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Abstract. Performance tuning a parallel application involves integrating performance data from
many components of the system, including the message passing library, performance monitoring tool,
resource manager, operating system, and the application itself. The current practice of visualizing
these data streams using a separate, customized tool for each source is inconvenient from a usability
perspective, and there is no easy way to visualize the data in an integrated fashion. We demonstrate
a solution to this problem using Devise, a generic visualization tool which is designed to allow an
arbitrary number of different but related data streams to be integrated and explored visually in a
flexible manner. We display data emanating from a variety of sources side by side in three case
studies. First we interface the Paradyn Parallel Performance Tool and Devise, using two simple
data export modules and Paradyn’s simple visualization interface. We show several Devise/Paradyn
visualizations which are useful for performance tuning parallel codes, and which incorporate data
from Unix utilities and application output. Next we describe the visualization of trace data from a
parallel application running in a Condor cluster of workstations. Finally we demonstrate the utility
of Devise visualizations in a study of Condor cluster activity.
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1. Introduction. Visualization of parallel program performance data allows one
to graphically explore the events that occur during the execution of these programs.
Visualization provides an intuitive way to debug parallel programs and monitor their
performance, and it can reveal aspects of the execution that could not be spotted by
simply browsing performance data files textually.

During the execution of a parallel program, performance data may be generated
by many components of the system, including the message passing library (such as
PVM or MPI), a monitoring tool (such as Paradyn), a resource manager (such as
Condor), the operating system, and the application itself. The current practice for
visualizing these data streams is to use a separate, customized tool for each source.
This is inconvenient from a usability perspective because the user is forced to learn how
to use several visualization tools. What is more problematic, however, is that there
is no easy way to visualize data from different sources in an integrated fashion. The
ability to explore the detailed data of all components participating in the execution
of the program in a unified manner could lead to better understanding of how the
components interact and work together.

In this paper we describe a generic visualization tool called Devise [2, 6] which is
designed to allow an arbitrary number of different but related data streams to be in-
tegrated and explored visually in a flexible manner. Devise can visualize performance
data from individual parallel program runs just as well as a custom-built parallel pro-
gram visualization tool can, but its ability to display data emanating from a variety
of sources side by side provides a significant advantage. Devise also allows data from
multiple executions to be juxtaposed and compared.

The key to successful visual integration is for each data source to have a well-
defined data export format that is compatible with the formats of other data sources.
The schema mechanism in Devise allows much of the mapping and conflict resolution
between dissimilar data sets to be performed on-the-fly. Still, “better data” yields
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better visualizations. In this paper we describe how the Paradyn Parallel Perfor-
mance Tool was interfaced with Devise to provide more accurate and intuitive visual
information about parallel programs.

Devise is a very generic visualization tool in that it can be used in any domain
requiring the visualization of record-oriented data sets. Other fields where we have
used Devise include the financial markets, marketing, clinical medicine, biochemistry,
and soil science. The visualization and integration efforts we describe in this paper
are equally applicable to these fields as well.

2. Devise: A Data Exploration and Visualization System. Devise is a
data exploration and visualization system designed to handle multiple, large data
sets using off-the-shelf hardware with limited main memory sizes [2, 6, 1]. Data can
be large in volume and complex in structure (multi-dimensional and/or hierarchical),
and may be imported from a variety of sources such as disk and tape files, database
servers, external programs, and World Wide Web resources. Devise allows the user
to integrate a collection of heterogeneous data sets visually by linking their graphical
attributes (e.g. location, color, and size). In this paper we show how Devise can
be applied to visualize and integrate parallel program trace data. The generality of
Devise has made it possible for us to apply the same visualization and integration
principles in other domains such as financial markets, soil science, clinical medicine,
and biochemistry.

2.1. Devise Data Model. Devise visualizes streams of data, that is, record-
oriented data sets such as time series or trace files. Our focus on stream data allows
Devise to provide a more flexible mapping mechanism to the user, and to incorporate
performance optimizations specific to stream data. It also lets us efficiently inter-
face Devise to record-based data servers such as SQL relational databases or a SEQ
sequence database [12, 11].

