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ABSTRACT 

We have designed an interactive tool, called IPS, for perfor
mance measurement and analysis of parallel and distributed pro
grams. IPS is based on two main principles. First, programmers 
should be supplied with the maximum information about the execu
tion of their program. This information should be available from all 
levels of abstraction - from the statement level up to the process 
interaction level. To prevent the programmer from being inundated 
with irrelevant details, there must be a logical and intuitive organi
zation to this data. Second, programmers should be supplied with 
answers, not numbers. The performance tool should be able to 
guide the programmer to the location of the performance problem, 
and describe the problem in terms of the source program. 

IPS uses a hierarchical model as the framework for perfor
mance measurement. The hierarchical model maps program's 
behavior to different levels of abstraction, and unifies performance 
data from the whole program level down to procedure and statement 
level. IPS allows the programmer to interactively evaluate the per
formance history of a distributed program. Users are able to 
maneuver through the hierarchy and analyze the program measure
ment results at various levels of detail. The regular organization of 
the hierarchy allows us to easily reason about the program's execu
tion and provides information to automatically guide the program
mer to the cause of performance bottlenecks. Critical path analysis, 
in conjunction with hierarchically organized performance metrics, is 
one method used to direct the programmer in identifying 
bottlenecks. 

An initial implementation of IPS has been made on the Char
lotte distributed operating system and a new implementation is 
currently being built on 4.3BSD UNIX. 

1. INTRODUCTION

An important motivation for writing parallel and distributed
programs is to achieve performance speed-up. There is a steadily 
increasing number of systems that support loosely-coupled or 
tightly-coupled parallel programming, and there is an increasing 
number of parallel applications. The techniques and tools needed to 
aid in program performance evaluation and debugging are lagging 
behind the development of parallel programs. In this paper, we 
present a performance measurement system for distributed programs 
that provides a broad range of performance information for evaluat
ing the behavior of program's execution. 

Our research in the area of performance measurement 
emphasizes two points. First, we must supply the programmer with 
a complete picture of a program's execution. Information must be 
available about all aspects of the program's behavior and the pro
grammer should be able to view this information from different lev
els of abstraction. We must supply this large body of performance 
information in such a way that the programmer is not overwhelmed 
and can easily and intuitively access the information. Second, pro-
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grammers need more than a tool that provides extensive lists of per
formance metrics; they need tools that will direct them to the loca
tion of performance problems. Performance tools must be able to 
summarize a program's behavior and automatically guide the pro
grammer to the cause of performance bottlenecks. These results 
should be presented to the programmer in terms of the source pro
gram and able to be viewed from different levels of abstraction. A 
system that incorporates these ideas will provide an integrated per
formance system. 

The basis of our performance system is to provide a regular 
structure to the performance data. We define a hierarchical model 
of the execution of distributed programs as a framework for the per
formance measurement. We use the hierarchy to organize perfor
mance information, provide views of performance data at different 
levels of abstraction, give the programmer an intuitive way to view 
and manipulate the data, and simplify the construction of tools that 
automatically reason about a program's behavior. 

A hierarchical model naturally fits the way in which we con
struct and define distributed and parallel programs. Our hierarchy is 
a regular structure that reflects the semantics and organization of the 
program. A complete picture of the program's execution can be 
presented at different levels of detail in the hierarchy. An interac
tive interface allows users to easily traverse through the hierarchy 
and zoom-in/zoom-out at different levels of abstraction. Users can 
always concentrate on the spots in the picture where the most 
interesting activities have occurred and interactively shift that focus. 
Our efforts are aimed at integrating the performance tool with 
automatic guiding techniques for locating performance problems. 

Much of the research on performance measurement of distri
buted systems and programs[l-6] shows that we can describe a 
program's behavior at many levels of detail and abstraction. These 

levels include the hardware architecture; operating system, single 
process, and entire program. Often, we need information from 
several of these levels and some way to coordinate the information 
received from these various levels of abstraction. Most existing per
formance tools work at one of two levels: those that monitor the 
internal activities of the processes in a program (intraprocess leve[) 
and those that monitor the interactions between processes (interpro
cess leve[). Each level provides a part of the picture of the 
program's performance, but neither level offers a way to combine 
these results for a complete picture of the program's behavior. 

