecture; operating system, single
process, and entire program. Often, we need information from
several of these levels and some way to coordinate the information
received from these various levels of abstraction. Most existing per
formance tools work at one of two levels: those that monitor the
internal activities of the processes in a program (intraprocess leve[)
and those that monitor the interactions between processes (interpro
cess leve[). Each level provides a part of the picture of the
program's performance, but neither level offers a way to combine
these results for a complete picture of the program's behavior.

A more recent and promising approach is that of the PIE sys
tem[?]. PIE includes performance data from both the intra- and
interprocess levels. This data is stored using a . relational data
model. Queries on the relational data provide an integrated view of
the program's behavior. The integrated view is important to the
programmer's ease of using the performance tool.

Our approach to the organization of performance data is to
integrate it into a single structure as suggested in PIE, but into a reg
ular structure that reflects the semantics and organization of the pro
gram. This regular structure should provide easy and intuitive

)

access for performance information, straight-forward mapping onto
user interfaces, and the ability to easily automate reasoning about
the program's behavior. The ability to reason about a program's
behavior allows us to build tools to guide the programmer to perfor
mance problems. The development of techniques for automatically
guiding the programmer to locate performance problems will com
plement designs such as PIE. We expect the results of our research
to be applied to a variety of systems.

In Section 2, we describe a sample hierarchy for distributed
programs and a corresponding hierarchy for program measurement.
These models unify many levels of performance data and provide
the basis of our research. Section 3 briefly presents details of the
pilot implementation of data collection and analysis facilities that
support the hierarchical structure. Section 4 focuses on techniques
for automatically guiding the progra.-nmer to locate performance
problems and improve program efficiency. A summary and report
of current status of IPS is given in Section 5.

2. THE PROGRAM AND MEASUREMENT HIERARCHIES

Our performance system of distributed programs, called IPS,
is based on a hierarchical model of parallel and distributed compu
tation. A hierarchical model presents multiple levels of abstraction,
provides multiple views of the data, and demonstrates a regular
structure. The objects in a hierarchical model are organized in
well-defined layers separated by interfaces that insulate them from
the internal details of other layers. Therefore, we can view a com
plex problem at various levels of abstraction. We can move verti
cally in the hierarchy, increasing or decreasing the amount of detail
that we see. We can also move horizontally, viewing different com
ponents at the same level of abstraction.

In this section we present the sample hierarchy of lPS that is
based on our initial target systems - the Charlotte Distributed
Operating System[S, 9] and 4.3BSD Berkeley UNIX[lOJ. Both sys
tems consist of processes communicating via messages. These
processes execute on machines connected via high-speed local net
works. The hierarchy presented here serves as a test example of our
hierarchy model and reflects our current implementation. It is easy
to extend these ideas to incorporate new features and other program
ming abstractions. For example, we can add the light-weight
processes (processes in the same address space) from the LYNX
parallel programming language[l l] to our hierarchy with little
effort. Our hierarchical structure could be also applied to systems
such as HPC[12], which has a different notion of program structur
ing, or MIDAS[l3], which has a 3-level programming hierarchy.

2.1. The Program Hierarchy

In our sample hierarchy, a program consists of parallel activi
ties on several machines. Machines are each running several
processes. A process itself consists of the sequential execution of
procedures. An overview of our computation hierarchy is illustrated
in Figure I. This hierarchy can be considered a subset of a larger
hierarchy, extending upwards to include local and remote networks
and downward to include machine instructions, microcode, and
gates.

(A) Program Level

This level is the top level of the hierarchy, and is the level in
which the distributed system accounts for all the activities of the
program on behalf of the user. At this level, we can view a distri
buted program as a black box running on certain system to which a
user feeds inputs and gets back outputs. The general behavior of the
whole program, such as the total execution time is visible at this
level; the underlying details of the program are hidden.

(B) Machine Level

At the machine level, the program consists of multiple threads
that run simultaneously on the individual machines of the system.