Common to exploratory data analysis and trace file visualization is the need
for a powerful browser. Many visualization systems assume that the data set being
visualized will fit in main memory, or assume that virtual memory can be used as
a safeguard when the data set is larger than main memory. Devise makes the data
browsing aspects of visualization flexible and allows large data sets to be visualized
without resorting to virtual memory. The flexibility we offer to users comes partly
from the ability to dynamically define mappings from data to graphical attributes.
The performance limitations of virtual memory are to a large extent bypassed with
the design of the buffer manager and the query processor in the Devise system and
with the mechanisms for caching data in alternate forms. These features make it
possible to effectively visualize and explore large quantities of data with limited main
memory sizes.

2.2. Devise Visualization Model. In Devise, visualization is structured into
a five-stage process, as shown in Figure 1. At the source of the data flow is a data
stream which consists of binary or ASCII records. Each record contains one or more
attributes whose type and order is described by a schema. The combination of a data
stream and a schema makes up TData.

Data streams that are not in record format or whose record structure cannot be
captured with the schema facility can still be visualized via conversion utilities. The
conversion from the original format of the data stream to TData can be performed
either as a post-processing step of the submitting application, or as a pre-processing
step of Devise. A small extension function which parses a new data format and
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F1G. 1. The Devise visualization model. Visualization is performed as a five-stage data trans-
formation. The intermediate data forms can be materialized and cached. The cached data is reused
whenever a user changes the visualization parameters, such as the graphical filter.

converts it to record format at run-time can be linked with the Devise executable.

Each TData record is mapped to a GData record with a fixed schema of graphical
attributes: X, Y, size, color, pattern, orientation and shape. Each shape (e.g. vector,
rectangle, polygon, or oval) can have optional parameters specifying, for example, line
width. A GData attribute is typically defined to take the value of a TData attribute
or some expression of TData attributes. GData attributes can also assume constant
values. The mapping of TData attributes to GData attributes in this way gives the
user full control over the graphical representation down to the record level.

A graphical filter determines the portion of GData to be displayed by defining a
query over the GData attributes. Scrolling and zooming are accomplished by defining
a range query over the X and Y attributes in the filter. The subset of GData records
satisfied by the graphical filter defines a wview. A view has additional information
relating to the presentation of the selected GData records, including axis, title, and
background color information. The display of statistics on the selected GData records
can also be enabled on a view basis.

The next step is the conversion of GData to a pixel image. The size of a view
(number of pixels) plays a key role in determining the accuracy of the rasterization
process and the resulting VData. Although the most important role of VData is to
be painted on a screen and to be exported to other graphics formats, VData is also
cached and used for further transformations. VData in many cases takes up less space
than the subset of GData that defined it. To save CPU and data transfer time, it is
desirable to be able to reuse VData via pixel manipulation when a view’s graphical
filter changes or when the user recalls a filter used earlier in the visualization session.

The final step is the placement of VData into windows (if running Devise interac-
tively) or exporting it as a GIF or JPEG image (batch mode). A window provides the
screen real estate, and the user can control the real estate by moving and resizing the
windows. Various layouts are available for placing two or more VData into a window:
a vertical, horizontal, tile, and a pile layout.

A graphical link is a key mechanism offered by Devise that makes data navigation
easier by a user. A graphical link makes two or more views share some graphical
attributes of their graphical filter. An X link, for instance, is used to display the same
X range in all views sharing that link; zooming or scrolling in the X direction in any
of the views zooms or scrolls the others as well. Or, linking two views by the color
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attribute and selecting only red shapes in one view (via the filter) would perform the
same selection in the other view as well.

