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ABSTRACT
Binary code analysis is an enabling technique for many ap-
plications. Modern compilers and run-time libraries have
introduced significant complexities to binary code, which
negatively affect the capabilities of binary analysis tool kits
to analyze binary code, and may cause tools to report inaccu-
rate information about binary code. Analysts may hence be
confused and applications based on these tool kits may have
degrading quality. We examine the problem of constructing
control flow graphs from binary code and labeling the graphs
with accurate function boundary annotations. We identified
several challenging code constructs that represent hard-to-
analyze aspects of binary code, and show code examples for
each code construct. As part of this discussion, we present
new code parsing algorithms in our open source Dyninst tool
kit that support these constructs, including a new model for
describing jump tables that improves our ability to precisely
determine the control flow targets, a new interprocedural
analysis to determine when a function is non-returning, and
techniques for handling tail calls. We evaluated how vari-
ous tool kits fare when handling these code constructs with
real software as well as test binaries patterned after each
challenging code construct we found in real software.

CCS Concepts
•Software and its engineering → Automated static
analysis; Software reverse engineering;

Keywords
Static binary code analysis; Challenging code constructs;
Jump table model

1. INTRODUCTION
Binary code analysis is used in a wide range of applications,

including performance analysis [1, 15, 33], software reverse
engineering [12, 18], debugging [2], software reliability [31],
software forensics [42] and security [19, 23, 36]. The analysis

of binary code is a critical capability in these applications
because it does not require source code to be available and
targets the actual software artifact that is executed. Even
when you have the source code, experience has shown that
the semantics of the binary code that is executed can be
different from the source code [4].

Binary code analysis can be static or dynamic. In this
paper, we focus on static analysis as it is a foundational
technique in many areas including dynamic analysis (such
as for analyzing self-modifying code and packed malware [9,
38, 44, 51]). It has the advantages that it does not require a
program to be executed and its analysis coverage does not
depend on the coverage of the available input sets.

Previous studies on static binary code analysis have focused
on identifying and addressing challenging code constructs in
binary code, including identifying function entry points [5,
21, 43], resolving indirect control flow [6, 13, 16, 26, 40, 47],
and disambiguating non-code bytes [46]. The goal of this
paper is to improve the handling of these three constructs
and expand our study to include additional challenging code
constructs to explore complexities that have been introduced
into binary code by modern compilers and run-time libraries.

These code complexities influence the ability of an analyst
to understand the operation and intent of a program, and
the ability of a tool to correctly instrument or transform the
binary program to trace, debug, test, monitor, or sandbox
it. Supporting these code constructs in our own open source
Dyninst tool kit [37] brings a universal benefit, as Dyninst is
widely used in building debugging tools including STAT [2]
and SystemTap [17], performance tools including COBI [34],
Extrae [30], HPCToolKit [1], and Open|SpeedShop [45], and
many other tools for security analysis [19, 23, 39, 44, 50, 53]
and reverse engineering [10, 24, 27, 41, 43].

Binary code analysis tool kits [3, 11, 22, 37, 47] provide
several capabilities to help users automate the process of
binary code analysis. The capabilities include decoding bytes
into machine instructions, understanding the instruction
semantics, performing control flow and dataflow analyses,
and assigning source language semantics to binary code.
Each of these capabilities can build on and interact with
the previous ones; the last one, the assigning of source code
semantics to the binary code is subtle because there can be
more than one reasonable and consistent assignment.

Decoding bytes into machine instructions is the first step of
binary code analysis. This capability is straightforward when
you know the start address of an instruction. However, there
are many cases where the starting address of an instruction
is not obvious. It can be difficult to find the starting address
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of functions in the case where you have few, if any symbols
in the executable file (“stripped” code). This lack of symbols
is common in both malicious code and production releases
of conventional code. Even if you can find the start of
a function, indirect control flow within the function can
make it difficult to find all the code. In practice, code
analysis tool kits struggle with this issue and often miss real
instructions or report bogus instructions. Common problems
include reporting padding bytes inserted by compiler as real
instructions, missing instructions that share bytes (which,
surprisingly, occurs not only in malware but in conventional
code), interpreting data bytes as code, and misinterpreting
code as data bytes.

Building a control flow graph (CFG) from binary code
describes the basic structure of the program. It also lays
foundation for dataflow analyses and robust binary instru-
mentation and modification [7, 8]. However, tool kits often
produce inaccurate CFGs failing to recognize non-returning
functions and imprecisely handling indirect control flow.

Assigning source language semantics to binary code is a
more interesting problem, which represents binary analysis
results with familiar constructs such as functions, loops, func-
tion arguments, and local variables. Such functionality is
necessary for the programmer to understand the program in
terms with which they are familiar, to provide a reasonable
labeling when the programmer has the source code, and to
provide concrete targets for program instrumentation and
modification. However, tool kits often have a difficult time
identifying these constructs. Common problems include not
understanding that functions are no longer contiguously allo-
cated in memory, functions can interleave, and functions can
share code. These oversimplifications can cause inaccurate
correspondence between binary code and source code.

Tools built on top of binary code analysis suffer when
analysis tool kits provide inaccurate information. If a perfor-
mance analysis tool is provided an inaccurate correspondence
between the binary and source code, profiling data may be
attributed to wrong locations in source code, causing users
to miss-identify performance bottleneck [1]. Security ap-
plications need accurate information about the binary to
avoid missing attacks or reporting false alarms [23, 52]. In
addition, dataflow analyses can be imprecise if the CFG
is not accurate. Binary instrumentation [8, 32] often uses
register liveness analysis to figure out which registers can be
used by instrumentation without introducing spills; accurate
dataflow analysis is essential here. Tools built on top of bi-
nary analysis tool kits almost always assume that underlying
tool kits provide accurate information and can misbehave if
the information in not accurate [1, 23, 31].

In this paper, we examine the problem of constructing
CFGs from binary code and labeling the CFG with accurate
function boundary annotations. Addressing this problem
requires the interacting capabilities of finding instructions,
building the CFG, and assigning source function semantics.
We split the problem into three analysis stages:
• code discovery, finding all instructions in the binary;
• CFG construction, determining the basic blocks and

connecting the edges between them (and knowing when
not to connect the edges); and
• CFG partitioning, labeling edges as inter-procedural or

intra-procedural to determine the function boundaries.
From our experience in building a binary analysis tool kit,

we have identified eight challenging code constructs found

in real code that often confuse tools. For these constructs,
we use code examples to discuss why they are difficult and
present our strategies for handling them. In particular, we
present a new model describing jump tables that improves our
ability to precisely determine the control flow targets, a new
interprocedural analysis for determining whether a function
returns, and techniques for handling tail calls, overlapping
functions, and overlapping instruction sequences.