483

Whole program level

Machine level

Process level

Procedure level

'
I '

/machi~e / ,_.,...,.- '
/ : /

: /
:/

Figure 1: Overview of Computation Hierarchy

We can record summary information for each machine, and the
interactions (communications) between the different machines. All
events from a single machine can be totally ordered since they refer
ence the same physical clock. The machine level provides no
details about the structure of activities within each machine.

The machine level is not strictly part of the programmer
designed hierarchy (as are the process and procedure levels). The
structure at the machine level can change from execution to the
next, or even in a single execution as is the case in process migra
tion (14, 15].

We include the machine level in our hierarchy for two reasons.
First, in the systems t..liat we commonly use, we can either directly
specify or have explicitly visible the allocation of processes to
machines. Second, the performance of a distributed program can be
changed draµiatically depending on this allocation. It is important
to be able to make the distinction between local and remote interac
tions.

(C) Process Level

The process level represents a distributed program as a collec·
tion of communicating processes. At this level, we can view groups
of processes that reside on the same machine, or we can ignore
machine boundaries and view the computation as a single group of
communicating processes.

If we view a group of processes that reside on the same
machine, we can study the effects of the processes competing for
shared local resources (such as CPU and communication channels).
We can compare intra- and imermachine communication levels.
We can also view the entire process population and abstract the
process's behavior away from a particular machine assignment.

(D) Procedure Level

At the procedure level, a distributed program is represented as
a sequentially executed procedure-call chain for each . process.
Since the procedure is the basic unit supported by most high-level
programming languages, this level can give us detailed info°:1-~ti~n
about tbe execution of the program. The procedure level act1v1ttes
within a process are totally ordered.

The step from the process to the procedure level represents a
large increase in the rate of component interactions, and a
corresponding increase in the amount of information needed to
record these interactions. Procedure calls typically occur at a higher
frequency than message transmissions.

(E) Primitive Activity Level

The lowest level of the hierarchy is the collection of primitive
activities that are detected to support our measurements. Our primi
tive activities include process blocking and unblocking by the
scheduler, message send and receive, process creation and destruc·
tion, procedure entry and exit. Each event is associated · wi~ a
probe in the operating system or programming language run-tnne
that records the type of the event, machine, process, and procedure
in which it occurred, a local time stamp, and event type dependent
parameters. The events are listed in Table 1.

All events are monitored at the primitive activity level. These
events can be associated with metrics at higher levels of tbe hierar·
chy. For example, a message send event could be mapped to the
program level as part of the total message traffic in the pro gr~, to
the machine level as part of the message traffic between machines,
or to the process level as part of the message traffic between ind~vi·
dual processes. More complex mappings are used for computing
metrics such as parallelism or utilizations.

2.2. The Measurement Hierarchy

The program hierarchy provides a uniform framework for
viewing the various levels of abstraction in a distributed program.
If we wish to understand the performance of a distributed computa
tion, we can observe its behavior at different levels of detail. We
chose a measurement hierarchy whose levels correspond to the lev-

Number of processes.
Total execution time (real time).
Total waiting time.
Response ratio, R = TI Tcpu.
Parallelism, P = Tcpu IT.
Message traffic (bytes/sec)
Message traffic (msgs/sec)

Nm:

els in our hierarchy of distributed programs. At each level of the
hierarchy, we define performance metrics to describe the program's
execution. For example, we may be interested in parallelism at the
program level, or in message frequencies at the process level. We
can look at message frequencies between processes or between
groups of processes on the same machine. This selective observa
tion permits a user to focus on areas of interests without being
overwhelmed by all of the details of other unrelated activities. The
hierarchical structure matches the organization of a distributed com
putation and its associated performance data.

Table 2 lists several of the performance metrics that can be
calculated by IPS. Some of these metrics are appropriate for more
than one level in the hierarchy, reflecting different levels of detail.
The list in Table 2 is provided as an example of the type of metrics
that can be calculated. A different model of parallel computation
can define a different program hierarchy with its own set of metrics.