A more recent and promising approach is that of the PIE sys
tem[?]. PIE includes performance data from both the intra- and 
interprocess levels. This data is stored using a . relational data 
model. Queries on the relational data provide an integrated view of 
the program's behavior. The integrated view is important to the 
programmer's ease of using the performance tool. 

Our approach to the organization of performance data is to 
integrate it into a single structure as suggested in PIE, but into a reg
ular structure that reflects the semantics and organization of the pro
gram. This regular structure should provide easy and intuitive 
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access for performance information, straight-forward mapping onto 
user interfaces, and the ability to easily automate reasoning about 
the program's behavior. The ability to reason about a program's 
behavior allows us to build tools to guide the programmer to perfor
mance problems. The development of techniques for automatically 
guiding the programmer to locate performance problems will com
plement designs such as PIE. We expect the results of our research 
to be applied to a variety of systems. 

In Section 2, we describe a sample hierarchy for distributed 
programs and a corresponding hierarchy for program measurement. 
These models unify many levels of performance data and provide 
the basis of our research. Section 3 briefly presents details of the 
pilot implementation of data collection and analysis facilities that 
support the hierarchical structure. Section 4 focuses on techniques 
for automatically guiding the progra.-nmer to locate performance 
problems and improve program efficiency. A summary and report 
of current status of IPS is given in Section 5. 

2. THE PROGRAM AND MEASUREMENT HIERARCHIES 

Our performance system of distributed programs, called IPS, 
is based on a hierarchical model of parallel and distributed compu
tation. A hierarchical model presents multiple levels of abstraction, 
provides multiple views of the data, and demonstrates a regular 
structure. The objects in a hierarchical model are organized in 
well-defined layers separated by interfaces that insulate them from 
the internal details of other layers. Therefore, we can view a com
plex problem at various levels of abstraction. We can move verti
cally in the hierarchy, increasing or decreasing the amount of detail 
that we see. We can also move horizontally, viewing different com
ponents at the same level of abstraction. 

In this section we present the sample hierarchy of lPS that is 
based on our initial target systems - the Charlotte Distributed 
Operating System[S, 9] and 4.3BSD Berkeley UNIX[lOJ. Both sys
tems consist of processes communicating via messages. These 
processes execute on machines connected via high-speed local net
works. The hierarchy presented here serves as a test example of our 
hierarchy model and reflects our current implementation. It is easy 
to extend these ideas to incorporate new features and other program
ming abstractions. For example, we can add the light-weight 
processes (processes in the same address space) from the LYNX 
parallel programming language[l l] to our hierarchy with little 
effort. Our hierarchical structure could be also applied to systems 
such as HPC[ 12], which has a different notion of program structur
ing, or MIDAS[l3], which has a 3-level programming hierarchy. 

2.1. The Program Hierarchy 

In our sample hierarchy, a program consists of parallel activi
ties on several machines. Machines are each running several 
processes. A process itself consists of the sequential execution of 
procedures. An overview of our computation hierarchy is illustrated 
in Figure I. This hierarchy can be considered a subset of a larger 
hierarchy, extending upwards to include local and remote networks 
and downward to include machine instructions, microcode, and 
gates. 

(A) Program Level 

This level is the top level of the hierarchy, and is the level in 
which the distributed system accounts for all the activities of the 
program on behalf of the user. At this level, we can view a distri
buted program as a black box running on certain system to which a 
user feeds inputs and gets back outputs. The general behavior of the 
whole program, such as the total execution time is visible at this 
level; the underlying details of the program are hidden. 

(B) Machine Level 

At the machine level, the program consists of multiple threads 
that run simultaneously on the individual machines of the system. 

483 

Whole program level 

Machine level 

Process level 

Procedure level 

' 
I ' 

/machi~e / ,_.,...,.- ' 
/ : / 

: / 
:/ 

Figure 1: Overview of Computation Hierarchy 

We can record summary information for each machine, and the 
interactions (communications) between the different machines. All 
events from a single machine can be totally ordered since they refer
ence the same physical clock. The machine level provides no 
details about the structure of activities within each machine. 

The machine level is not strictly part of the programmer 
designed hierarchy (as are the process and procedure levels). The 
structure at the machine level can change from execution to the 
next, or even in a single execution as is the case in process migra
tion (14, 15]. 