A graphical cursor associates two views in a different way. A user may select two
distinct subsets of the same GData by using different graphical filters. For instance,
one may have a global view, containing all GData records, while a focus view contains
a small subset of the GData records. A cursor associates the two views so that when
the VData are drawn into a window, a cursor symbol appears in the global view,
indicating the X and/or Y ranges selected by the focus view. Moving a cursor in the
global view with the mouse updates the graphical filter of the focus view to reflect
the new location of the cursor. The typical application of this feature is that the user
recognizes interesting trends or events in the global view, and moves the cursor to
cover the interesting area, which is then displayed in more detail in the focus view.
The size and location of the cursor symbol is determined by the zoom level and scroll
position of the focus view.

3. Paradyn: A Tool for Scalable Parallel Performance Tuning. Paradyn
[8] is a tool for measuring and understanding the performance of parallel and dis-
tributed programs. It consists of a data collection facility, an automated bottleneck
search tool, and a data visualization interface.

Data collection in Paradyn uses dynamic instrumentation to provide detailed,
flexible performance information without incurring the space (and time) overhead
typically associated with trace-based tools. Instrumentation code is inserted, re-
moved, and modified during application execution, recording performance information
in counters and timers. These counters and timers are then periodically sampled,
yielding accurate information with low perturbation. Instrumentation requests are
made by specifying a metric and a focus. A metric is a time varying function that
characterizes some aspect of a parallel program’s performance. A focus is a list of
program components that defines a particular point of interest, such as a particular
procedure for a particular process.

The Performance Consultant is a tool that automates the search for a predefined
set of performance bottlenecks. Potential bottlenecks are specified as a hierarchy of
hypotheses. Each hypothesis includes a test definition that translates into specific
instrumentation requests as an application is being measured. The resulting data
collected is compared against a user-defined threshold to yield a determination of
truth or falsity for each potential bottleneck.

Paradyn’s visualization interface allows users to easily add new visualizations to
the system. A simple library and remote procedure call interface allow external visu-
alization processes to display Paradyn performance data in real time. This interface
is used by the standard visualizations included with Paradyn, and is designed to al-
low other visualization tools to display Paradyn data. All external visualizations are
listed in Paradyn’s visi menu; the user simply selects a visi by name then chooses
a set of foci and metrics for display. The selection of a list of performance metrics
for a list of foci can most easily be pictured as a two-dimensional array. The visi
library provides a C++ class, called the DataGrid, which is the visi programmer’s
interface to performance data. Each element of the DataGrid is a time histogram,
representing the metric’s time-varying behavior. The library also provides aggrega-
tion functions, such a minimum, maximum, current, average, and total, that can be
invoked over each DataGrid element. Also included is an interface which allows access
to the visualization interface calls via Tcl [9] commands.
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4. Combining the Power of Paradyn and Devise. Devise can be used to
develop visualizations spanning multiple program executions, allowing us to detect
trends and patterns that might be difficult to see from a single run. Another useful
feature is the ability to visualize data from distinct sources. We demonstrate visual-
izations with application data, output from the Paradyn Parallel Performance Tool,
and operating system data generated with the Unix utilities iostat and vmstat. We
have also successfully used Devise to visualize MPI [7] log files and PICL [3, 15] log
files.

4.1. Exporting Paradyn Data. We created two new visualizations that gen-
erate both schema and data files ready to be imported into Devise. The actual data
reported varies with the user’s selection of metric/focus pairs. Generating the schema
allows easy incorporation of dynamic performance data into a Devise session. To
register the new visis with Paradyn we simply list them in the Paradyn setup file; no
changes to Paradyn itself are required.

To scalably monitor large and long-running codes, Paradyn uses an internal data
structure called a time histogram, which stores collected performance data in a fixed-
size list of data buckets. Fach bucket contains a value collected over a time interval
of uniform length. Once all buckets have been filled, the histogram is "folded”: the
histogram bucket interval is doubled, and adjacent pairs of values are merged to fit
the new bucket sizes. So, regardless of the length of time of a particular performance
tuning session, the amount of space required to hold performance data remains fixed.

Our first visi, histoSaver, allows the user to save the current contents of selected
time histograms to a file. The number of data points is equal to the number of valid
histogram buckets, with a fixed maximum. The length of the time interval represented
in each data value is the bucket width at the time the data was saved to the file.

