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Abstract—Decoding binary executable files is a critical facility
for software analysis, including debugging, performance monitor-
ing, malware detection, cyber forensics, and sandboxing, among
other techniques. As a foundational capability, binary decoding
must be consistently correct for the techniques that rely on it to
be viable. Unfortunately, modern instruction sets are huge and
the encodings are complex, so as a result, modern binary decoders
are buggy. In this paper, we present a testing methodology that
automatically infers structural information for an instruction set
and uses the inferred structure to efficiently generate structured-
random test cases independent of the instruction set being tested.
Our testing methodology includes automatic output verification
using differential analysis and reassembly to generate error
reports. This testing methodology requires little instruction-
set-specific knowledge, allowing rapid testing of decoders for
new architectures and extensions to existing ones. We have
implemented our testing procedure in a tool name Fleece and
used it to test multiple binary decoders (Intel XED, libopcodes,
LLVM, Dyninst and Capstone) on multiple architectures (x86,
ARM and PowerPC). Our testing efficiently covered thousands
of instruction format variations for each instruction set and
uncovered decoding bugs in every decoder we tested.

I. INTRODUCTION

Instruction decoding is the process taking the binary repre-

sentation of a machine instruction and decomposing it into its

basic fields. As part of this decomposition, a decoder needs

to identify the opcode, the operands and their types, qualifiers

to the opcode and operands, and any address calculations that

might be used for the operands. While instruction decoding

is essentially a syntactic operation, it provides information

necessary to support control- and data-flow of the code, and

to understand instruction semantics.

Instruction decoding is the first step for any tool that

operates on binary code, so represents a critical feature needed

for these tools. Tools that operate on binary code include disas-

semblers [2], [4], [12], [14], [21], reverse engineering tools [5],

[9], [16], binary rewriters [4], [18], dynamic instrumentors [4],

[13], [22], performance profiling tools [1], [4], and security

analysis tools [7], [20].

Accurate instruction decoding of an instruction is essential

to the correct operation of the tools that are built on top of

the decoder. Incorrect decoding can cause these tools to be

useless or even dangerous. For example, in the presence of

decoding errors, control flow can be misleading, performance

bottlenecks can be obscured, and sandboxing untrusted code

can be faulty. Consider the output of Intel’s decoder for the

x86 architecture, XED [12] (version 6.26.0) for the bytes CA

48 0C. These bytes should correspond to instruction lretl

0xc48 (a function return instruction), but XED produces

lcallq 0xc48 (a function call instruction). These outputs

have different implications for control flow, and this error will

result in an incorrect control flow graph. Thorough testing of

instruction decoders is essential to understanding binary code.

High accuracy of an instruction decoder is difficult to

achieve due to the enormous complexity of modern instruction

sets. Although manuals detailing early x86 processors are as

short as 200 pages, modern manuals for x86 are thousands of

pages long [11]. Even manuals for RISC ISAs like PowerPC

and ARM exceed a thousand pages [3], [10]. These pages

detail hundreds of opcodes, many addressing modes, and a

myriad of restrictions on instruction fields or combinations of

fields. Just determining which bits contribute to the opcode of

an instruction is challenging because many bits not explicitly

included in the opcode of an instruction can still change it,

or even invalidate the instruction. Many PowerPC and ARM

instructions have reserved fields whose bits are specific to the

opcode. Changing these fields invalidates the instruction or

alters the opcode. The operation of x86 instructions depend

not only on the 1-3 byte opcode, but also on prefixes and

even fields within prefixes, as with EVEX instructions. Our

automated testing framework is able to detect which subsets of

the bits in an instruction encode the operation of an instruction;

we found that hundreds of different sets encode the operation

of PowerPC and ARM instructions, and thousands of sets of

bits encode the operation of x86 instructions.

The complexity of modern instruction sets has resulted

in numerous errors in the decoding tools for x86, PowerPC

and ARM, highlighting the need for comprehensive testing.

Unfortunately, comprehensive testing of instruction decoders

is challenging for two reasons. First, test inputs must be

selected from the input space that maximize the number of

errors found while minimizing the number of inputs that

must be tested. ARMv8 and PowerPC both use 4-byte, fixed-

length instructions, so their decoders must correctly decode

more than 4 billion inputs. Decoders for x86 need to decode

variable-length instructions up to 15 bytes long, resulting in
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2120 possible inputs. A brute force approach to comprehensive

testing is impractical and requires careful consideration of test

instructions. Second, the assembly language output of each

decoder needs to be verified for every input. Given the size of

the input space, this verification requires an automated method

with ground-truth decoding for all input bytes.