We include the machine level in our hierarchy for two reasons. 
First, in the systems t..liat we commonly use, we can either directly 
specify or have explicitly visible the allocation of processes to 
machines. Second, the performance of a distributed program can be 
changed draµiatically depending on this allocation. It is important 
to be able to make the distinction between local and remote interac
tions. 



(C) Process Level 

The process level represents a distributed program as a collec· 
tion of communicating processes. At this level, we can view groups 
of processes that reside on the same machine, or we can ignore 
machine boundaries and view the computation as a single group of 
communicating processes. 

If we view a group of processes that reside on the same 
machine, we can study the effects of the processes competing for 
shared local resources (such as CPU and communication channels). 
We can compare intra- and imermachine communication levels. 
We can also view the entire process population and abstract the 
process's behavior away from a particular machine assignment. 

(D) Procedure Level 

At the procedure level, a distributed program is represented as 
a sequentially executed procedure-call chain for each . process. 
Since the procedure is the basic unit supported by most high-level 
programming languages, this level can give us detailed info°:1-~ti~n 
about tbe execution of the program. The procedure level act1v1ttes 
within a process are totally ordered. 

The step from the process to the procedure level represents a 
large increase in the rate of component interactions, and a 
corresponding increase in the amount of information needed to 
record these interactions. Procedure calls typically occur at a higher 
frequency than message transmissions. 

(E) Primitive Activity Level 

The lowest level of the hierarchy is the collection of primitive 
activities that are detected to support our measurements. Our primi
tive activities include process blocking and unblocking by the 
scheduler, message send and receive, process creation and destruc· 
tion, procedure entry and exit. Each event is associated · wi~ a 
probe in the operating system or programming language run-tnne 
that records the type of the event, machine, process, and procedure 
in which it occurred, a local time stamp, and event type dependent 
parameters. The events are listed in Table 1. 

All events are monitored at the primitive activity level. These 
events can be associated with metrics at higher levels of tbe hierar· 
chy. For example, a message send event could be mapped to the 
program level as part of the total message traffic in the pro gr~, to 
the machine level as part of the message traffic between machines, 
or to the process level as part of the message traffic between ind~vi· 
dual processes. More complex mappings are used for computing 
metrics such as parallelism or utilizations. 

2.2. The Measurement Hierarchy 

The program hierarchy provides a uniform framework for 
viewing the various levels of abstraction in a distributed program. 
If we wish to understand the performance of a distributed computa
tion, we can observe its behavior at different levels of detail. We 
chose a measurement hierarchy whose levels correspond to the lev-

Number of processes. 
Total execution time (real time). 
Total waiting time. 
Response ratio, R = TI Tcpu. 
Parallelism, P = Tcpu IT. 
Message traffic (bytes/sec) 
Message traffic (msgs/sec) 

Nm: 

els in our hierarchy of distributed programs. At each level of the 
hierarchy, we define performance metrics to describe the program's 
execution. For example, we may be interested in parallelism at the 
program level, or in message frequencies at the process level. We 
can look at message frequencies between processes or between 
groups of processes on the same machine. This selective observa
tion permits a user to focus on areas of interests without being 
overwhelmed by all of the details of other unrelated activities. The 
hierarchical structure matches the organization of a distributed com
putation and its associated performance data. 

Table 2 lists several of the performance metrics that can be 
calculated by IPS. Some of these metrics are appropriate for more 
than one level in the hierarchy, reflecting different levels of detail. 
The list in Table 2 is provided as an example of the type of metrics 
that can be calculated. A different model of parallel computation 
can define a different program hierarchy with its own set of metrics. 

(A') Program Level 

All of the metrics listed in Table 2 are valid at the program 
level. At this level, these metrics provide a summary of the total 
program behavior. 

Most of the metrics are simple to compute. A few of the other 
metrics are more complex and can be computed in several ways. 
For example, utilization, p, can be computed as the sum of the p's 
for each machine. Alternatively, it can be derived from the parallel
ism (speed·up) metric, p P !Nm [16]. 

(B ') Machine Level 

The machine level provides more detall about program's 
behavior than at the program level. For example, the metrics for 
message rates (and quantities) are computed for each pair of 
machines. This forms a matrix whose marginal values are the total 
traffic into or out of an individual machine. Metrics at the machine 
level are computed in a similar manner as those at the program 
level. 