Our second visi, deviseFeeder, is designed to allow Devise data visualization to
occur in real time. New data values are written to the file as they are received by
the visualization. There is no fixed maximum to the amount of data that may be
generated by this approach. This visi was designed primarily for future use as a link
to Devise for real-time visualization of performance data as it is being collected by
Paradyn.

4.2. The Application. Moma.pvm [14] is a PVM message passing implemen-
tation of the 'moma’ ocean model code, a version of the Bryan-Cox-Semtner code
which was developed for use with array processor computers. The application follows
a master-workers paradigm where there is a single master process which generates
work steps to be computed, and a collection of worker processes. In moma.pvm, the
ocean is split up into a number of sub-volumes, each the responsibility of a separate
worker process. Each process carries out all calculations required for its volume of
ocean. It also exchanges data on boundary points with processes responsible for
neighboring areas of ocean. The sub-volumes are each made up of vertical columns of
grid boxes and therefore can be specified by a two-dimensional horizontal array. The
master process controls the model run, reads the input files and handles archiving.
The master also spawns the worker processes which actually carry out the model
calculations.

4.3. Examining Multiple Executions in a Single Tuning Session. In this
section we describe a performance tuning session which examines several executions of
the moma.pvm ocean modelling code. It is not uncommon for programmers to develop
codes which will be used across different architectures, datasets, even message passing
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libraries. Visualizing performance results across changing environments can aid the
programmer in detecting bottlenecks without changing a code based on results which
may in fact be spurious.

Figure 2 shows performance data generated using Paradyn and our deviseFeeder
visualization module, from three different executions of the ocean model. In runs A
and C we measured application performance on four networked Sun SPARCstations
running Solaris 2.4. In Run B we measured performance on our Cluster of Worksta-
tions (COW). The COW consists of 40 SPARCstation20 workstations, each of which
contains two 66 Mhz Ross HyperSPARC processors, connected by a 10Mbit/s Ether-
net. In all runs the application includes a total of one master process and four worker
processes.

|§| DEViseWn0

L) T T T TS U LS
run A § Synchronization over CPU

300 400 500 600 700 a00 1000 1100 12008
run Bt Sunchronization owver CPU E

mmnmmmmmmmm

200 400 500 600 700 200 200 1000 dioo 120
run C ¢ Sunchronization owver CPU

5

100 200 300 400 500 GO0 700 GO0 900 1000 1100 12003

Fi1G. 2. CPU versus Synchronization. CPU (the lighter segments) and Synchronization time
(the darker segments) are displayed as split vertical bars for each data collection point. Three
different application runs are shown.

We display a bar graph with each bar length equal to the sum of synchronization
waiting time plus CPU time. Times are summed across processes, so the maximum
possible would be 5.0 for these runs. We produced one data stream per application
run; each data stream record contains a start and end time, and data values for CPU
time and Synchronization time. We link the X axes (wall clock time in seconds) of the
three bar charts so we can scroll and compare data for identical timestamps. For each
run we display data beginning after the run has started and ending when execution
is complete. Aligning execution time in this manner allows us to see immediately
the difference in total execution time across the runs: Run A = 1133 seconds; Run
C = 930; Run B = 707. The speedup from Run A to Run C was accomplished
by changing the configuration we used for the run: in Run A, we use a total of 4
workstations, which means a single workstation runs the application master process,
one application worker process, plus the Paradyn front end process. For Run C, we
moved the Paradyn front end process over to a separate workstation. The difference
between these two runs and the COW run is attributable to differing machine speed.

The split bar graph also allows us to see at a glance the ratio of computation to
synchronization in each execution. Run B achieves a ratio of roughly 1:2, while runs
A and C give a much poorer result in the range of 1:3.
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F1G. 3. Visualizing Operating System Performance. The data for these graphs was collected us-
ing the Uniz vmstat and iostat utilities. They show operating system statistics for one workstation
during Run B.