We used SPECint 2006 and created test binaries that are
patterned after each challenging code construct to evaluate
several commonly-used binary analysis tool kits, including
BAP [11], GNU Objdump [20], IDA Pro [22], Jakstab [25],
OllyDbg [35], SecondWrite [47], and Dyninst [37]. Our results
show that these challenging code constructs are prevalent
in real software and most of these tool kits can be confused
by challenging code constructs, so are likely to provide in-
accurate information about the binary in these cases. The
underlying message of such a study is that while building
a binary analysis tool kit for common code constructs is
a well-understood task, handling the full spectrum of code
generated by a modern compiler adds significant work.

We present basic definitions as background in Section 2. In
Section 3, we overview our eight challenging code constructs
and discuss them in detail from Section 4 to Section 6. We
present our evaluation comparing existing binary analysis
tool kits in Section 7 and conclude in Section 8.

2. BASIC DEFINITIONS
The problem of constructing and labeling the CFG can be

stated as: given a program, we extract a CFG and a set of
functions. Previous efforts on this problem have made various
simplifying assumptions on definitions of a program, CFG,
and function [4, 5, 13, 26, 40, 48]. Common assumptions
include that the program contains relocation information
[46], function calls always return [29], and function bodies
are independent and laid out contiguously in memory [5, 26].
However, the simplified definitions do not always hold true
with real world binaries and are not sufficient to represent the
complexities of real world binaries. We present definitions
of program, CFG, and function from Bernat and Miller [8].
These definitions do not impose unnecessary assumptions on
the binary; thus they are suitable to represent the challenging
code constructs that we discuss in this paper.

Definition 1 (Program) A program P is defined as a
tuple P = (C,D), where C =< i0, i1, . . . , im > is a sequence
of instructions that P may execute and D represents data.

Bernat and Miller point out that this definition is suffi-
ciently permissive to present real world binaries: it does
not assume the existence of symbol, debugging or relocation
information; C and D can interleave in memory; instructions
in C can overlap.

Definition 2 (CFG) A CFG is defined to be a directed
graph G = (V,E, Ve, Vx, T ), where
V = B ∪ {v⊥} is a set of nodes corresponding to all

basic blocks B and a special sink node v⊥ that has no
instructions or outgoing edges;

E ⊆ V × V is a set of control flow edges between nodes;
Vc ⊆ V is a set of entry nodes;
Vx ⊆ V is a set of exit nodes;
T : E → {intraprocedural, interprocedural} assigns a label

to an edge.
The basic blocks B are defined in a conventional way. Each

basic block b =< i0, i1, . . . , in > is a consecutive instruction
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sequence with i0 being the only entry and in being the only
exit. The sink node v⊥ is used to represent unknown control
flows [8, 11, 26, 48], mainly caused by indirect jumps and
indirect calls.

Definition 3 (Function) Let F be the set of functions
in the program. A function is a subgraph of the CFG fi =
(vi, Vi, Ei, Xi), where

vi ∈ V is the entry node of the function;
Vi ⊆ V is the set of nodes of the functions; Vi = {v ∈ V | v

is reachable from vi by traversing only intraprocedural
edges}

Ei ⊆ E is the set of intraprocedural edges between Vi;
Xi ⊆ Vi are the exits nodes of the function.
Under this definition for a function, functions can share

code, be interleaved, and be non-contiguous in memory. We
can also represent a function that has multiple entry points
as several single-entry-point functions sharing code. Some
previous projects have defined a function as an interval of
addresses [22, 26, 35]. Their definition cannot correctly model
these challenging code constructs.

While the above definitions are applicable to any ISA, in
this paper, we focus on x86 and x86-64 as they are commonly
used platforms. Their instructions have variable lengths,
making it more challenging to distinguish data from code
and identify padding bytes. We focus on stripped binaries, as
have several previous projects [4, 5, 21, 43]. Parsing stripped
binaries is significantly more challenging than parsing binaries
with symbols and debugging information. However, we need
to be able to handle stripped binaries because binary code is
often stripped in real world. Being able to handle stripped
binaries also provides a foundation to analyze malicious code.

3. CODE CONSTRUCTS OVERVIEW
From our experience in building a binary analysis tool

kit, we identified eight challenging code constructs. These
code constructs have often confused existing binary analy-
sis tool kits. Tool kits may miss real instructions, report
bogus control flows or inaccurately label function bound-
aries. The above inaccuracies in binary analysis are critical
to recognize as they may prevent analysts from understand-
ing the structure and intent of a program and cause binary
instrumentation and modification to be unsafe, incorrect,
or incomplete. In this section, we present an overview of
the challenging code constructs, as summarized in Table 1.
The code constructs are classified into the following three
analysis stages: code discovery, finding all instructions in C
that a program may execute (Section 4); CFG construction,
building nodes and edges in G (Section 5); and CFG parti-
tioning, determining which parts of the CFG belong to which
functions (Section 6). At the end of this section, we discuss
the relations between the three analysis stages.

3.1 Code Discovery
We identified three code constructs that make code discov-

ery difficult. If the three constructs are handled improperly,
binary analysis tool kits may misinterpret critical data bytes
as instructions or miss real instructions. Binary instrumen-
tation and modification may then modify critical data bytes
and cause programs to crash. Instrumentation and modifi-
cation may also be incomplete because real instructions are
missed, which may not be tolerable in security applications.
The three challenging code constructs are:

Non-code bytes: code must be distinguished from non-code

bytes that appear in code sections, such as jump tables,
read-only data and padding bytes. The compiler may insert
padding bytes between instructions to align instructions and
increase cache efficiency. It is not trivial to distinguish these
non-code bytes from real code because the non-code bytes can
usually be decoded into valid instructions. Note that even
though the compiler may put read-only data and jump tables
into separate read-only data sections, this is not required. In
fact, we find that Windows system libraries usually do not
contain a read-only data section; read-only data and jump
tables are embedded in code sections.

Missing symbols: the symbol table of a program is in-
complete, missing, or inaccurate. Binary analysis tool kits
often use function symbols to identify function entry points.
Without complete and accurate symbols, this task becomes
significantly more difficult.

Overlapping instructions: multiple instructions share bytes.
This code construct is only present on architectures that
instructions have variable lengths and the start address of
an instruction is not required to align, such as the x86 and
x86-64. If binary analysis tool kits assume that instructions
never share bytes, they will miss real instructions.

