Benchmarking the Stack Trace Analysis Tool for
BlueGene/L

Gregory L. Lee', Dong H. Ahn', Dorian C. Arnold?,
Bronis R. de Supinski', Barton P. Miller?, and Martin Schulz'

L Computation Directorate,
Lawrence Livermore National Laboratory, Livermore, California, U.S.A.
E-mail: {lee218, ahnl, bronis, schulzm}@IInl.gov

2 Computer Sciences Department,
University of Wisconsin, Madison, Wisconsin, U.S.A.
E-mail: {darnold, bart} @cs.wisc.edu

We present STATBench, an emulator of a scalable, lightweight, and effective tool to help debug
extreme-scale parallel applications, the Stack Trace Analysis Tool (STAT). STAT periodically
samples stack traces from application processes and organizes the samples into a call graph
prefix tree that depicts process equivalence classes based on trace similarities. We have de-
veloped STATBench which only requires limited resources and yet allows us to evaluate the
feasibility of and identify potential roadblocks to deploying STAT on entire large scale systems
like the 131,072 processor BlueGene/L (BG/L) at Lawrence Livermore National Laboratory.

In this paper, we describe the implementation of STATBench and show how our design strategy
is generally useful for emulating tool scaling behavior. We validate STATBench’s emulation
of STAT by comparing execution results from STATBench with previously collected data from
STAT on the same platform. We then use STATBench to emulate STAT on configurations up to
the full BG/L system size — at this scale, STATBench predicts latencies below three seconds.

1 Introduction

Development of applications and tools for large scale systems is often hindered by the
availability of those systems. Typically, the systems are oversubscribed and it is difficult
to perform the tests needed to understand and to improve performance at large scales. This
problem is particularly acute for tool development: even if the tools can be run quickly, they
do not directly produce the science for which the systems are purchased. Thus, we have
a critical need for strategies to predict and to optimize large scale tools based on smaller
scale tests. For this reason, we have developed STATBench, an innovative emulator of
STAT, the Stack Trace Analysis Tool*.

STAT is a simple tool to help debug large scale parallel programs. It gathers and merges
multiple stack traces across space, one from each of a parallel application’s processes, and
across time through periodic samples from each process. The resulting output is useful in
characterizing the application’s global behavior over time. The key goal for STAT is to
provide basic debugging information efficiently at the largest scale.

From its inception, STAT was designed with scalability in mind, and was targeted
at machines such as Lawrence Livermore National Laboratory’s (LLNL’s) BlueGene/L
(BG/L), which employs 131,072 processor cores. Existing tools have come far short of

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344 (UCRL-CONF-235241).



debugging at such scale. For example, our measurements show that TotalView!, arguably
the best parallel debugger, takes over two minutes to collect and to merge stack traces
from just 4096 application processes. STAT, a lightweight tool that employs a tree-based
overlay network (TBON), merges stack traces at similar scale on Thunder, an Intel Itanium
64 cluster at LLNL, in less than a second. However, gathering the data to demonstrate
this scalability was an arduous task that required significant developer time to obtain the
system at this large of a scale. Gaining time on the full BG/L system is even more difficult.

As an intermediate point in STAT’s evolution and to determine the feasibility of running
STAT at full scale on BG/L, we designed STATBench. STATBench allows specification
of various parameters that model a machine’s architecture and an application’s profile.
This emulation runs on the actual system but generates artificial application process stack
traces, which allows the emulation of many more application processes than the actual
processor count of the benchmark run. Our design is general: any TBON-based tool could
employ a similar emulation strategy to understand scaling issues. Our STATBench results
demonstrate that STAT will scale well to the full BG/L size of 131,072 processors.

In the remainder of this paper, we present STATBench and explain how it accurately
models the scalability of STAT. In the following section, we first review the design of STAT
and discuss why this type of tool is needed for large scale debugging. We then present the
design of STATBench and discuss how it validates our large scale debugging strategy and
can help to identify roadblocks before final implementation and deployment in Section 3.
Section 4 then compares results from STATBench to observed performance of STAT at
moderate scales and presents results from scaling studies using STATBench as well as
improvements for STAT derived from those results. Finally, we discuss how to generalize
this approach to support optimization of any TBON-based tool in Section 5.

2 The Stack Trace Analysis Tool

The Stack Trace Analysis Tool* (STAT) is part of an overall debugging strategy for
extreme-scale applications. Those familiar with using large-scale systems commonly ex-
perience that some program errors only show up beyond certain scales and that errors may
be non-deterministic and difficult to reproduce. Using STAT, we have shown that stack
traces can provide useful insight and that STAT overcomes the performance and func-
tionality deficiencies that prevent previous tools from running effectively at those scales.
Namely, STAT provides a scalable, lightweight approach for collecting, analyzing, and
rendering the spatial and temporal information that can reduce the problem search space to
a manageable subset of processes.