(A') Program Level

All of the metrics listed in Table 2 are valid at the program
level. At this level, these metrics provide a summary of the total
program behavior.

Most of the metrics are simple to compute. A few of the other
metrics are more complex and can be computed in several ways.
For example, utilization, p, can be computed as the sum of the p's
for each machine. Alternatively, it can be derived from the parallel
ism (speed·up) metric, p P !Nm [16].

(B ') Machine Level

The machine level provides more detall about program's
behavior than at the program level. For example, the metrics for
message rates (and quantities) are computed for each pair of
machines. This forms a matrix whose marginal values are the total
traffic into or out of an individual machine. Metrics at the machine
level are computed in a similar manner as those at the program
level.

(C') Process Level
At the process level, the metrics reflect the load generated by

individual processes. Message traffic at this level is computed for
each pair of processes.

(D') Procedure Level
The procedure level provides information to examine the per

formance effect of parts of a process.

tstart: Process starting time tend: Process ending time l
t1,1cck: Process blocking time t,esume: Process un-b~o.ckin~ time
ten.1er; Procedure entering time texit: Procedure ex1tmg nme
t nd; Message sending time trcv: Message receiving time
se • 1 ·

t,cv-call: Attempt to receive time t queue : Message arnva time

Table 1: IPS Primitive Events

Number of machines.
Total CPU time. Tcpu:

Twait cpu •
L: -

Total CPU wait time (scheduler waits)
Load factor, L = (Tcpu + Twait_cpu) / Tcpu
Utilization p:

C:
PR:

Procedure call counter
Progress ratio, Tcpu I Twait

T N N T T . T . R L p ML M and C are metrics which will be applied to different levels , p1 m,, cpu, wa1t1 watt cpu, , ' 1 v' m,
of the measurement hierarchy. - .

Table 2: Performance Metrics

484

3. IPS Il'>1PLEMENT A TION

This section describes the details of the initial IPS implemen
tation on the Charlotte distributed operating system. We are also
building a new version on the 4.3BSD UNIX operating system.

There are two phases in the operation of IPS - data collection
and data analysis. During the first phase we execute the user pro
gram and collect the raw trace data. All necessary data are collected
automatically during the execution of the program. There is no
mechanism provided (or needed) for the user to specify the data to
be ccllected. During the second phase, the programmer can interac
tively access the measurement results.

3.1. The Charlotte Distributed Operating System

The Charlotte operating system[8, 17] is being used for our
initial implementation of IPS. Charlotte is a message-based distri
buted operating system designed for the Crystal multicomputer net
work[18], which currently connects 20 VAX-11nso node comput
ers and several host computers using an 80MB/sec Pronet token
ring[19]. The Charlotte kernel supports the basic interprocess com
munication mechanisms and process management services. Other
services such as memory management, file server, name server, con
nection server, and command shell are provided by utility processes.

3.2. Basic Structure

IPS consists of three major parts: agent, data pool, and
analyst. Each of the three parts is distributed among the individual
machines in the system. The basic structure of our measurement
tool is similar to the structure of METRIC[20] and DPM[5].

The Agent is a collection of probes implanted in the operating
system kernel and the language run-time routines for collecting the
raw data when a predefined event happens.

The data pool is a memory area in every machine for the
storage of raw data and for caching intermediate results of the
analyst.

The analyst is a set of processes for analyzing the measure
ment results. There will be at least one master analyst which acts as
a central coordinator to synthesize the data sent from the different
slave analysts. The master analyst coordinates the results from one
or more slave analysts and provides an interface to the user. The
slave analysts sit on the individual machines for local analysis of the
measurement data.

c---

Pconnector (run 2)

TSP (10 cities)
TSP (20 cities)
:3imulation (run i)
''imuhtion (run,) ,, - ' -.
vmc (nm 1)
vmc (run2)
make(run 1)
make (run 2)

i

system processes
during Charlotte OS
hootstra
Traveling Salesman
;:;olvcr.