3.2 CFG Construction
We identified two challenging code constructs for CFG

construction. Handling them inappropriately may cause bi-
nary analysis tool kits to miss real control flow and report
bogus control flow. The inaccuracy in a CFG can confuse
analysts and degrade the quality of tools that are based
on binary analysis. For example, structured binary editing
marks functions unmodifiable if the functions contain un-
resolved intraprocedural indirect control flow [8]. The two
code constructs are:

Indirect control flow : this code construct refers to indirect
jump instructions and indirect call instructions. Indirect con-
trol flow is mainly used to implement pointer-based control
flow, virtual functions and switch statements. The control
flow targets are dynamically calculated and it is hard to
accurately determine them statically. In this paper, we fo-
cus on jump tables, which are a set of indirect control flow
where the calculations of the control flow targets are based
on a well understood structure. Jump tables often represent
intraprocedural control flows and it is essential to resolve
them precisely for code discovery and applications such as
structured binary editing [8].

Non-returning functions: a function call to a non-returning
function will never return to this call site. Often the compiler
knows whether a call will return or not, so will safely put
unrelated code from the same function or code from another
function immediately after a non-returning call. If a binary
analysis tool kit cannot recognize non-returning functions,
it will wrongly report that control flow continues from a
non-returning call to its next block.

3.3 CFG Partitioning
We identified three code constructs in CFG partitioning.

Not being able to handle them may cause binary analysis
tool kits to inaccurately label function boundaries, which can
cause problems in binary instrumentation and modification.
Two common instrumentation operations are instrumenting
the entries of all basic blocks of a given function and instru-
menting function entries and exits. If the function boundaries
are inaccurate, we may instrument at wrong places or miss
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Table 1: An overview of identified challenging code constructs

Stage Code construct Challenge Discussion

Code
discovery

Non-code bytes Distinguish whether a byte in code sections is code or not Section 4.1
Missing symbols Identify function entry points Section 4.2
Overlapping instructions Identify all instructions that share bytes Section 4.3

CFG
construction

Indirect control flow Precisely determine the targets of an indirect control flow instruction, with an
emphasis on jump tables

Section 5.1

Non-returning functions Identify all non-returning functions. A function call to such a function should
not have an control flow edge to the next basic block.

Section 5.2

CFG
partitioning

Functions sharing code Correctly represent the shared blocks of code in all functions that share them Section 6.1
Non-contiguous functions Correctly represent a non-contiguous function where other functions’ code

may be mixed in between
Section 6.1

Tail calls Distinguish whether a jump instruction is targeting the entry point of another
function or targeting an address inside the same function

Section 6.2

Initial state: %ebx=0x80d6378 and 0 ≤ %eax ≤ 12
Address Instruction Byte Table value
80b15e5 mov %ebx,%ecx

Jump ta-
ble code

80b15e7 sub -0x24d88(%ebx
,%eax,4),%ecx

80b15ee jmp *%ecx
80b15f0 e0

0x24ce0



Jump
table
address
list

80b15f1
loopne 80b163e

4c
80b15f2 02
80b15f3

add (%eax),%al
00

...
80b1620 pop %esp 5c

0x24a5c
80b1621 dec %edx 4a
80b1622 02
80b1623

add (%eax),%al
00

Figure 1: An example of non-code bytes embedded in code

sections from libc. The code in the address range [80b15e5,

80b15ef] is a jump table calculation that uses the table at

address range [80b15f0, 80b1623]. We get valid Pentium in-

structions if the jump table bytes in gray are decoded as code.

program places where we should instrument. The three code
constructs are:

Functions sharing code: functions can share blocks of code.
Functions may have common functionality, which leads to
share the same blocks of code, like error handling code and
stack tear-down code. Shared code also may come from
functions with multiple entry points. Two possible repre-
sentations of functions with multiple entry points are one
function with multiple entry points or multiple single-entry-
point functions that share code. To our best knowledge, no
tool uses the first representation. Under the second represen-
tation, a common mistake is to assume that a block of code
can only belong to one function. We have observed this code
construct in libc, code compiled by the Intel Compilers (ICC)
and Fortran functions with programmer specified multiple
entry points (use of the “entry” keyword).

Non-contiguous function: the basic blocks of a function
are not contiguous in memory. Functions in the source
code are always contiguous in source files, but this property
may not hold true in binary code for a variety of reasons,
including the compiler outlining infrequently executed code
to increase cache performance. Therefore, we cannot simply
represent the function boundary with an interval from the
lowest address to the highest address.

Tail call : a tail call [14] is a compiler optimization that
uses a jump instruction at the end of a function to target the
entry point of another function. The optimization eliminates
a stack frame set-up and a stack frame tear-down by replacing
a call instruction with a jump instruction. If a binary analysis
tool kit cannot identify tail calls, the control flow edge from a

tail call jump instruction to the jump target will be wrongly
labeled intraprocedural.

3.4 Relations between Analysis Stages
We make two observations on the relations between the

three analysis stages. First, there is interaction between
code discovery and CFG construction. On one hand, code
discovery is a foundation to build the CFG since the nodes
consist of blocks of instructions and control flow edges are
specified by the instructions. On the other hand, control
flow can be used to address the challenges in code discovery:
targets of control flow instructions should always be real
code, not data or padding bytes; overlapping instructions
can be identified by following their incoming control flow.

Second, CFG partitioning is based on code discovery and
CFG construction. An important task of CFG partitioning
is to determine function entries and exits. It is significantly
more difficult to determine function entries when function
symbols are missing, incomplete or inaccurate. For function
exits, a binary function usually terminates in a return in-
struction. However, this is not always the case. As we saw
above, a tail call (a jump instruction) and a call instruction
to a non-returning function also terminate a function.

While this is an interesting list of problematic code con-
structs, it is by no means complete. As new code generators
are produced, and new optimized libraries are produced,
there will be new challenging constructs.

4. CODE DISCOVERY
Non-code bytes intermixed with actual instructions, miss-

ing symbols, and overlapping instructions all complicate code
discovery. We use real code examples to illustrate why these
code constructs are challenging and how we address them.

4.1 Non-code Bytes
Non-code bytes such as jump table data, static read-only

data and padding bytes often appear in code sections. A code
example from libc 2.12 is shown in Figure 1, where a jump
table is in code sections. If the jump table is misinterpreted
as code, we can inaccurately identify its contents as valid
instructions, as shown in the gray shaded cells.

Some existing tool kits use linear scan to discover code
[3, 20, 22]. This approach decodes instructions sequentially
starting from a specific point, such as the program entry
point or known function entry points. In Figure 1, a tool kit
that uses the linear scan approach will continue to decode
the non-code bytes in the jump table, after the indirect
jump at address 80b15ee is decoded. If these non-code bytes
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correspond to valid instructions, it is difficult to know to
stop the scan.