Existing work has recognized the complexity of modern

ISAs and challenges in testing instruction decoders, seeking

to quantify issues with instruction decoder accuracy through

differential testing. In 2010, Paleari et al [17] compared the

outputs of eight x86 decoders when used to decode a mixture

of random and known-valid inputs. Paleari’s work introduced

random differential testing for instruction decoders; however,

it was specific to x86 and leveraged detailed knowledge of

the ISA to generate known-valid test cases. Additionally, this

work required extensive normalization functions to compare

the output of different decoders. While the work by Paleari

used mostly random inputs, results from other testing domains

have shown that information about input structure can be used

to generate inputs that improve code coverage [8], [23].

In this paper, we introduce a framework that provides

several benefits over existing tests:

• Inferred Input Structure: We automatically infer encoding

information using only knowledge of the register sets but

not a model of the ISA, significantly reducing the expert

knowledge required to test decoders.

• Error Verification: Our framework uses reassembly to

verify that differences in decoder output correspond to

errors in decoding. This process vastly reduces the effort

required to analyze output and identify underlying issues

in the decoders we test.

• ISA Agnostic Testing: Our framework makes few assump-

tions about the structure of instructions, allowing us to

test decoders for x86, PowerPC and ARM (and others

in the future) within a single framework. Other testing

methods make assumptions that restrict them to a single

ISA, or even a specific version of an ISA.

We applied our testing methodology and tools to a wide

variety of decoders, including Capstone [2], Dyninst [4],

libopcodes [21], LLVM [14], and XED [12], on a variety of

architectures including x86 (32 and 64 bit), PowerPC (32 and

64 bit), and ARM (64 bit). Our experience has shown these

tools (including those from the processor manufacturer and

those from our own project) to be disturbingly buggy. Across

all decoders, testing encountered dozens of errors that varied

significantly including segmentation faults, incorrect opcodes,

incorrect number of operands, invalid operand sizes, invalid

use of restricted registers and missing opcodes. We reported

all of the decoding errors we identified to the developers of

these tools and many have been confirmed and fixed.

In Section 2, we provide background on existing instruction

decoder testing. Section 3 describes the complexity of modern

ISAs, Section 4 presents the testing procedure, Section 5

presents an evaluation of Fleece, our tool that implements our

structured random testing procedure, testing several popular

instruction decoders. We conclude in Section 6.

II. RELATED WORK

Several testing techniques provide a foundation for our

work, including structured random input generation for fuzz

testing [8], [19] and differential testing of instruction decoders

[17].

While fuzz testing has been effective at finding bugs using

unstructured, pseudorandom input [15], using structured input

has been used to provide greater coverage in a short period of

time for certain tools [8].

Model-based input generation has been applied to x86

instructions because instructions contain multiple distinct com-

ponents that can be used in combination, including prefixes,

opcodes, and modifier bits. This was explored by Seidel [19],

modeling instructions as graphs, with each node representing

a byte of the instruction. In their technique, instructions start

as an empty string of bytes and new bytes are appended as

the graph is traversed with edges leading from the current byte

of the instruction to each valid following byte, according to

a configurable probability. This approach can generate valid

instructions with a specified distribution of instruction set

features like prefixes and modifiers. However, this approach

requires extensive knowledge of the instruction set, and is only

applicable to ISAs where instruction set features correspond

to contiguous bits (or bytes) that can be concatenated to create

a valid instruction. In many RISC architectures like Arm and

PowerPC, instructions are all 4 bytes whose individual bytes

do not specify independent parts of the instruction, and whose

parts are not all contiguous.

Paleari et al introduced CPU execution as a way to generate

valid inputs for instruction decoders [17]. Their approach,

again specific to x86, takes advantage of the structure of

instructions to test all possible 1-3 byte opcodes. The authors

executed one instruction for each possible value of the first

three bytes to obtain a list of valid 1-3 byte opcodes. Then,

using a list of valid prefixes, they created test instructions

by prepending prefixes to each of the valid opcodes. This

method produced valid instructions with a variety of opcodes

to provide better coverage of the tested instruction set than

a purely random approach. Unfortunately, this approach is

specific to x86, and it assumes that the list of valid prefixes is

straightforward for a programmer to enumerate. New EVEX

instructions in x86 violate this assumption with complex 3-

byte prefixes that contain information about registers and in-

struction operation. This method requires the tool to explicitly

define features of the instruction set (in the form of valid

prefixes) and relies on 1-3 byte opcodes whose validity is

independent of any prefixes.