(C') Process Level 
At the process level, the metrics reflect the load generated by 

individual processes. Message traffic at this level is computed for 
each pair of processes. 

(D') Procedure Level 
The procedure level provides information to examine the per

formance effect of parts of a process. 

tstart: Process starting time tend: Process ending time l 
t1,1cck: Process blocking time t,esume: Process un-b~o.ckin~ time 
ten.1er; Procedure entering time texit: Procedure ex1tmg nme 
t nd; Message sending time trcv: Message receiving time 
se • 1 · 

t,cv-call: Attempt to receive time t queue : Message arnva time 

Table 1: IPS Primitive Events 

Number of machines. 
Total CPU time. Tcpu: 

Twait cpu • 
L: -

Total CPU wait time (scheduler waits) 
Load factor, L = (Tcpu + Twait_cpu) / Tcpu 
Utilization p: 

C: 
PR: 

Procedure call counter 
Progress ratio, Tcpu I Twait 

T N N T T . T . R L p ML M and C are metrics which will be applied to different levels , p1 m,, cpu, wa1t1 watt cpu, , ' 1 v' m, 
of the measurement hierarchy. - . 

Table 2: Performance Metrics 
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3. IPS Il'>1PLEMENT A TION 

This section describes the details of the initial IPS implemen
tation on the Charlotte distributed operating system. We are also 
building a new version on the 4.3BSD UNIX operating system. 

There are two phases in the operation of IPS - data collection 
and data analysis. During the first phase we execute the user pro
gram and collect the raw trace data. All necessary data are collected 
automatically during the execution of the program. There is no 
mechanism provided (or needed) for the user to specify the data to 
be ccllected. During the second phase, the programmer can interac
tively access the measurement results. 

3.1. The Charlotte Distributed Operating System 

The Charlotte operating system[8, 17] is being used for our 
initial implementation of IPS. Charlotte is a message-based distri
buted operating system designed for the Crystal multicomputer net
work[ 18], which currently connects 20 VAX-11nso node comput
ers and several host computers using an 80MB/sec Pronet token 
ring[19]. The Charlotte kernel supports the basic interprocess com
munication mechanisms and process management services. Other 
services such as memory management, file server, name server, con
nection server, and command shell are provided by utility processes. 

3.2. Basic Structure 

IPS consists of three major parts: agent, data pool, and 
analyst. Each of the three parts is distributed among the individual 
machines in the system. The basic structure of our measurement 
tool is similar to the structure of METRIC[20] and DPM[5]. 

The Agent is a collection of probes implanted in the operating 
system kernel and the language run-time routines for collecting the 
raw data when a predefined event happens. 

The data pool is a memory area in every machine for the 
storage of raw data and for caching intermediate results of the 
analyst. 

The analyst is a set of processes for analyzing the measure
ment results. There will be at least one master analyst which acts as 
a central coordinator to synthesize the data sent from the different 
slave analysts. The master analyst coordinates the results from one 
or more slave analysts and provides an interface to the user. The 
slave analysts sit on the individual machines for local analysis of the 
measurement data. 

c---

Pconnector (run 2) 

TSP (10 cities) 
TSP (20 cities) 
:3imulation (run i) 
''imuhtion (run,) ,, - ' -. 
vmc (nm 1) 
vmc (run2) 
make(run 1) 
make (run 2) 

i 

system processes 
during Charlotte OS 
hootstra 
Traveling Salesman 
;:;olvcr. 

Resource/deadlock 
simulat10n 
"Nisconsin ivfodula 
Compiler 

UNIX make facility 

I 

There are some major differences between our structure and 
the structures of METRJC and DPM. In our scheme, the raw data is 
kept in the data pool on the same machine where the data was gen
erated. Slave analysts exist on each machine, instead of a single 
global analyst. 

For some data analyses, the master analyst will make a request 
to a single slave analyst. This is the case e.g. when we request the 
message traffic between two processes that are on the same 
machine. Other analyses require the master analyst to coordinate 
multiple slaves to produce a result. This occurs for metrics com
puted at the program level of the hierarchy. 

The local data collection and (partial) analysis has several 
advantages. Raw data are collected on the machine where they 
were generated. Local storage of raw data should incur less meas
urement overhead than transmitting the traces to another machine. 
Sending a message between machines is a relatively expensive 
operation. Local data collection in IPS will use no network 
bandwidth and little CPU time. 