Dyninst uses control flow (recursive) traversal [46, 49]
to address non-code bytes. It starts from known function
entry points, follows control flow transfers of the program
to discover code and identify more function entry points. In
the above example, this approach will not misinterpret the
jump table as code since the jump table does not have any
incoming control flow and will not be discovered as code
during the traversal. For stripped binaries, the coverage of
code discovery by using control flow traversal depends on
the ability to identify missing function entry points (Section
4.2) and resolve indirect control flow (Section 5.1).

4.2 Missing Symbols
The symbol tables of“stripped”binaries have been removed.

Function symbols are a major source of data about function
entry points, which are basis for accurate and complete code
discovery, and determining function boundaries.

One approach to detect function entry points in stripped
binaries is based on an observation that functions often
have common operations at the entry, such as setting up a
stack frame. These common operations result in common
instruction sequences. If we can learn these sequences, we
can find function entry points. The above observation leads
to a pattern matching based approach that uses a small
number of manually designed instruction patterns [21, 22,
25, 35, 47]. However, this approach has been shown to be
insufficient because it cannot adapt to variations in compilers
and optimization levels [5, 43].

Recent work has used supervised machine learning tech-
niques to learn features for identifying function entry points
[5, 43]. Dyninst uses Rosenblum et al.’s method [43] to
identify function entry points. Their approach extracts in-
struction sequences from a training set of binaries and assigns
each instruction sequence a weight to represent the prob-
ability that an address is a function entry point when the
instruction sequence is matched at the address. We applied
Rosenblum et al.’s method [43] to train a new model based
on the binary code data set published by Bao et al. [5] and
got similar entry point identification results to theirs.

4.3 Overlapping Instructions
Overlapping instructions are often seen in malware. Fig-

ure 2 shows such an example, where three sequences of blocks
overlap and all three sequences will execute at some point in
the malware. However, we also observed this code construct
in conventional code. As shown in Figure 3, two instructions
overlap in this code example from libc-2.12.so. When the
program is multi-threaded, the program executes Sequence
1. When the program is single-threaded, the instruction in
Sequence 2 is executed; in this case, the lock prefix is omitted
to avoid the locking overhead.

SecondWrite [47] treats jumping into the middle of an
instruction as an invalid case, thus it cannot handle overlap-
ping instructions. Dyninst drops the constraint and follows
control flow transfers to report overlapping instructions.

5. CFG CONSTRUCTION
Indirect control flow and non-returning functions compli-

cate construction of the CFG. For indirect control flow, we
focus on precisely resolving jump tables. Previous tools used
one of the following three approaches to handle jump tables:

Address Byte Sequence 1 Sequence 2 Sequence 3
454017 b8

mov eax,
ebb907eb

454018 eb
454019 07
45401a b9
45401b eb

jmp 45402c
45401c 0f

seto bl45401d 90
45401e eb

jmp 454028
45401f 08

or ch, bh
454020 fd

Figure 2: An example of overlapping instructions from a

piece of malware. All three sequences of blocks execute.

Address Byte Sequence 1 Sequence 2
3fe9e8 74

je 3fe9eb
3fe9e9 01
3fe9ea f0

lock cmpxchg
%ecx,
0x35b0(%ebx)

3fe9eb 0f
cmpxchg %ecx,
0x35b0(%ebx)

... ..
3fe9f1 00

Figure 3: An example of overlapping instructions from libc.

The instruction starting at address 3fe9ea overlaps with the

instruction starting at address 3fe9eb.

(1) deep analysis that can analyze all indirect control flows
[4, 6, 28, 29], (2) compiler-specific patterns to identify jump
tables [21, 26], or (3) principled jump table analysis based on
limited definitions for jump tables [13]. The first approach
can handle all types of jump tables, but in many cases will
report imprecise control flow targets of jump tables. The
second and third approach can precisely resolve some specific
types of jump tables, but will fail to resolve new types of
jump tables introduced by modern compilers.

5.1 Jump Tables
Our handling of jump tables is based on a new model

of jump tables and a dataflow analysis that implements
the model. We first present our modeling of jump tables.
Our model abstracts jump table calculation as a univariate
function that calculates the jump target, which we call jump
table target function. A jump table target function has several
jump table parameters, including the contents, location, and
size of the table. To statically resolve a jump table, it
is essential to analyze the code to determine the form of
the jump table target function and to extract the values of
the jump table parameters. We present three jump table
examples to explain how our model can be implemented.
Finally, we briefly discuss our analysis that improves on our
ability to populate our model and resolve jump tables.

Jump tables vary mainly in four dimensions: whether the
table contents are jump target addresses or jump target
offsets relative to a base address, whether the location of
the table is explicitly encoded in an instruction or computed,
whether the input to a jump table is bounded by conditional
jumps or bounded by computation, and the number of levels
of tables involved in the address calculation. Our model
for a jump table is split into the following pieces to capture
these variations. First, we define the one-level jump table
function JT that abstracts reading values from a one-level
table. Next, we define the t-level jump table function JTt

that abstracts how multiple one-level jump table functions
can be composed to form a t-level table. Last, we define the
jump table target function JTT that calculates the control
flow target using the values returned by the JTt.
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Instruction Jump target analysis
mov %ebp,0xf8(%rsp) 0 ≤%rdx==0xf8(%rsp)==%ebp≤ 5
cmp $0x5,%ebp 0 ≤%ebp≤ 5
ja 43a4ab

lea 0x525e8f(%rip),%rax %rax=0x9602a0, %rcx=0x43a116
lea -0x302(%rip),%rcx JTT=0x43a116+[0x9602a0+%rdx×8]
movslq 0xf8(%rsp),%rdx %rdx==0xf8(%rsp)

add (%rax,%rdx,8),%rcx JTT=%rcx+[%rax+%rdx×8]
jmpq *%rcx JTT=%rcx

Figure 4: A one-level jump table from MySQL on Linux.

The third column shows how our backward dataflow analy-

sis resolves the jump table. JTT represents the jump table

target.

Definition 4 (One-level jump table function) We
define JTE,T (x) as the value read from a one-level table
when the input is x ∈ [l, u], where
l and u are the lower and upper bounds of the input to the

jump table. We extract the values of l and u so that we
can identify all the values in the table. We have identified
three scenarios where we can determine the values of l and
u. First, when there exists an explicit bounds check, such
as a pair of cmp and conditional-jump instructions. Second,
when the bounds can be inferred from an instruction that
operates on the input. For example, the instruction “and
$0xf,%eax” guarantees that %eax is in the range [0,15]. If
%eax is then used as the input to the jump table, we can
infer that l = 0 and u = 15. Third, in a multi-level table,
the values of the earlier tables are used as input to the
later tables. Note that in the third case, since these values
are statically determined, the compiler does not need to
generate instructions to bounds-check the access to the
later level tables. Therefore, to determine l and u, We must
take into account the contents of the earlier tables.