STAT identifies process equivalence classes, groups of processes that exhibit similar
behavior, by sampling stack traces over time in each task of the parallel application. STAT
processes the samples, which profile the application’s behavior, to form a call graph prefix
tree that intuitively represents the application’s behavior classes over space and time. An
example call graph prefix tree can be seen in Figure 1. Users can then apply full-featured
debuggers to representatives from these behavior classes, which capture a reduced explo-
ration space, for root cause problem analysis.

STAT is comprised of three main components: the front-end, the tool daemons, and the
stack trace analysis routine. The front-end controls the collection of stack trace samples by
the tool daemons, and our stack trace analysis routine processes the collected traces. The



_start
4:[0-3]
v
__libe_start_main

410-3]
mf'iin
C2qo3p - 1i2]
PRI Barrier (NSRBI PMPI Waitall
'2:[0,3] o 1
2:[0,3] 121
slanﬁhg'sypcr\let (atana. polisvent_word
/2003] . 14]
e,lankdavic'eChack (el
210,3]
elan JJ,;IIWD!d
) 203] 208 10
él'an,prpgzessFr;gLists e(an,pmgn;ssﬂhannals _
1:[0] 2:0.3]

1
pthread_mutex_lock

Figure 1. An example 3D-Trace/Space/Time call graph prefix tree from STAT.

front-end also color-codes and renders the resulting call graph prefix tree. The STAT front-
end and back-ends use an MRNet? process tree for scalable communication and MRNet
filters for efficiently executing the stack trace analysis routines, which parent nodes execute
on input from children nodes. Back-ends merge local samples, which the TBON combines
into a whole-program view. STAT uses the DynInst? library for lightweight, third-party
stack tracing of unmodified applications.

3 Benchmark Implementation

STATBench inherits much of its implementation from STAT itself, using MRNet for scal-
able communication between the STATBench front-end and back-ends. STATBench also
uses the same trace analysis algorithm as STAT to merge multiple traces into a single call
prefix tree. The back-ends use this algorithm to perform local analysis and send the result
through the MRNet tree to the front-end. The same algorithm is used in the MRNet filter
function that is executed by the communication processes as the traces propagate through
the communication tree.

STATBench does not actually gather traces from an application. Rather, the back-
ends generate randomized traces controlled by several customizable parameters. These pa-
rameters include the maximum call breadth and the maximum call depth. The maximum
breadth determines how many functions the generator can choose from, while the depth de-
termines the number of function calls to generate for a given trace. STATBench prepends
_libc_start_main and main function calls to the generated traces. STATBench also has a
pair of parameters to control the spatial and temporal aspects of the trace generation. The
spatial parameter governs how many processes each back-end emulates, equivalent to the
number of processes a STAT daemon must debug. For the temporal aspect, STATBench
also inputs the number of traces to generate per emulated process. With just these param-
eters, the generated traces can vary widely across tasks, which after spatial and temporal



merging yields a call prefix tree with a higher branching factor than is characteristic of real
parallel applications. STATBench controls this variation through a parameter that speci-
fies the number of equivalence classes to generate. Specifically, this parameter uses the
task rank modulo the number of equivalence classes to seed the random number genera-
tor. Thus, all of the tasks within an equivalence class generate the exact same set of stack
traces. These equivalence classes do not capture the hierarchical nature of the equivalence
classes of real applications. However, our results, shown in Section 4, indicate that this
simplification does not impact emulated performance significantly. With all of the possible
parameters, STATBench can generate traces for a wide range of application profiles and
can emulate various parallel computer architectures.

There is one main difference that allows STATBench to emulate larger scales than
STAT, even given the same compute resources. This gain comes from the ability to utilize
all of the processors on a Symmetric Multiprocessor (SMP) node’s processing cores. Take,
for example, a parallel machine with n-way SMP nodes, for some number n. With STAT,
a single daemon is launched on each compute node and is responsible for gathering traces
from all n of the application processes running on that node. STATBench, on the other
hand, can launch its daemon emulators on all n of the SMP node’s processing cores and
have each daemon emulator generate n traces. The net effect is that STATBench only
requires 1/n of the machine to emulate a STAT run on the full machine. Alternatively,
we can use the full machine to emulate the scale of a machine that has n times as many
compute nodes. The daemon emulators can also generate an arbitrary amount of traces,
thus providing further insight for machines with more processing cores per compute node
than the machine running STATBench.

4 Results

We first evaluate STATBench by comparing its performance to our STAT prototype. Next,
we present the results from scaling STATBench to BG/L scales. Finally, we use those
results to guide optimization of the tool’s scalability.