A second advantage to local data collection is that we can dis
tribute the data analysis task among several slave analysts. Low 
level results can be processed in parallel at the individual machine 
and sent to the master analyst where the higher level results can be 
extracted. It is also possible to have the slaves cooperating in more 
complex ways to reduce intermachine message traffic during ana
lyses (see Section 4). 

3.3. Raw Data Collection 

Local data collection requires that each macrjne maintain 
sufficient buffer space for the trace data. The question arises 
whether we can store enough data for a reasonable analysis. To 
study this, we measured the message and procedure call frequencies 
on several programs. These programs were run on the Charlotte or 
4.2BSD UNIX operating systems. The measurement results are 
summarized in Table 3. 

Data gathering for interprocess events are done by agents in. 
the Charlotte kernel. Each time that an activity occurs (most of 
them appear as system calls), the agent in the kernel will gather 
related data in an event record and store it in the data pool buffer. 

Procedure call events happen at a much higher frequency than 
interprocess events. Event tracing for procedure calls could produce 
an overwheiming amount of data. We see this in Table 3, with pro
cedure call rates of over 6000/second - almost three orders of mag
nitude greater than interprocess events. Due to this high frequency, 
we use a sampling mechanism combined with modifying the pro
cedure entry and exit code in the Charlotte implementation. 

1.2/scc 

I 

I 

2029/sec 
6639/sec 
419/scc 
l l 1/sec 

2401/scc 
4231/sec 
4918/sec 
4658/sec 

I 

UNIX 
VAX/750 

UNIX 
VAX/750 

UNIX 
VAX/750 

UNIX 
VAX/750 

Table 3: Message and Procedure Call Frequencies 
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Because we are using sampling at the procedure level, results at this 
level will be approximate. Sampling techniques have been used 
successfully in several measurement tools for sequential programs, 
such as the XEROX Spy[21] and HP Sampler/3000[22]. 

We set a rate (ranging from 5 to 100 ms) to sample and record 
the current program counter (therefore the current runnJng pro
cedure). We also keep a call counter for each of procedure in the 
program[23]. Each time the program enters a procedure, the 
counter of that procedure is incremented. At the sampling time, a 
record which includes time of day, CPU time, procedure ID, and the 
call counter. The sampling frequency can be varied for each pro
gram execution. We are currently experimenting to determine a 
minimum value that will provide sufficient information. 

3.4. Raw Data Analysis 

Analysis programs in the slave and master analysts cooperate 
to summarize the raw data in respect to user queries. Intermediate 
Results Tables ORT) for metrics at the process and procedure levels 
are kept in each slave analyst. IRT's of machine and program levels 
are computed and stored in master analyst. The master analyst can 
reside on any machine as far as communication channels among 
master and slave analysts can be established. In our implementa
tion, master analyst is a process running on a host Unix system. An 
independent user interface part is separated from the implementa
tion of the master analyst, so that different interfaces between user 
and master analyst can be easily adopted for different environments. 

Three different query processing schemes are used. The first 
category contains queries that only need the information in the IRT 
at the program and machine levels. Therefore master analyst can 
easily handle these queries by fetching appropriate entries in the 
IRT. The second category contains queries that require intermediate 
results stored in the IRT's at slave analysts. The master analyst has 
to communicate with corresponding slave analysts to retrieve infor
mation in the IRT's of slave analysts. The last category of user 
queries needs direct access to the raw data of the slave analysts (e.g. 
a query for a list of the event traces in certain time interval). User 
queries in this category will cause the raw trace data to be scanned 
at the time of the query. 

The processing costs for queries in various categories differ 
significantly. Queries in first and second categories involve only 
table searching in master or slave analysts. However, queries in 
third category are much more expensive due to processing of the 
large amount ofraw data. The choice of data stored in the IRT's on 
master and slave analysts has a large affect on the costs of user 
query processing. 

The hierarchical program and measurement model of our 
measurement tool provides a top-down abstraction of performance 
behavior of the program execution. Users can concentrate on fewer 
places for inquiring details of raw data information. Therefore, by 
appropriately selecting IRT's on master and slave analysts, most 
user queries will fall into first and second query categories. 