4.4. Visualizing Data from Multiple Sources. Performance tuning in gen-
eral requires data from a variety of levels of an execution run. Operating system
factors such as machine load, memory use, and network contention can all affect ap-
plication performance. Figure 3 shows data generated using the Unix utilities vmstat
and iostat. This information was collected during Run B of the ocean modelling
code. Machine load is of particularly importance when performance tuning parallel
codes running on workstations, where each node may be performing a set of varying
additional computations in addition to the program being measured.
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Fic. 4. Visualizing Application Data for Two Ezecutions. FEach horizontal bar represents a
single worker process. The colors represent distinct locations within the computation. To check for
synchronization, scan along a vertical slice.

Devise’s flexibility allows us to include results from application output in our
tuning session in an intuitive manner. Figure 4 shows status information gathered
during execution and generated directly by the ocean program for two different ver-
sions of the modelling code. The master process keeps track of where each worker
process is in the computation cycle and periodically prints a status table containing
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this information. We wrote a simple Tcl script to reformat this output and created
a data stream in Devise. Each record of the data stream contains a processor id,
process position, and checkpoint time. Each horizontal bar in the display represents
one worker process. Each possible computation location is assigned a different color
code. So, scanning along a single horizontal line shows the progression of each process
through various computation phases. Scanning the display along a particular vertical
slice, all process colors will be identical if the processes are at the same computation
step when the status check is done. So, a closely aligned computation would appear as
vertical stripes of color, whereas a poorly aligned computation would result in broken
patches of color along each vertical slice. We illustrate this with the two different
program versions visualized here: the top run shows a version with extra synchro-
nization of the worker processes; the bottom run shows the regular version. Although
the processes are at the same location through most of both runs, we can clearly see
more out-of-synch checkpoints in the bottom display.
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F1G. 5. Visualizing Message Behavior. The scatter plot, in the upper left of the screen, contains
points color-coded by process. The bar graphs in the lower display plot CPU utilization over time,
one graph for each process. The detail graphs on the upper right of the screen show a scatter plot
detail for each process.

We capitalize on Devise’s graphical cursor feature to construct a more complex
visualization which enables us to study message passing behavior of the application.
The result is shown in Figure 5. Using a scatter plot, we graph message bytes sent
versus message bytes received for each of the five processes in an ocean modelling
run. The scatter plot, in the upper left of the screen, contains points color-coded
by process. The bar graphs in the lower display plot CPU utilization over time, one
graph for each process. The detail graphs on the upper right of the screen show a
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scatter plot detail for each process, helpful for examining dense portions of the scatter
plot. The graphical cursor box can be moved around the scatter plot with the mouse;
the data which corresponds to the section contained within the cursor box is graphed
in the two other displays shown. This powerful feature enables the user to examine
outliers or unexpected data points and see where on the time line they occur.

To create this visualization we generated five data streams using Paradyn output.
Each data stream record contains a start and end time, process id, message bytes
sent, message bytes received, and CPU utilization. In the example shown, we can
determine the overall communication pattern of the set of processes. A producer-
consumer model would yield a single processor with message bytes sent dominating,
and the rest dominated by message receives. Our ocean modelling code contains
nearly balanced exchanges of data between all of the worker processes. A single
worker process shows larger values overall for both sends and receives; this process,
the first worker created, performs additional messaging for coordination. The master
process, in the middle bar graph at the top of the breakout displays, actually performs
no messaging.

5. Visualization of Condor Application Traces. Next we describe the vi-
sualization of trace data from a parallel application running in a Condor cluster of
workstations. Condor is a distributed resource management system for large heteroge-
neous clusters of workstations [5]. Its design has been motivated by the needs of users
who would like to use the unutilized capacity of such clusters for their long-running,
computation-intensive jobs. Condor schedules batch jobs on idle workstations within
the cluster. When an interactive user reclaims a machine, Condor checkpoints the
batch job and migrates it to another idle workstation. Condor’s ability to manage
and schedule jobs on a large number of workstations make it an ideal candidate for
inter-job resource manager for parallel applications as well.