E = {(a0,v0),(a1,v1),. . .,(an−1,vn−1)} is a set that represents
the contents of a one-level jump table, where ai is the
address of the ith table entry and vi is the value. The table
entries are of equal size and laid out contiguously in memory,
so the table stride (the distance between adjacent entries),
ai − ai−1, are all equal. Specifically ai = a0 + i× (a1 − a0),
i ∈ [0, n − 1]. To extract the value of a0 and the stride
from the code, we identify the instructions that calculate
the address of a table entry, convert these instructions to
abstract syntax trees (ASTs), and combine these ASTs into
a single AST that represents the address calculation of a
table entry.

T represents the data type of the values in the table. T
specifies the width of the read from the table and whether
the read value is signed or unsigned. For example, on a
64-bit Pentium processor, T can be one of several types,
including unsigned or signed with sizes ranging from 1 to 8
bytes. Whether the values are unsigned or signed can be
determined by checking the opcode of the memory access
instruction, and the read width can be determined by the
size of the memory operand.

JTE,T (x) = RE,T (C(x)) is composed of two functions, where
C(x) is a function that calculates which table entry to read,
and RE,T (i) = (T )vi, i ∈ [0, n− 1] represents reading that
entry, treating the value as type T . Here we use the C-style
type-cast notation to denote that the value of a table entry
is converted into data type T . C(x) = x, x ∈ [0, n− 1] is
a common form, meaning that the input to the table is
directly used to index the table. C(x) can also be in other

Instruction Jump target analysis
movzbl (%rdi),%eax 0 ≤%eax≤ 255
shr $0x4,%al rax= rax >> 4

JTT= [0x495e30+(%rax>> 4)×8]
jmpq *0x495e30(,%rax,8) JTT= [0x495e30+%rax×8]

Figure 5: A one-level jump table from Binutils on Linux.

The input upper bound to this jump table must be inferred.

In addition, the input is right shifted to get the index into

the table.

Instruction Jump target analysis
cmp $0xa9,%eax 0 ≤%eax≤0xa9
ja 0x41677e

movzbl 0x416bd4(%eax), %ecx=[0x416bd4+%eax]
%ecx JTT=[0x416bc0+[0x416bd4+%eax]×4]

jmp *0x416bc0(,%ecx,4) JTT=[0x416bc0+%ecx×4]

Figure 6: A two-level jump table from PSFTP on Windows.

forms. For example, C(x) = x >> 2, x ∈ [0, 4n− 1] means
that the input values are clustered into groups in size four
before indexing the table.
Definition 5 (t-level jump table function) Given t

one-level tables, the jump table functions are composed in
the expected way: JTt(x) = (JTE1,T1 ◦ · · · ◦ JTEt,Tt)(x).

Definition 6 (jump table target function) We define
JTTt,jb,js(x) = jb + js × JTt(x), x ∈ [0, n − 1] as the final
jump target, where jb is the jump target base and js = ±1.
When jb = 0, js = 1, the t-level jump table contains absolute
addresses; when jb 6= 0, the t-level jump table contains offsets
relative to the base address jb.

To determine t, we need to identify each level of the t-level
table and track how the values from an earlier table are
used as input to a later table. To determine jb and js, we
identify the instructions that use the value read from the
t-level table to calculate the jump target and produce an
AST that represents the jump target calculation.

We use three examples to explain how to apply our model
to real code. The first example is a one-level jump table from
MySQL 5.6.3 on x86-64 Linux compiled by ICC 13.0.1, shown
in Figure 4. Here, three variables are aliased to the table
upper bound u, making it difficult to identify its value. We
must make the following three observations to determine that
u = 5: based on the add instruction, %rdx represents which
table entry to read; based on the mov and movslq instructions,
%rdx, %ebp and 0xf8(%rsp) are aliased to each other; and
based on the cmp and ja instructions, %ebp is in [0,5]. Note
that besides a cmp instruction, other instructions that set
flags can also specify the value of u, such as sub.

The second example is a one-level jump table from Binutils
2.23 on x86-64 Linux compiled by GCC 4.7.2, shown in
Figure 5. In this example, we make two observations. First,
the upper bound must be inferred as the code does not have
an explicit upper bound check. The movzbl instruction reads
a one-byte value and zero extends it into %eax, so %eax is
in the range [0,255]. Second, the input to the jump table
can be grouped before indexing the table. The input value
%eax is right shifted for four bits and used to index the table.
Therefore, C(x) = x >> 4, x ∈ [0, 255].

Our last example is a two-level jump table from PSFTP
0.58 on x86 Windows compiled by Microsoft Visual Studio
2013, shown in Figure 6. In this example, knowing the con-
tents of the first level table avoids the need for a bound check
on the second level table lookup. The movzbl instruction
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diag_info exit

internal_error fancy_abort

Figure 7: Non-returning functions example from GCC. A

node represents a function. A solid edge represents a function

call and a dashed edge represents returning to its caller. Non-

returning functions are marked in red.

reads from the first level table into %ecx and all the contents
in the first level table are in the range [0,4]. %ecx can then
be directly used to index the second level table, without an
explicit bound check.

We designed a backward intraprocedural dataflow analysis
to derive our jump table model from binary code. Our
analysis performs backward slicing on every indirect jump
and analyzes the instructions in the slice to populate the
model. The analysis first determines jb and js to understand
whether the jump table is of absolute addresses or relative
offsets, then identifies how many levels of tables are involved
and determines the locations and contents of each level table.
Finally, the analysis determines the input lower and upper
bounds. The slicing can be stopped as soon as either the
indirect jump is resolved or we are sure that the jump does
not represent a jump table.

5.2 Non-returning Functions
Not being able to identify non-returning functions intro-

duces bogus control flow edges. Previous tools either assume
that all functions return to their call sites [29] or use a simple
name matching method to identify non-returning functions [5,
21]. This name matching method checks whether the callee
of a function call is in a list of well-known non-returning
functions, including exit and abort. If the callee is in the list,
the function call will never return. Such a list often includes
only the non-returning functions in well-known libraries, such
as libc. This name matching method often can be effectively
applied to stripped binaries. The key is to determine if a
function call targets a known non-returning function. For dy-
namically linked stripped binaries, the symbols of imported
functions are retained to support linking so that the names of
the target in calls to dynamically linked libraries are known;
for statically linked stripped binaries, library fingerprinting
can be used to identify which library function is being called
[24].

Bao et al. [5] describe an improvement over this name
matching method by noting that if function f always calls
function g, and g is identified as a non-returning function, f
should also be considered as a non-returning function.