4. AUTOMATIC PROGRAMMER GUIDANCE 

Our performance system is based on the idea that performance 
tool should provide answers, not just numbers. A performance sys
tem should be able to automatically guide the programmer to locate 
performance problems and help users improve program efficiency. 
We describe some analysis techniques in this section which support 
this idea. 

The previous sections described a system for measuring the 
performance of the different parts of a distributed program and at 
different levels of detail. A programmer can manually use this 
information to find performance bottlenecks. In its simplest form, 
the programmer starts at the top (program) level of the hierarchy. 
Using the available metrics, the programmer will get a general pie-
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ture of the execution of u'le program and decides where to look in 
the next (machine) level of the hierarchy. The decision may be 
affected by choosing the machine with Lhe smallest utilization or 
highest procedure call rate. At the process level, the programmer 
can examine the performance metrics for each process on the 
machine and choose the process that appears to have the largest per
formance effect. This descent can be continued to the procedure 
level. 

The execution of a parallel or distributed program can be quite 
complex. Often, individual performance metrics will not reveal the 
cause of poor performance. It may be that a sequence of activities, 
spanning several machines or processes, is responsible of the slow 
execution. Consider an example from traditional procedure 
profiling. We might discover a procedure in our prograrn that is 
responsible for 90% of the execution time. We could hide this 
problem by splitting the procedure into 10 sub-procedures, each 
responsible for only 9% of the program execution time. Our 
analysis techniques should be able to detect a situation where cost is 
dispersed among several procedures, and across process and 
machine boundaries. 

Another difficult problem is determining the affect of conten
tion for resources. It is possible that the scheduling or planning of 
activities[24 J on the different machines will have a large effect on 
the performance of the entire program. 

The following sections discuss some of the techniques that we 
are developing or using for automatically guiding the programmer. 
These techniques include (1) identifying critical resource utilization; 
(2) determining interaction and scheduling affects; and (3) detecting 
program time phase behavior. 

4.1. Critical Resource Utilization 

Turnaround or completion time is an important measure for 
parallel programs. When we use the turnaround time as our meas
ure, speed is everything. One way to determine the cause of a 
program's turnaround time is to find the path through the execution 
history of the program that has the longest duration. This critical 
path [25] identifies where in the hierarchy we should focus our 
attention. 

We can view a distributed program as having the following 
characteristics: (a) It can be broken down into a number of separate 
activities. (b) The time required of each activity can be estimated. 
(c) Certain activities must be executed serially, while other activi
ties may be carried out in parallel. (d) Each activity requires some 
combination of resources as CPU's, memory spaces, and 1/0 dev
ices etc. There may be more than one feasible combination of 
resources for an activity, and each combination is likely to result in 
a different estimate of activity duration. 

Based on these properties of a distributed program, we can use 
the critical path method (CPM)[25, 26] from network analysis in our 
performance analysis. The critical path method commonly used in 
operational research for scheduling issues, and has also been used to 
evaluate concurrency in distributed simulations[27]. 

We can find the path in program's execution history that took 
the longest time to execute. Along this path, we can identify the 
place(s) where the execution of the program took the longest time. 
The knowledge of this path and the bottleneck(s) in this path will 
help us focus on the performance problem. 

Figure 2 shows a program history graph for a distributed pro
gram with 3 processes. This graph shows the program history at the 
process level. The critical path (identified by the bold line) quickly 
shows us the parts of the program with the greatest effect on perfor
mance. Presentation of these analysis results offers some interesting 
problem$. A program history graph may contain more than 100,000 
nodes and the critical path may contain a non-trivial percentage of 
these nodes. We use s_tatistical presentation techniques and display 
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Figure 2: Example of Critical Path -- Process Level 

the (time weighted) most commonly occurring nodes, and the most 
commonly occurring sequences in the path. We use high-level 
language debugging techniques to relate these events directly_ to 
source program. Obseiving the most commonly occumng 
sequences allows us to detect performance bottlenecks that span 
procedure, process, or machine boundaries. Performance problems 
that are divided among several procedures or even processes or 
machines will be readily apparent. 

Turnaround time is not the only critical measure of parallel 
program performance. Often throughput is more important, e.g., in 
high-speed transaction systems[28]. Throughput results can be 
easily obtained using the statistical techniques described above. 
The statistical presentation techniques are applied to the entire pro
gram history graph - not just the critical path - and this would 
direct the programmer to those places in the program that most 
heavily influence the throughput. 