The visualization described in this section demonstrates the use of multiple data
streams and a complex graphical mapping. The visualization is first created using
data from the execution of the application with one distributed scheduling algorithm.
The same visualization is then applied to a run of the same application with a different
scheduling algorithm, allowing the user to compare the two executions side by side.

Like the ocean model code described in Section 4, this application consists of
a master process which generates work steps to be computed by worker processes.
Each worker process receives a work step from the master, computes the result, and
sends the result back to the master. This paradigm works well in a dynamic parallel
programming environment where resources come and go at run-time. When a new
resource becomes available, the master can start a worker process there and give it a
work step to process. If a resource is lost, the master can give the work step which was
being computed there to the next available worker. The application is implemented
using the Condor Application Resource Management Interface (CARMI) [10].

The application is a Materials Science program which is designed to predict the
properties of new materials based on first principles [13]. Logically, this application
consists of two nested loops in which all work for the inner loop (comprising one cycle)
must be completed before any work for the next cycle of the outer loop can be started.
The inner loop consists of 31 steps per cycle, and the program executes a total of 35
cycles. The steps vary greatly in the length of time they require to compute, but each
step varies relatively little across cycles.

The visualization involves two data streams, a work cycle trace generated by the
application and a work step trace produced by CARMI. A work cycle record contains
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cycle duration, occupancy and efficiency information, as well as the number of workers
used and number of workers suspended (due to interactive users reclaiming machines)
in the cycle. A work step record contains the cycle and step number information, the
node number of the workstation that performed the work step, and the timestamps
of the beginning and end of the work step.

The number of workstations participating in the computation varied from cycle
to cycle, going as high as 23 in some cycles. Since the number was always less than
the number of work steps to be performed, some workstations were assigned two or
more work steps. All workstations in the cluster had identical physical memory size
and CPU speed.
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F1G. 6. Activity and statistical plots of a Condor application. The top two graphs show the
activity of the parallel application as a function of time. Two focus views are displayed in the lower
left area. The window on the lower right shows statistics on the execution time of work steps.

The application was first run with a greedy work step distribution algorithm [4].
The resulting work step data stream is displayed in Figure 6. The top window contains
two graphs, an activity plot and an idle plot. Both plots have time on the X axis,
measured in days, hours, minutes and seconds. The workstation number is shown
on the Y axis. In the activity plot, each colored cell represents a calculation step
performed on a workstation. The width of a cell represents the amount of time taken
by the work step. The position of a cell on the Y axis indicates the workstation where
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the calculation took place. The color of a cell shows scheduling information. In each
cycle, the first calculation step performed by a particular workstation is assigned a
light color, the second step a slightly darker color, and so on. A black color indicates
that the calculation was aborted because the workstation was reclaimed.

In the idle plot, the dark areas show the number of idle workstations that are
waiting for others to finish computing the remaining steps in the current cycle. White
areas indicate the number of busy workstations.

In the center of the activity plot, there is a colored rectangle which highlights a
range of GData displayed in that graph. The boundaries of this cursor define another
graphical filter. That filter is used in the Activity View Detail window where the
selected GData are shown as a focus view. From this graph it is easy to tell how
many steps a worker executes in a cycle and how long the steps take to execute. A
cursor is also set up between the global idle view and the focus view in the Idle View
Detail window. The user can either scroll or zoom a focus view, which causes the
cursor to change location and size, or the cursor can be moved in the global view,
which causes the focus view to show the details of another GData subset.

The Step Duration window shows additional details of the execution of work
steps. The left view plots the duration of steps as a function of the number of steps
a workstation performed in a cycle. Each horizontal line segment represents one
calculation step. The Y location of the segment corresponds to the duration (in
seconds). The X location indicates whether the step was the first, second, third, or
higher step a workstation performed in that cycle.