Figure 7 shows an example from GCC 4.9.2 itself com-
piled by GCC 4.4.7, where Bao et al.’s technique would fail
to identify two non-returning functions that are mutually
recursive. In this example, fancy_abort and internal_error

are two functions that are mutually recursive. Once the
program enters fancy_abort or internal_error, the program
could either reach exit or an error would happen due to stack
overflow. In either case, fancy_abort and internal_error will
not return to their callers, so they are non-returning functions.
When applying Bao et al.’s technique to this example, we first
note that neither internal_error nor fancy_abort is a known
non-returning function. We then find that internal_error

input : F : a set of functions; and knownNonRet: a set of
known non-returning functions

output : nonRet: a set of identified non-returning functions
1 nonRet ← knownNonRet ∩F ;
2 ret ← ∅;
3 funcList ← F− nonRet;
4 oldList ← ∅;

// Fix point calculation
5 while funcList 6= oldList do
6 oldList ← funcList;

// Inspect all “unknown” functions
7 for f ∈ funcList do
8 blocks ← ReachableBlocks(f , funcList);

// If f has a return block or tail calls a returning
function, it is a returning function

9 if ContainRetBlock(blocks) or TailCall(f , ret) then
10 ret←ret∪{f};

// If none of the control flow paths returns, f is a
non-returning function.

11 if NoBlockedCalls(blocks, funcList) and f /∈ ret then
12 nonRet ← nonRet ∪{f};

// Determine the functions to be revisited
13 funcList ← F−nonRet−ret;

// Resolve cyclic dependencies
14 nonRet ← F−ret;

Figure 8: Non-returning function analysis.

always calls fancy_abort, but we cannot conclude that in-

ternal_error is a non-returning function without knowing
fancy_abort is non-returning. Similarly, we cannot conclude
that fancy_abort is a non-returning function without knowing
internal_error is non-returning. Therefore, this technique
would fail because the two non-returning functions form
cyclic dependencies.

We have designed an interprocedural analysis to deter-
mine all the non-returning functions in a program, shown
in Figure 8. We use a fix point calculation to detect cyclic
dependencies. Note that once the program enters any func-
tion in the cyclic dependencies, the program could reach
identified non-returning functions, or would stay in the cycle
until the stack is overflown. So, all involved functions can
be marked non-returning. Our analysis takes as input the
set of functions F in the program and a set of known non-
returning functions knownNonRet; the analysis outputs the set
of identified non-returning functions nonRet. We calculate a
return status for each function. The return status can be
“unknown,” “might return” or “does not return.” The sets
nonRet and ret represent the currently identified “does not
return” and “might return” functions, respectively. Initially,
all functions have “unknown” return status.

At the beginning of our analysis, all functions in knownNon-

Ret are set to “does not return” (line 1). We then perform a
fix point calculation to determine the return status of all the
other functions in F (lines 5-13). After we reach a fix point,
it is possible that there exist cyclic dependencies between
the functions whose return status remain “unknown”. We set
all of them to be “does not return” (line 14).

In each round of iteration, we try to determine the return
status of functions in funcList, which is a set of functions
that currently have “unknown” return status. We define four
subroutines: (1) ReachableBlocks(f , funcList) calculates a
set of reachable blocks from the entry node of function f by
traversing only known intraprocedural edges. If f calls g ∈
funcList, we are not certain whether the control flow will
return from g. Therefore, we do not assume the existence of
a call fall-through edge (line 8). (2) ContainRetBlock(blocks)
returns true if one block in blocks is a return block. In
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35110db510 <__write>:
35110db510 cmpl $0x0,0x2b8199(%rip)
35110db517 jne 35110db529
35110db519 <__write_nocancel>:
35110db519 mov $0x1,%eax
...
35110db526 jae 35110db559
35110db528 retq
35110db529 sub $0x8,%rsp
...
35110db556 jae 35110db559
35110db558 retq
35110db559 mov 0x2b2a48(%rip),%rcx
...
35110db56c jmp 35110db558

Figure 9: Functions sharing code and non-contiguous func-

tions example from libc. The code in blue is shared by both

functions. __write_nocancel is also a non-contiguous function,

which is separated by the code from __write.

this case, we are sure f is a returning function (lines 9-
10). (3) TailCall(f, ret) return true if f performs a tail
call to an identified returning function (Section 6.2). In
this case, f is also a returning function (lines 9-10). (4)
NoBlockedCalls(blocks, funcList) returns true if no block in
blocks calls or tail calls any function in funcList. In this case,
the function boundary of f and the return status of the tail
callees of f have been determined. If we have not marked f
as a returning function yet, then f must be a non-returning
function (lines 11-12).

6. CFG PARTITIONING
Functions that share code, functions that are laid out non-

contiguously in memory, and tail calls make it difficult to
partition the CFG into separate functions. The challenge is
to produce a partitioning that is consistent with the binary
code and that maps reasonably to source code.

6.1 Complex Functions
Function sharing code: code blocks can be shared by

multiple functions. Figure 9 shows an example from libc-
2.12.so, where two functions sharing code. In this exam-
ple, __write and __write_nocancel both are entry points of
system call write. __write supports multithreading, while
__write_nocancel does not.

Three existing tools allow functions to share code [5, 21,
11]. BYTEWEIGHT represents a function as a set of bytes
and allow functions to have common bytes [5]. BAP and
Dyninst adopt a definition for functions similar to that of
Harris and Miller [21], which allows functions to share code.
Specifically, if function f1 has code blocks V1 and function
f2 has code blocks V2, V1 ∩ V2 can be a non-empty set.

Non-contiguous functions: code from other functions
can make a function non-contiguous. Figure 9 also serves
as an example of non-contiguous functions, where code of
__write_nocancel is separated by code from __write.

As mentioned above, BYTEWEIGHT represents function
as a set of bytes. They explicitly point out that the bytes do
not have to be contiguous [5]. BAP and Dyninst represent
the code of a function as a set of basic blocks and the blocks
can be separated by any bytes.

6.2 Tail Calls
A tail call replaces a call instruction with a jump to elimi-

nate a stack frame set-up and tear-down. A simple strategy

BZFILE* BZ_API (BZ2_bzdopen) (int fd, char * mode)
{ return bzopen_or_bzdopen(NULL,fd,mode,1);}
BZFILE* BZ_API (BZ2_bzopen) (char *path, char * mode)
{ return bzopen_or_bzdopen(path,-1,mode,0);}

// entry point of bzopen_or_bzdopen, but no function symbol
351f40baa0 mov %rbx,-0x30(%rsp)
...

351f40bd70 <BZ2_bzdopen>:
351f40bd70 mov %rsi,%rdx // set mode
351f40bd73 mov $0x1,%ecx // set open_mode
351f40bd78 mov %edi,%esi // set fd
351f40bd7a xor %edi,%edi // set path
351f40bd7c jmpq 351f40baa0
...