Resource/deadlock
simulat10n
"Nisconsin ivfodula
Compiler

UNIX make facility

I

There are some major differences between our structure and
the structures of METRJC and DPM. In our scheme, the raw data is
kept in the data pool on the same machine where the data was gen
erated. Slave analysts exist on each machine, instead of a single
global analyst.

For some data analyses, the master analyst will make a request
to a single slave analyst. This is the case e.g. when we request the
message traffic between two processes that are on the same
machine. Other analyses require the master analyst to coordinate
multiple slaves to produce a result. This occurs for metrics com
puted at the program level of the hierarchy.

The local data collection and (partial) analysis has several
advantages. Raw data are collected on the machine where they
were generated. Local storage of raw data should incur less meas
urement overhead than transmitting the traces to another machine.
Sending a message between machines is a relatively expensive
operation. Local data collection in IPS will use no network
bandwidth and little CPU time.

A second advantage to local data collection is that we can dis
tribute the data analysis task among several slave analysts. Low
level results can be processed in parallel at the individual machine
and sent to the master analyst where the higher level results can be
extracted. It is also possible to have the slaves cooperating in more
complex ways to reduce intermachine message traffic during ana
lyses (see Section 4).

3.3. Raw Data Collection

Local data collection requires that each macrjne maintain
sufficient buffer space for the trace data. The question arises
whether we can store enough data for a reasonable analysis. To
study this, we measured the message and procedure call frequencies
on several programs. These programs were run on the Charlotte or
4.2BSD UNIX operating systems. The measurement results are
summarized in Table 3.

Data gathering for interprocess events are done by agents in.
the Charlotte kernel. Each time that an activity occurs (most of
them appear as system calls), the agent in the kernel will gather
related data in an event record and store it in the data pool buffer.

Procedure call events happen at a much higher frequency than
interprocess events. Event tracing for procedure calls could produce
an overwheiming amount of data. We see this in Table 3, with pro
cedure call rates of over 6000/second - almost three orders of mag
nitude greater than interprocess events. Due to this high frequency,
we use a sampling mechanism combined with modifying the pro
cedure entry and exit code in the Charlotte implementation.

1.2/scc

I

I

2029/sec
6639/sec
419/scc
l l 1/sec

2401/scc
4231/sec
4918/sec
4658/sec

I

UNIX
VAX/750

UNIX
VAX/750

UNIX
VAX/750

UNIX
VAX/750

Table 3: Message and Procedure Call Frequencies

485

Because we are using sampling at the procedure level, results at this
level will be approximate. Sampling techniques have been used
successfully in several measurement tools for sequential programs,
such as the XEROX Spy[21] and HP Sampler/3000[22].

We set a rate (ranging from 5 to 100 ms) to sample and record
the current program counter (therefore the current runnJng pro
cedure). We also keep a call counter for each of procedure in the
program[23]. Each time the program enters a procedure, the
counter of that procedure is incremented. At the sampling time, a
record which includes time of day, CPU time, procedure ID, and the
call counter. The sampling frequency can be varied for each pro
gram execution. We are currently experimenting to determine a
minimum value that will provide sufficient information.

3.4. Raw Data Analysis

Analysis programs in the slave and master analysts cooperate
to summarize the raw data in respect to user queries. Intermediate
Results Tables ORT) for metrics at the process and procedure levels
are kept in each slave analyst. IRT's of machine and program levels
are computed and stored in master analyst. The master analyst can
reside on any machine as far as communication channels among
master and slave analysts can be established. In our implementa
tion, master analyst is a process running on a host Unix system. An
independent user interface part is separated from the implementa
tion of the master analyst, so that different interfaces between user
and master analyst can be easily adopted for different environments.