The view on the right shows the duration of steps as a function of step number.
The X location of a line segment indicates the step number. The execution times of a
work step in different cycles are shown as a vertical stack of line segments. The plot
illustrates the large variance in the execution time required by different work steps,
whereas less variance exists in the execution time of the same work step across cycles.
The variance from cycle to cycle is due to network latencies and slight variances in
the workstation load caused by background processes.
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Fi1g. 7. Comparison of greedy and sequential distributed scheduling algorithms. The visual-
ization created earlier using one data set was applied to two data sets; the two visualizations are
displayed here side by side for comparison.

Next we compared the greedy work distribution algorithm with the original, se-
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quential ordering of work steps described in [13]. Figure 7 shows the activity plots for
both orderings and demonstrates Devise’s capability of allowing for easy comparison
of related datasets. The visualization we created earlier, in Figure 6, is now applied
to two data sets, and the two visualizations can be displayed side by side.

The plots show how the greedy algorithm, in the top view, fares better than the
sequential algorithm because it takes less time to complete. We also observe that the
greedy algorithm has much less white space between cycles than the sequential algo-
rithm. This indicates that less time is lost due to synchronization between workers at
the end of a cycle, so the greedy algorithm is spending more time doing useful com-
putation. Also, we observe that the plot of the sequential algorithm has darker cells,
whereas the plot of the greedy algorithm is lighter overall. This difference indicates
that with the sequential algorithm, some workstations have to perform more calcu-
lation steps per cycle than others. The greedy algorithm provides a more balanced
system by scheduling fewer steps on a workstation per cycle.
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F1G. 8. Per-cycle performance measures of the two scheduling algorithms. The graphs show
how the sequential algorithm consumes more time in all cycles except the first. It also demands a
higher occupancy of the resources but uses them with lower efficiency.

The graphs in Figure 8 compare overall performance measures, including execu-
tion time, occupancy, and efficiency. This data is contained in the work cycle trace.
Execution time is measured from the time the first step of a cycle is scheduled on a
resource until the last step of the cycle has been completed. Condor queueing time is
not included. Occupancy is the total amount of resource time allocated to the steps of
the cycle, and is viewed as the cost of running an application. Efficiency measures the
fraction of the allocated processor time actually used. An efficiency of one means that
all allocated processor time was used by the application. Synchronization overhead
and network latency are the main sources of efficiency loss.

The top graph in the figure shows execution time as a function of cycle number.
The left bar in each bar pair corresponds to the greedy algorithm while the right bar
is the sequential algorithm. The greedy algorithm gets a slow start due to a smaller
number of available workstations in the first cycle. This is seen in the activity plot in
Figure 7. From the second cycle onwards, however, the greedy algorithm consistently
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completes cycles in less time than the sequential one. The middle plot shows how the
sequential algorithm occupies more resources in every cycle except the first. It also
uses the resources less efficiently because of the higher number of occupied but idle
workstations. This is seen in the bottom plot.

6. Visualization of Condor Cluster Activity. Condor has been running in
production mode at the Computer Sciences Department at the University of Wis-
consin for the last 7 years. Condor records a multitude of job, host, and cluster
information in log files. A separate data stream is recorded for each machine platform
in the log. We extracted hourly-sampled data streams of the SunOS/SparcStation
and Solaris/SparcStation platforms and created a visualization that compares the ac-
tivity of these two clusters. The visualization helps a Condor end user to decide to
which cluster to submit his or her batch job. The log records contain the following
information: the total number of hosts in the cluster, the percentage of hosts used by
Condor and by interactive users, the total (relative) load on hosts, and the relative
load created by Condor jobs and interactive users.

The top view in Figure 9 shows the total number of hosts in the two clusters as
a function of time. The time range of the view is from June 4th to 11th, 1996. The
middle view shows the percentage of hosts in interactive use, and the percentage of
hosts running Condor jobs is shown in the bottom view. All views are linked on the
time axis to each other, so scrolling or zooming in any of the views also scrolls or
zooms the other views. The views also demonstrate Devise’s capability to overlay two
VData sets which allows visual correlation and comparison.
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Fic. 9. Condor cluster activity. The Fi1Gc. 10. Load averages in Condor clus-
graphs show the breakdown of host utilization ters. The total load on machines has no daily
among interactive and Condor users. In the pattern, as Condor keeps machines busy that
middle view, the daily usage pattern by inter-  would otherwise stay idle at night time.
active users can be seen clearly.