351f40bd90 <BZ2_bzopen>:
351f40bd90 mov %rsi,%rdx // set mode
351f40bd93 xor %ecx,%ecx // set open_mode
351f40bd95 mov $0xffffffff,%esi // set fd
351f40bd9a jmpq 351f40baa0

Figure 10: A tail call example from bzip2. BZ2_bzdopen
and BZ2_bzopen both perform a tail call to the internal
function bzopen_or_bzdopen, which does not have a func-
tion symbol.

for identifying tail calls is to treat jumps that target function
symbols as tail calls. However, this strategy does not work
even for non-stripped binaries, when the compiler does not
generate the expected symbols. Figure 10 shows an example
from libbz2.so.1.0.4 on RedHat 6 Linux, in which BZ2_bzdopen

and BZ2_bzopen perform tail calls to bzopen_or_bzdopen. The
compiler did not generate a symbol for bzopen_or_bzdopen. As
a result, the tool kit must rely on heuristics to sensibly parse
the code, either labeling bzopen_or_bzdopen as code shared by
the other two functions or, more preferably, as a tail-called
function. In such situation, there could be more than one
consistent and reasonable semantic mapping between source
code and binary code.

Existing tools often use a two-step approach to identify
tail calls [21, 47]. In the first step, if the jump target is a
known function entry point, it is a tail call. In the second
step, tools may use different heuristics to identify tail calls
when the jump target is not a known function entry point.
SecondWrite [47] treats a jump instruction as a tail call if
there is a known function between the address of the jump
instruction and the address of the jump target. Note that
SecondWrite’s treatment for tail calls implies that they do
not allow code for a single function to be separated by code
from one or more other functions.

Dyninst’s current handling of tail calls uses a variation on
the two-step approach. In the first step, we use the function
entry points reported in the symbol tables and the ones we
identified during control flow traversal to check tail calls. In
the second step, we rely on two heuristics to identify tail
calls and avoid false positives. First, if we can detect stack
frame tear-down before a jump instruction, the jump is a
tail call. This heuristic is based on the following observation.
If function f tail calls g, then the control flow will not come
back to f from g. So, f should clean up its stack frame
before performing a tail call to g. Second, if we have strong
evidence that the jump instruction and the jump target are
in the same function, the jump is not a tail call. For example,
branch-not-taken edges and call fall-through edges are always
intraprocedural. Suppose we discover a jump instruction in
function f . If the jump target can be reached from the entry
of f by going only through intraprocedural edges, the jump
is not a tail call.
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7. EVALUATIONS
The eight challenging code constructs introduced in the

previous sections were the basis for evaluations of existing
binary analysis tool kits, including BAP 0.9.9 [11], GNU
Objdump 2.20 [20], IDA Pro 6.6 [22], Jakstab 0.8.3 [25],
OllyDbg 2.0.1 [35], SecondWrite (results from SecondWrite
group dated 2014-08-17) [47], and our own Dyninst 9.0 [37].
We started our evaluation by performing an extended version
of evaluations used by previous researchers. The goal of
these evaluations is to answer two questions: (1) Are the
challenging code constructs prevalent in real software? (2)
Do these binary analysis tool kits perform well in identify-
ing the challenging code constructs? Previous researchers
have used real software to evaluate the effectiveness of their
techniques on indirect control flow [6, 13, 16, 26, 40, 47] and
coverage of code in code sections [13]. We added to these
evaluations additional code constructs we identified to better
test the effectiveness of the tools. However, these studies are
intrinsically limited because we do not know whether a tool
kit misses real code constructs (false negatives) or reports
bogus code constructs (false positives).

To complement our evaluations, we constructed a con-
trolled experiment by using small hand-crafted programs,
which is also a commonly used evaluation strategy [49, 6]
and has the advantage of knowing the ground truth through
human inspection and verification. We produced test binaries
by patterning them after the challenging code constructs we
found in real software and evaluate how each of the above
tool kits handled the code constructs. These test cases rep-
resent precisely the hardest cases we found when evaluating
our tool on real software. These test cases help identify these
difficult code constructs in a low noise environment.

7.1 Real Software Experiment
In this experiment, we compiled SPECint 2006 using two

compilers (GCC 4.4.7 and ICC 15.0.1) with four optimiza-
tion levels (from -O0 to -O3) on RedHat Linux 6.6. The
test binaries are statically linked to include highly optimized
library code. Being able to analyze library code is impor-
tant because library code may account for a large fraction
of code executed. The results are shown in Table 2. We
present the results for GCC and ICC together as we do not
observe significant differences between the results for the
two compilers when comparing their minimal, median, and
maximal numbers for each code construct. We also repeated
the experiments for SPECfp 2006 using GCC 4.4.7 with -O2.
The results are basically the same as for SPECint.

The results show that the challenging code constructs are
prevalent in real software. Dyninst reported that all the eight
code constructs were found in every test binary. The results
of BAP and IDA Pro confirmed the prevalence of four code
constructs. For the other code constructs for which either
BAP or IDA Pro reported nothing, we confirmed by hand that
the instances reported by Dyninst are indeed true. Since we
lack ground truth, we cannot directly compare the tool kits’
capabilities in handling these code constructs. To attempt to
explain why tool kits reported significantly different results,
we resorted to manual inspection of the results and inspected
about ten to twenty randomly sampled instances of each
code construct. First, IDA Pro reported more code in code
sections than Dyninst. In many cases, it appears that IDA
Pro misinterpreted data as real code. In other cases, IDA
Pro speculatively disassembled and reported instructions

even though it did not know how these instructions could be
reached; Dyninst did not report these instructions. Second,
we found that all tools reported about the same number
of indirect jumps, though Dyninst could resolve the most
of these jumps because of our new jump table model. We
inspected some of the remaining unresolved indirect jumps
from Dyninst and found that they were all indirect tail calls
that did not use jump tables. Third, IDA Pro reported
many functions without symbols, but many of the reported
functions were marked failed, leaving its results difficult to
interpret. Fourth, IDA Pro sometimes wrongly classified a
function as non-returning function if the function ends with
a jump (a tail call) to another returning function. Fifth,
BAP did not report any tail calls, which might explain why
BAP reported many more groups of functions sharing code
and non-contiguous functions than Dyninst. When BAP
fails to identify a tail call and treats the jump instruction as
intraprocedural, it wrongly reports that the tail-caller and
the tail-callee share code. In addition, if another function
was between the tail-caller and the tail-callee in memory
layout, BAP would wrongly report the tail-caller as a non-
contiguous function. Finally, IDAPro reported more tail calls
than Dyninst on average. However, many of the tail calls
reported by IDAPro are not real. Note that IDAPro failed
to report any non-contiguous functions; a jump from one
code block to another far away of the same non-contiguous
function is wrongly reported as a tail call.