An important side issue is how to efficiently compute the criti
cal path information. The program history graph is directed and 
acyclic, so this is a simpler problem to compute than the general 
longest path. We are using the distributed structure of our 
measurement system to test and compare different algorithms for 
finding the critical path (the longest path) in a graph. We have 
implemented a central algorithm based on the PDM shortest path 
algorithm[29] and two variations of distributed algorithm from 
Chandy and Misra[30]. The preliminary results show a maxim~m 
speed-up of 2 for the distributed algorithm over the central version 
for graphs of about 20,000 nodes, computed on Crystal network. 
We are currently conducting further experiments and the results will 
be reported in a future paper. 

4.2. Interaction and Scheduling Affects 

The methods described in the previous section are based 
entirely on the structure of the program; they ignore the delays 
caused by competition for such shared resources as CPU's. In other 
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words, the above techniques are based only on CPU time and ignore 
real time delays. 

We are developing second class of analysis/guidance tech
niques that measure interactions in the program. One method is to 
calculate the critical path including delays caused by processes on 
the same machine competing for the CPU. This critical path then 
includes real delays due to blocking for events such as receipt of a 
message, and reflects the interactions and scheduling of the con
current events in a program. 

A second method is based on the correlation of the inteivals 
where a program is blocked to the places in the source program 
where these intcivals occur. With the knowledge of these correla
tions, programmers can find different idle spo~ ~ the progr31:1 and 
look for possible improvements. Again, a statistical presentat10n of 
results is the most promising. We can present the parts of the pro
gram that most frequently remain idle. 

4.3. Program Time Phase Behavior 

The execution patterns of a program may change over time. 
For example, a parallel program may go through a period of intense 
interaction with little computation, then switch to a period of 
intense computation with little interaction among the concurrent 
components. If we try to analyze the program's execution behavior 
as a whole, we may find it difficult to correct the program. 

We are currently investigating focusing techniques that will 
identify the different phases in a program's execuJion. Thes~ phases 
are identified based on critical performance metncs such as mterac
tion (communication) frequencies, CPU usage, and combinations of 
these metrics. Each phase can be considered a smaller program 
with more uniform performance characteristics. The focusing tech
nique is used to -direct our other guidance techniques to work on the 
more specific and easily correctable problems. 



5. SUMMARY AND STATUS 

Our approach to a performance measurement system is to 
unify performance information into a single, regular structure. This 
regular structure allows easy and intuitive access for perfonnance 
information, straight-forwarded mapping onto user interfaces, and 
the ability to easily automate reasoning about the program's 
behavior. Our hierarchical model is a natural way to describe distri
buted programs and their performance. This model provides views 
from many levels of abstraction, simplifies building tools that rea
son about a program's behavior. 

The techniques to automatically guide the programmer to per
formance problems will ease the task of identifying performance 
problems. These techniques, combined with a user interface that 
directly relates performance results to the program source code, 
allow the programmer to concentrate on fixing problems rather than 
finding them. 

As a testing prototype for our hierarchical framework we have 
implemented IPS on the Charlotte distributed operating system. 
The basic structure and the probes for raw data collection have been 
put in the Charlotte kernel and programming language run-time rou
tines. Implementation of data analysis mechanisms and 
master/slave analysts are mostly completed. We have also provided 
a simple user interface and query methods for access of performance 
results. Different algorithms for critical path analysis technique 
have been developed and tested with application programs. We are 
currently investigating new algorithms for critical path analysis and 
other data analysis/guidance techniques and conducting several 
experimental tests on the measurement of distributed programs. 
Also we are testing IPS with more and varied application programs 
to better understand the performance system. 

An initial implementation of IPS on 4.3BSD UNIX is also 
underway. This implementation will expand our customer base of 
application programs. We will also extend this implementation to a 
Sequent shared-memory multiprocessors. Details of further pro
gress and test results will be presented in future reports. 

Our research in the area of performance measurement and 
evaluation is necessary to keep up with the growing universe of 
parallel applications. Although the principles and techniques 
developed in our research are based on the loosely-coupled parallel 
processing, they should also be applicable to a wide range of pro
gramming systems including the shared-memory multiprocessing 
systems. 
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