4.1 STAT Benchmark vs. STAT

In order to evaluate STATBench’s ability to model the performance of STAT, we compare
results previously gathered from STAT with STATBench results. Both sets of results were
gathered on Thunder, a 1024 node cluster at LLNL with four 1.4 GHz Intel Itanium?2
CPUs and 8GB of memory per node. The nodes are connected by a Quadrics QsNet!/
interconnect with a Quadrics Elan 4 network processor.

The results from STAT were gathered from debugging an MPI ring communication
program with an artificially injected bug. In this application, each MPI task performs
an asynchronous receive from its predecessor in the ring and an asynchronous send to
its successor, followed by an MPI_Waitall that blocks pending the completion of those
requests. All of the tasks then synchronize at an MPI_Barrier. A bug is introduced that
causes one process to hang before its send. An example 3D-Trace/Space/Time call graph
prefix tree for this program, with node and edge labels removed, can be seen in Figure 2(a)

STATBench was run with a set of parameters designed to match the STAT output from
the MPI message ring program, particularly with respect to the depth, breadth, and node



(a) STAT (b) STATBench

Figure 2. Example structure (node and edge labels removed) of 3D-Trace/Space/Time call prefix trees from (a)
STAT and (b) STATBench.

count of the call prefix tree. To achieve this goal, we specify three traces per simulated
task, a maximum call depth past main() of seven, a call breadth of two, and five equiva-
lence classes. An example output can be seen in Figure 2(b). While this output does not
exactly model STAT’s output with the ring program, it does provide an approximation that
is conservative; it is slightly more complex than the real application with respect to call
graph topology and node count.

More than the visual comparison, our goal is to model the performance of STAT. We ran
STATBench at various scales, using the same MRNet topologies that were used for STAT.
Specifically, we employ a 2-deep tree, with one layer of communication processes between
the STATBench front-end and back-ends. At all scales, we employ a balanced tree: all
parent processes have the same number of children. Furthermore, on Thunder each STAT
daemon gathered traces from four application processes, hence STATBench emulates four
processes per daemon. Figure 3 shows that STATBench’s performance closely models
STAT, taking a few hundredths of a second longer on average. These results are not too
surprising as the communication tree topologies of STATBench are equivalent to those of
STAT. The slight increase in time could come from the fact that the STATBench parameters
chosen result in a few more call graph nodes in the output than the STAT counterpart.

4.2 Simulating STAT on BlueGene/L

Having validated STATBench’s ability to model STAT on Thunder, we next emulate STAT
on BG/L. BG/L is a massively parallel machine at LLNL with 65,536 compute nodes. Each



04
o0& /

. o
. ol

\

Time (seconds)
=)
-

) M
0z —ai

01

0 500 1000 1500 2000 2500 3000 3500 4000

Murnber of tagks

—— STAT —&—STATBench

Figure 3. STAT versus STATBench on Thunder.

compute node has two PowerPC cores and runs a custom lightweight kernel (Compute
Node Kernel) that does not support multi-threading and only implements a subset of the
standard Linux system calls. I/O operations for the compute nodes are executed by an
associated I/O node. LLNL’s BG/L configuration has 1024 I/O nodes, each responsible for
64 compute nodes. The I/O nodes are also responsible for running any debugger daemons.
BG/L has two modes of operation, co-processor mode and virtual node mode. In co-
processor mode one of the two compute node cores runs an application task, while the
other core handles communication. Virtual node mode, on the other hand, utilizes both
compute node cores for application tasks, scaling up to 131,072 tasks.

4.2.1 Initial Results

Our emulation was performed on uBG/L, a single rack BG/L machine. The architecture of
uBG/L is similar to BG/L, with the main difference being the compute node to I/O node
ratio. Instead of a sixty-four to one ratio, uBG/L has an eight to one ratio with a total of
128 I/0 nodes and 1024 compute nodes. By running STATBench on all of uBG/L’s 1024
compute nodes, we are able to emulate a full scale run of STAT on BG/L, where a daemon
is launched on each of BG/L’s 1024 1/O nodes and debugs 64 compute nodes.

We ran STATBench on uBG/L with similar parameters that were used on Thunder.
One major change was that we ran tests with both 64 and 128 tasks per daemon to emu-
late co-processor mode and virtual node mode respectively. We tested 2-deep and 3-deep
MRNet topologies that were dictated by the machine architecture. For the 2-deep tree,
the STATBench front-end, running on the uBG/L front-end node, connects to all commu-
nication processes on the I/O nodes, each communication processes in turn connects to



30

25

20

Time (seconds)
o
Time (seconds)
O = N W A OO N 0

EEEIJAEE

04 M -:l—\
128x64 128x128 512x64 128x64 128x128 512x64 512x128 1024x64 1024x128
Machine configuration (daemons x tasks per daemon) Machine configuration (daemons x tasks per daemon)
[m2-deep m3-deep +2CP [13-deep +4CP| [m2-deep m 3-deep +2CP [13-deep +4CP|
(a) BG/L Scale Results (b) BG/L Bit Vector Scale Results

Figure 4. BG/L scale STATBench performance results with (a) string-based task lists and (b) bit vector task lists.

eight STATBench daemon emulators on the compute nodes. The 3-deep tree employs an
additional layer of communication processes residing between the STATBench front-end
process and the I/0 node communication processes. We tested configurations with two and
four processes in this layer, in both cases running on the four CPU uBG/L front-end node.