In summary, this experiment shows that the challenging
code constructs are prevalent in real software. However, it
is difficult to precisely calibrate how well these tool kits
performed in identifying these code constructs due to lack
for ground truth for the test binaries.

7.2 Test Suite Experiment
To compare tool kits’ capabilities in a low noise environ-

ment, we constructed test cases by patterning them after the
challenging code constructs found in real software including
Binutils, bzip2, GCC, and MySQL.

Code discovery: We have three test cases for the code
construct non-code bytes, where static read-only data, jump
table data (as shown in Figure 1), and padding bytes are
embedded in the code sections. A tool kit passes a test when
(1) the non-code bytes are not interpreted as code; (2) the
last instruction before the non-code bytes is reported; and
(3) the first instruction after the non-code bytes is reported.

We strip our test binaries to create the missing symbols
test cases. Before we strip the test binaries, we record all
function entry points in the symbol table as ground truth.
In this test, we report the number of identified real entry
points, the total number of real entry points, and the number
of identified bogus entry points. We have one test case for
overlapping instructions (Figure 3). A tool kit passes if it
reports both instructions.

CFG construction: We have six test cases of the abilities
of tool kits to resolve indirect control flow; five of these are
jump tables. The first test case is a basic jump table, where
the input to the jump table is checked by a cmp instruction
and a conditional jump, and then directly used to index the
table. The second test case avoids the bound check by using
an and instruction. The third to the fifth cases correspond
to the examples in Figures 4–6. The sixth test case does not
involve a jump table; it is an indirect jump used to handle
parameter passing in a function with a variable number of
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Table 2: Reports from existing binary analysis tool kits. Each report item reflects how often a corresponding code constructs

appear in binaries. We summarize the results by showing the minimal, median, and maximum numbers.

Report item
BAP IDA Pro Dyninst

Min Median Max Min Median Max Min Median Max
Fraction of code in code sections 0.6933 0.7583 0.9061 0.9311 0.9621 0.9954 0.9298 0.9514 0.9940
Fraction of resolved indirect jumps 0.0000 0.0059 0.1148 0.0556 0.2549 0.6829 0.1637 0.7532 0.9377
# of functions without symbols 5 7 50 65 71 244 6 6 34
# of groups of overlapping instructions 0 0 0 0 0 0 16 16 17
# of non-returning functions 1 2 11 43 54 496 13 18 447
# of groups of functions sharing code 430 485 4113 0 0 0 12 13 31
# of non-contiguous functions 354 407 6573 0 0 0 61 63 69
# of tail calls 0 0 0 710 790 2691 200 251 6745

Table 3: Evaluation results of existing binary analysis tools. For missing symbols, a result entry in the form of “x/y,z” means

that the tool correctly recovered x out of y total functions, but also reported z bogus functions. In all other cases, a result

entry contains a string composed of P (Pass), p (Pass, but less preferable), F (Fail), X (eXit abnormally), - (Not applicable); the

length of the string represents the total number of test cases; the ith character in the string represents the result of the ith test.

Stage Code construct Arch BAP Objdump IDA Pro Jakstab OllyDbg SecondWrite Dyninst

Code
discovery

Non-code bytes
32-bit PFP FFF FPP FXP P-P PPP PPP
64-bit PFP FFF FPP XXX X-X XXX PPP

Missing symbols
32-bit 68/93,2 0/93,0 35/93,0 X - 20/93,14 86/93,0
64-bit 879/1163,49 0/1163,0 608/1163,408 X - X 1080/1163,60

Overlapping
instructions

32-bit P F P X - X P
64-bit P F P X - X P

CFG
construction

Indirect control
flow

32-bit FFFFFF FFFFFF PFFFPF FXXXFX P---F- FXXXXX PPPPPP
64-bit FFFFFF FFFFFF PFFFPF XXXXXX X---X- XXXXXX PPPPPP

Non-returning
functions

32-bit FF FF PF PP FF PF PP
64-bit FF FF PF XX XX XX PP

CFG
partitioning

Functions
sharing code

32-bit P F F X - X P
64-bit P F F X - X P

Non-contiguous
functions

32-bit P F F X - X P
64-bit P F F X - X P

Tail calls
32-bit Fpp PFF PPP PFX --- PPP PPP
64-bit Fpp PFF PpF XXX --- XXX PPp

arguments, such as printf. A tool kit passes a test if it reports
exactly the real control flow targets of the indirect jump.

We designed two test cases for non-returning functions: (1)
a function calls exit at the end, and (2) two non-returning
functions are mutually recursive, as shown in Figure 7. A
tool kit passes if it reports all the non-returning functions.

CFG partitioning: We have one test for functions shar-
ing code, as shown Figure 9. A tool kit passes if it reports
that the shared code is in both functions. The above test is
also used for non-contiguous functions. A tool kit passes if
it reports all the code of the non-contiguous function.

There are three tail call test cases. The first test is a basic
case where a function performs a tail call to another function,
and the callee has a defined function symbol. A tool kit passes
the test if the tail call is correctly identified. The second
test is where two functions do recursive tail calls to each
other. Neither function has a corresponding function symbol.
The third test is where two functions perform tail calls to a
third function, as shown in Figure 10. For the second and
third tests, a tool kit passes if it correctly identifies the tail
calls or if it reports a consistent CFG partitioning, where
two functions share code without reporting the tail-called
function. Note that both partitioning results are semantically
correct. We denote the former one with P and the later
one with p, representing that the former one is likely more
preferable than the latter one.

Evaluation results: The results are presented in Table 3.
For JakStab and SecondWrite, the results for the 64-bit tests
are all “X” because they do not support 64-bit binaries; some
entries for 32-bit tests are “X” due to instruction decoding
errors. OllyDbg only supports 32-bit Window binaries, so
some of our tests were not applicable to it.

8. CONCLUSION
We have presented challenging code constructs generated

by modern compilers that makes binary code analysis more
difficult. These challenging code constructs complicate code
discovery (finding all instructions in a program), building an
accurate (or, at least, plausible) CFG for the program, and
CFG partitioning (determining function boundaries). We
described Dyninst’s new code parsing algorithms to handle
these new constructs, including a new model for describing
jump tables that improves our ability to precisely determine
the control flow targets, a new interprocedural analysis to
determine when a function is non-returning. and techniques
for handling tail calls, code overlapping between functions,
and code overlapping within instructions.

We used real-world code examples to illustrate each code
construct and discuss the approach used in Dyninst to handle
each construct. Our evaluation then compared Dyninst to
other available binary tool kits to show their effectiveness
in correctly interpreting these code constructs. In all cases,
Dyninst was able to accurately parse these examples, while
the other tool kits all had significant limitations.
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