Three different query processing schemes are used. The first
category contains queries that only need the information in the IRT
at the program and machine levels. Therefore master analyst can
easily handle these queries by fetching appropriate entries in the
IRT. The second category contains queries that require intermediate
results stored in the IRT's at slave analysts. The master analyst has
to communicate with corresponding slave analysts to retrieve infor
mation in the IRT's of slave analysts. The last category of user
queries needs direct access to the raw data of the slave analysts (e.g.
a query for a list of the event traces in certain time interval). User
queries in this category will cause the raw trace data to be scanned
at the time of the query.

The processing costs for queries in various categories differ
significantly. Queries in first and second categories involve only
table searching in master or slave analysts. However, queries in
third category are much more expensive due to processing of the
large amount ofraw data. The choice of data stored in the IRT's on
master and slave analysts has a large affect on the costs of user
query processing.

The hierarchical program and measurement model of our
measurement tool provides a top-down abstraction of performance
behavior of the program execution. Users can concentrate on fewer
places for inquiring details of raw data information. Therefore, by
appropriately selecting IRT's on master and slave analysts, most
user queries will fall into first and second query categories.

4. AUTOMATIC PROGRAMMER GUIDANCE

Our performance system is based on the idea that performance
tool should provide answers, not just numbers. A performance sys
tem should be able to automatically guide the programmer to locate
performance problems and help users improve program efficiency.
We describe some analysis techniques in this section which support
this idea.

The previous sections described a system for measuring the
performance of the different parts of a distributed program and at
different levels of detail. A programmer can manually use this
information to find performance bottlenecks. In its simplest form,
the programmer starts at the top (program) level of the hierarchy.
Using the available metrics, the programmer will get a general pie-

486

ture of the execution of u'le program and decides where to look in
the next (machine) level of the hierarchy. The decision may be
affected by choosing the machine with Lhe smallest utilization or
highest procedure call rate. At the process level, the programmer
can examine the performance metrics for each process on the
machine and choose the process that appears to have the largest per
formance effect. This descent can be continued to the procedure
level.

The execution of a parallel or distributed program can be quite
complex. Often, individual performance metrics will not reveal the
cause of poor performance. It may be that a sequence of activities,
spanning several machines or processes, is responsible of the slow
execution. Consider an example from traditional procedure
profiling. We might discover a procedure in our prograrn that is
responsible for 90% of the execution time. We could hide this
problem by splitting the procedure into 10 sub-procedures, each
responsible for only 9% of the program execution time. Our
analysis techniques should be able to detect a situation where cost is
dispersed among several procedures, and across process and
machine boundaries.

Another difficult problem is determining the affect of conten
tion for resources. It is possible that the scheduling or planning of
activities[24 J on the different machines will have a large effect on
the performance of the entire program.

The following sections discuss some of the techniques that we
are developing or using for automatically guiding the programmer.
These techniques include (1) identifying critical resource utilization;
(2) determining interaction and scheduling affects; and (3) detecting
program time phase behavior.

4.1. Critical Resource Utilization

Turnaround or completion time is an important measure for
parallel programs. When we use the turnaround time as our meas
ure, speed is everything. One way to determine the cause of a
program's turnaround time is to find the path through the execution
history of the program that has the longest duration. This critical
path [25] identifies where in the hierarchy we should focus our
attention.

We can view a distributed program as having the following
characteristics: (a) It can be broken down into a number of separate
activities. (b) The time required of each activity can be estimated.
(c) Certain activities must be executed serially, while other activi
ties may be carried out in parallel. (d) Each activity requires some
combination of resources as CPU's, memory spaces, and 1/0 dev
ices etc. There may be more than one feasible combination of
resources for an activity, and each combination is likely to result in
a different estimate of activity duration.

Based on these properties of a distributed program, we can use
the critical path method (CPM)[25, 26] from network analysis in our
performance analysis. The critical path method commonly used in
operational research for scheduling issues, and has also been used to
evaluate concurrency in distributed simulations[27].

We can find the path in program's execution history that took
the longest time to execute. Along this path, we can identify the
place(s) where the execution of the program took the longest time.
The knowledge of this path and the bottleneck(s) in this path will
help us focus on the performance problem.