Using these parameters, we attempted to scale STATBench to 128, 512, and 1024 dae-
mon emulators. The results of these tests can be seen in Figure 4(a). STATBench modestly
scaled when emulating up to 512 daemons with 64 tasks per daemon, especially when
using a 3-deep tree with the additional layer of four communication processes. However,
STATBench was only able to run up to this scale, half of the full BG/L machine in co-
processor mode, which only represents 25% of BG/L’s maximum process count. At larger
scales, STATBench failed because of the quantity and the size of the task lists used for
the edge labels. The task lists were implemented as strings in the STAT prototype. For
example, the set {7,3,4,5,6,9} would be translated into the string ’1,3-6,9”. At greater
scales, such a representation can grow prohibitively large, up to 75KB per edge label when
emulating 32,768 tasks. Doubling this string length to 150K in order to represent twice as
many tasks overloaded the communication processes, which received graphs from multiple
children. Even if STAT could run at these scales with the string representation, the amount
of data being sent and processed would have taken an intolerable amount of time.

4.2.2 Optimizing STAT

To overcome the scaling barrier caused by the string representation of the task lists, we
instead implement each task list as a bit vector. In this implementation, one bit is allocated
per task and its respective bit is set to / if the task is in the list, 0 otherwise. The bit vector
benefits not only from requiring only one bit per task but also from merging the task lists
with a simple bitwise or operation.

The results for using the bit vector at BG/L scales can be seen in Figure 4(b). These
results show a substantial improvement over the string implementation of the task lists.
At the largest successful scale with the string implementation, 512 daemons with 64 tasks
each, the best time was nearly five seconds, compared to two-thirds of a second with the
bit vector implementation. The emulation of the full BG/L machine in virtual node mode,



with 131,072 processes, required just over two and a half seconds to merge all of the traces.
It is worth noting that going from a 2-deep tree to a 3-deep tree resulted in a substantial
improvement, especially at larger scales. Although much less significant, going from a
layer of 2 communication processes to 4 communication processes also had some benefit.

5 Conclusion and Future Work

We have presented STATBench, an intermediate step in the development of the Stack Trace
Analysis Tool. Our evaluation of STATBench indicates that it provides accurate results in
its emulation of STAT. Using STATBench, we were able to emulate scaling runs of STAT
on BlueGene/L, which allowed us to identify and to fix a scalability bug in the STAT
prototype implementation. With this fix, STATBench estimates that STAT will be able to
merge stack traces from 131,072 tasks on BG/L in under three seconds.

Running STAT on BG/L with the same MRNet topology as our STATBench tests will
require additional computational resources, particularly for the layer of 128 communica-
tion processes that were run on the I/0O nodes during our STATBench tests on uBG/L. We
hypothesize that STAT performance will not suffer much by reducing this layer to 64 or 32
communication processes, however this remains to be tested once STAT has been deployed
on BG/L. In any case, STAT can utilize the computational resources of BG/L’s 14 front-end
nodes and the visualization cluster connected to BG/L.

Our design of STATBench is general for addressing the scalability of TBON-based
tools. In such tools, a single back-end daemon is typically responsible for analyzing mul-
tiple application processes on a compute node. A benchmark for such a tool does not
need to restrict itself to a single back-end daemon per compute node; rather, it can run one
back-end daemon on each of a compute node’s processing cores. Each daemon can then
emulate any number of processes by generating artificial, yet representative tool data (i.e.,
stack traces in the case of STATBench). The ability of a TBON-based tool benchmark to
run on all of a compute node’s processing cores, combined with the emulation of an arbi-
trary number of application processes, allows for tests to be performed at larger scales than
the actual tool running on the same compute resources.

References

1. TotalView Technologies, Total View
http://www.totalviewtech.com/productsTV.htm

2. B.R. Buck and J. K. Hollingsworth, An API for Runtime Code Patching, The Interna-
tional Journal of High Performance Computing Applications 14, 4 (317-329)2000.

3. P. Roth, D. Amold, and B. Miller, MRNet: A Software-Based Multicast/Reduction
Network for Scalable Tools, Proceedings of the IEEE/ACM Supercomputing *03 nov,
2003 (.)

4. D. C. Amold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller, and M. Schulz,
Stack Trace Analysis for Large Scale Debugging, 21st International Parallel and Dis-
tributed Processing Symposium 2007 mar, 2007 (.)