In the top view we observe that the number of hosts in each cluster remains
relatively constant over time and that the number of Solaris/Sparc hosts is consistently
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higher than SunOS/Sparc hosts. Some variation in the number of hosts is caused by
machines taken out of a cluster for maintenance or new machines being added to
the cluster. In the middle view we see the daily usage pattern of the workstations by
interactive users, with nightly usage being significantly lower than daytime usage. The
left-most four peaks in this view correspond to the weekdays Tuesday through Friday
and the following two peaks correspond to the weekend days. It is also easy to tell from
the view that Solaris machines see more interactive users than the SunOS machines,
especially in the evening hours. This is explained by the fact that the machines
running SunOS in this cluster were of an older architecture and users preferred to use
the newer machines instead.

The top view of Figure 10 shows the total load on machines expressed as a relative
number. Each workstation has a load between zero and one (loads above one are
treated as one). The sum of the load of all machines is divided by the number of
machines in a cluster and shown as a percentage in the view. A value of 100 would
therefore mean that all machines were busy. The middle view shows the relative load
created by interactive users and the bottom view the load created by Condor jobs.

The lack of any day-to-day pattern in the top view is caused by the load generated
by Condor jobs. In fact, that is exactly the reason why Condor exists: to use available
CPU cycles when machines would otherwise sit idle (night time). In the middle view
we observe that the load on interactive SunOS/Sparc hosts is consistently higher
than the load on Solaris/Sparc hosts. This is again explained by the difference in the
machine architecture and speed: our SunOS/Sparc hosts are more busy because they
are of the older architecture and require more CPU cycles to process user’s commands.

We also observe that, for both clusters, the relative load created by Condor jobs
is almost identical to the relative number of hosts running Condor (compare bottom
view in Figures 9 and 10). This suggests that the load on hosts running a Condor
job is at or near one, which is the expected sign that Condor is keeping the machines
busy. Intuitively, the difference between the relative Condor load and the relative
number of hosts running Condor represents loss of efficiency (wasted CPU time).

The overall message from the graphs of Figures 9 and 10 is that the SunOS/Sparc
machines have consistently been under heavier load than the Solaris/Sparc during the
period of observation. The higher load is mostly created by Condor jobs, so a Condor
user would probably submit his or her new Condor jobs to the Solaris/Sparc cluster.

7. Conclusion. Performance tuning a parallel program involves a number of
system components, including the message passing library, performance monitoring
tool, resource manager, operating system, and the application itself. Each component
produces performance data with a distinct format, frequency and focus. The current
practice for visualizing these data streams is to use a separate, customized tool for
each data source. In this paper, we have shown how a generic visualization tool can
be effectively used for visualizing all such data. Performance analysts benefit from
a unified user interface because it lowers the learning curve. An equally significant
advantage of integrated visualization is that the system allows side by side compar-
isons of performance data emanating from different sources. This can lead to better
understanding of how the system components interact and work together. Multi-
ple executions of a parallel application with different algorithms, implementations or
input parameters can also be compared and analyzed easily.

Being a generic visualization tool, Devise embeds no knowledge of the target
domains it is used in and is independent of the type of data used, whether it is from
financial markets, clinical medicine, biochemistry, parallel programs or from other
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domains. Therefore, the key to successful visual integration is to have well-defined
data export formats to ensure a “match” between data sets of different sources. Having
a configurable data export interface at the source provides the most flexibility. As
a case study, we described in this paper how Paradyn was interfaced with Devise to
provide more accurate and intuitive visual information about parallel programs. As
part of our future work, we plan to extend the interface to allow the user to request
additional data from Paradyn based on selections from existing visualizations. This
feature would allow dynamic feedback from Devise which might be used to steer the
Paradyn tuning session as the application runs.
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