Figure 2 shows a program history graph for a distributed pro
gram with 3 processes. This graph shows the program history at the
process level. The critical path (identified by the bold line) quickly
shows us the parts of the program with the greatest effect on perfor
mance. Presentation of these analysis results offers some interesting
problem$. A program history graph may contain more than 100,000
nodes and the critical path may contain a non-trivial percentage of
these nodes. We use s_tatistical presentation techniques and display

Process 1 Process 2 Process 3

')
0

), 10

' '
' Legend &------- 4

Rev S d Process running 6 en

20
Rev

Process blocking

Message delay

7
JO

Critical path

5

Send 6 ----- Send

Figure 2: Example of Critical Path -- Process Level

the (time weighted) most commonly occurring nodes, and the most
commonly occurring sequences in the path. We use high-level
language debugging techniques to relate these events directly_ to
source program. Obseiving the most commonly occumng
sequences allows us to detect performance bottlenecks that span
procedure, process, or machine boundaries. Performance problems
that are divided among several procedures or even processes or
machines will be readily apparent.

Turnaround time is not the only critical measure of parallel
program performance. Often throughput is more important, e.g., in
high-speed transaction systems[28]. Throughput results can be
easily obtained using the statistical techniques described above.
The statistical presentation techniques are applied to the entire pro
gram history graph - not just the critical path - and this would
direct the programmer to those places in the program that most
heavily influence the throughput.

An important side issue is how to efficiently compute the criti
cal path information. The program history graph is directed and
acyclic, so this is a simpler problem to compute than the general
longest path. We are using the distributed structure of our
measurement system to test and compare different algorithms for
finding the critical path (the longest path) in a graph. We have
implemented a central algorithm based on the PDM shortest path
algorithm[29] and two variations of distributed algorithm from
Chandy and Misra[30]. The preliminary results show a maxim~m
speed-up of 2 for the distributed algorithm over the central version
for graphs of about 20,000 nodes, computed on Crystal network.
We are currently conducting further experiments and the results will
be reported in a future paper.

4.2. Interaction and Scheduling Affects

The methods described in the previous section are based
entirely on the structure of the program; they ignore the delays
caused by competition for such shared resources as CPU's. In other

487

words, the above techniques are based only on CPU time and ignore
real time delays.

We are developing second class of analysis/guidance tech
niques that measure interactions in the program. One method is to
calculate the critical path including delays caused by processes on
the same machine competing for the CPU. This critical path then
includes real delays due to blocking for events such as receipt of a
message, and reflects the interactions and scheduling of the con
current events in a program.

A second method is based on the correlation of the inteivals
where a program is blocked to the places in the source program
where these intcivals occur. With the knowledge of these correla
tions, programmers can find different idle spo~ ~ the progr31:1 and
look for possible improvements. Again, a statistical presentat10n of
results is the most promising. We can present the parts of the pro
gram that most frequently remain idle.

4.3. Program Time Phase Behavior

The execution patterns of a program may change over time.
For example, a parallel program may go through a period of intense
interaction with little computation, then switch to a period of
intense computation with little interaction among the concurrent
components. If we try to analyze the program's execution behavior
as a whole, we may find it difficult to correct the program.

We are currently investigating focusing techniques that will
identify the different phases in a program's execuJion. Thes~ phases
are identified based on critical performance metncs such as mterac
tion (communication) frequencies, CPU usage, and combinations of
these metrics. Each phase can be considered a smaller program
with more uniform performance characteristics. The focusing tech
nique is used to -direct our other guidance techniques to work on the
more specific and easily correctable problems.

5. SUMMARY AND STATUS

Our approach to a performance measurement system is to
unify performance information into a single, regular structure. This
regular structure allows easy and intuitive access for perfonnance
information, straight-forwarded mapping onto user interfaces, and
the ability to easily automate reasoning about the program's
behavior. Our hierarchical model is a natural way to describe distri
buted programs and their performance. This model provides views
from many levels of abstraction, simplifies building tools that rea
son about a program's behavior.

The techniques to automatically guide the programmer to per
formance problems will ease the task of identifying performance
problems. These techniques, combined with a user interface that
directly relates performance results to the program source code,
allow the programmer to concentrate on fixing problems rather than
finding them.

As a testing prototype for our hierarchical framework we have
implemented IPS on the Charlotte distributed operating system.
The basic structure and the probes for raw data collection have been
put in the Charlotte kernel and programming language run-time rou
tines. Implementation of data analysis mechanisms and
master/slave analysts are mostly completed. We have also provided
a simple user interface and query methods for access of performance
results. Different algorithms for critical path analysis technique
have been developed and tested with application programs. We are
currently investigating new algorithms for critical path analysis and
other data analysis/guidance techniques and conducting several
experimental tests on the measurement of distributed programs.
Also we are testing IPS with more and varied application programs
to better understand the performance system.

An initial implementation of IPS on 4.3BSD UNIX is also
underway. This implementation will expand our customer base of
application programs. We will also extend this implementation to a
Sequent shared-memory multiprocessors. Details of further pro
gress and test results will be presented in future reports.

Our research in the area of performance measurement and
evaluation is necessary to keep up with the growing universe of
parallel applications. Although the principles and techniques
developed in our research are based on the loosely-coupled parallel
processing, they should also be applicable to a wide range of pro
gramming systems including the shared-memory multiprocessing
systems.

6. REFERENCES

[1] M. V. Marathe, "Performance Evaluation at the Hardware
Architecture Level and the Operating System Kernel Design
Level," Ph.D. Thesis Computer Sciences Department CMU
(Dec. 1977).

[2] llya Gertner, "Performance Evaluation of Communicating
Processes," Ph.D. Thesis Computer Science Department,
University of Rochester (May 1980).

[3] Uwe Hercksen, Rainer Klar, Wolfgang Kleinoder, and Franz
Kneissl, "Measuring Simultaneous Events in a Multiprocessor
System," Proceedings of 1982 ACM SIGMETRICS Confer
ence on Measurement and Modeling of Computer Systems,
pp. 77-88 (August 1982).

[4] Richard Snodgrass, "Monitoring Distributed Systems: A
Relational Approach," Ph.D. Thesis Computer Sciences
Department CMU (1982).

[5] B. P. Miller, "DPM: A Measurement System for Distributed
Programs," IEEE Trans. on Computers, (to appear).

488

[6] B. P. Miller, S. Sechrest, and C. Macrander, "A Distributed
Program Monitor for Berkeley UDJx,'' Software - Practice &
Experience 16(2)(February 1986). Also appears in short form
in the 5th Int'l Conf. on Distributed Computing Systems,
Denver (May 1985)

[7] Zary Segall and Larry Rudolph, ''PIE: a Programming and
Instrumentation Environment for Parallel Processing," IEEE
Software 2(6) pp. 22-37 (Nov. 1985).

[8] Raphael Finkel, Marvin Solomon, David DeWitt, and
Lawrence Landweber, "The Charlotte Distributed Operating
System -- Part IV of the First Report on the Crystal Project,''
Tech. Report 510 Computer Sciences Dept. , Univ. of
Wisconsin-Madison (Sept. 1983).

[9] Yeshayahu Artsy, Hung-Yang Chang, and Raphael Finkel,
"Interprocess Communication in Charlotte," IEEE Software,
(to appear in 1987).

(10] S.J. Leffler, W.N. Joy, and M.K. McKusick, UNIX
programmer's Manual, 4.2 Berkeley Software Distribution,
Computer Science Dept. University of California at Berkeley
(August 1983).

[11] M. L. Scott and R. A. Finkel, "LYNX: A Dynamic Distri
buted Programming Language," Proc. of the 1984 Int' 1 Conf
on Parallel Processing, pp. 395-401 (August 1984).

[12] Thomas J. LeBlanc and Stuart A Friedberg, "Hierarchical
Process Composition in Distributed Operating Systems,''
Proc. of the 5th Int' 1 Conj on Distributed Computing Sys.,
pp. 26-34 (May 1985).

[13] C. Maples, "Analyzing Software Performance in a Multipro
cessor Environment," IEEE Software, pp. 50-63 (July 1985).

[14] M. L. Powell and B. P. Miller, "Process Migration in
DEMOS/MP," Proc. 9th Symposium on Operating Systems
Principles, pp. 110-119 (December 1983).

[15] M. M. Theimer, K. A. Lantz, and D.R. Cheriton, "Preemtable
Remote Execution Facilities for the V-System,'' Proc. of 10th
ACM Symp. on Operating Systems Principles, pp. 2-12
(December 1985).

[16] B. P. Miller, "Parallelism in Distributed Programs: Measure
ment and Prediction,'' Computer Sciences Technical Report
574, University of Wisconsin-Madison (1985).

[17] Yeshayahu Artsy, Hung-Yang Chang, and Raphael Finkel,
"Charlotte: Design and Implementation of a Distributed Ker
nel," Tech. Report 554 Computer Sciences Dept. , Univ. of
Wisconsin-Madison (Aug. 1984).

[18] D. DeWitt, R. Finkel, and M. Solomon, "The Crystal multi
computer: design and implementation experience," To appear
on IEEE Trans. on Software Engineering , (1986).

[19] Proteon Associates, Operation and Maintenance Manual for
theProNetModelpJOOO Unibus. 1982.

[20] Gene McDaniel, ''METRIC: a Kernel Instrumentation System
for Distributed Environments," Proc. of th Sixth ACM Sympo
sium on Operating System Principles, pp. 93-99 (November
1977).

[21] Gene McDaniel, "The Mesa Spy: An Interactive Tool for Per
formance Debugging," Proc. of 1982 ACM SIGMETRJCS
Conference on Measurement and Modeling of Computer Sys
tems, pp. 68-76 (1982).

[22] Abbas Rafii, "Structure and Application of a Measurement
Tool - SAMPLER/3000," Proceedings of 1981 ACM SlG
METRJCS Conference on Measurement and Modeling of
Computer Systems, pp. 110-120(September 1981).

[23] Susan L. Graham, Peter B. Kessler, and Marshall K.
McKusick, '' gprof: a Call Graph Execution Profiler,''
Proceedings of SIGPLAN '82 Symposium on Compiler Con
struction, pp. 120-126 (1982).

[24] Bernard Lint and Tilak Agerwala, ''Communication Issues in
the Design and Analysis of Parallel Algorithms,'' IEEE Tran
sactions on Software Engineering SE-7(2) pp. 174-188
(March 1981).

[25] K. G. Lockyer, An Introduction to Critical Path Analysis, Pit
man Publishing Company (1967).

[26] W. E. Duckworth, A. E. Gear, and A.G. Lockett, "A Guide to
Operational Research," John Wiley & Sons, New York,
(1977).

[27] 0. Berry and D. Jefferson, "Critical Path Analysis of Distri
buted Simulation," Proc. of Conf on Distributed Simulation
1985, (January 1985).

[28] L.F. Mackert and G. M. Lohman, "R* Optimizer Validation
and Performance Evaluation for Distributed Queries,"
Research Report, IBM Almaden Research Center (January
1986).

[29] Narsingh Deo, C. Y. Pang, and R. E. Lord, "Two Parallel
Algorithms for Shortest Path Problems," Proc. of the 1980
International Conference on Parallel Processing, pp. 244-
253 (Aug. 1980).

[30] K. M. Chandy and J. Misra, "Distributed Computation on
Graphs: Shortest Path Algorithms,'' Communications of the
ACM 25(11) pp. 833-837 (November 1982).

489

	1-3
	4-8