Unlike methods of that require knowledge of the instruction

set to create test cases, grammar-based input generation can

use symbolic execution and a pre-defined grammar to construct

valid inputs [8]. This approach increases code coverage when

compared to purely random approach, but also requires knowl-

edge of the structure of inputs (in the form of a grammar) to

generate test cases.
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In addition to detecting failures, our work also seeks to

verify the test results. Unfortunately, the specification of

instruction decoding requires lengthy manuals with thousands

of pages [3], [10], [11]. Verifying a single output by hand

requires lookups in several tables detailing the meaning of

different bits, and sometimes referencing multiple manuals, a

process that can introduce errors. Differential testing provides

a way to detect likely errors by comparing the output of several

instruction decoders and only producing error reports where

the outputs differ. This technique was used by Paleari et al to

quantify the number of errors in existing instruction decoders

[17]. In their work, the authors use eight x86 decoders in

conjunction with execution on a CPU to identify cases where

the decoders differ, signifying a probable error.

Ideally, this differential testing would yield no false posi-

tives: every difference in the output of decoders would corre-

spond to an error in at least one of the decoders. Unfortunately,

instruction decoders do not produce a single, uniform output.

Even when configured to produce the same syntax, outputs

from different instruction decoders can vary significantly.

Paleari et al used nearly 100 functions to normalize the outputs

of all decoders into one standard representation. Still, they

found that some instructions marked as errors actually corre-

sponded to trivial formatting differences between instruction

decoders, rather than an error. Our approach to normalization

uses an assembler to detect equivalent decodings, significantly

reducing the number of normalization functions.

The DERIVE system [6] introduced the use of assemblers

combined with a list of opcodes, registers and special in-

struction format strings to derive the encoding of instructions.

DERIVE’s instruction format strings specified which field in

assembly language is the opcode, which are registers, and

which are immediates. They then created assembly language

instructions with permutations of opcodes, fields and imme-

diates, assembling each instruction. Using a series of con-

straint solvers, they determined which bits of the instruction

correspond to which fields, as well as appropriate decoding

procedure. Unfortunately, modern ISAs violate several of the

assumptions of this work, including: multiple binary instruc-

tions decode to the same assembly instruction, immediates

are not always represented in assembly as they appear in

the binary, instruction fields are not always independent, and

not all immediate operands are contiguous. Conversely, our

approach modifies the binary encoding of instructions and

uses decoders to derive similar structural information about

instructions without any outside information other than the

maximum length of instructions.

III. INSTRUCTION SET COMPLEXITY

As introduced in Section 1, modern instruction sets are

complex, and the challenges of implementing correct instruc-

tion decoders are a direct reflection of this complexity. In this

section, we try to quantify instruction set complexity.

Complex opcode encoding: Opcodes can depend on many

parts of an instruction, and even determining which bits encode

the opcode is difficult. While an ISA often has a common

set of bits used to encode the opcode, each ISA has many

encoding variations that differ from their common opcode

encoding. Every PowerPC instruction uses at least the first

6 bits to encode the opcode; many x86 instructions have

common encodings based on the prefixes present; and, ARM

instructions often use bits 1-6 for the opcode. Despite common

opcode-encoding bits in each ISA, a scattering of extra opcode

bits, reserved bits and fields that affect the opcode cause the

total number of opcode-encoding subsets to explode. In total,

we identified 279 different subsets of bits that encode ARMv8

opcodes, 124 subsets that encode PowerPC opcodes and 2900

subsets for x86 opcodes. Each ISA has characteristics that

contribute to this complexity. For example, both ARM and

PowerPC contain opcodes that are valid only when certain

values are supplied for operands, adding those operand bits to

the subset that affects the opcode, and the use of prefixes in

x86 can shift and modify which bits encode the opcode.

Multi-purpose operand values: Once the bits encoding an

operand are identified, the operand may have several meanings

based on other parts of the instruction. For example, x86

instructions accessing a register encoded by the value ”001”

might be accessing one of 10 different registers, where the

register accessed is determined by prefixes, operand size,

and other modifier bits scattered throughout the instruction.

ARMv8 instructions also use multi-purpose operand encodings

where the meaning of an operand encoding depends on the

opcode.

Undefined and illegal instructions: Determining whether an

instruction is valid and defined is difficult even if the opcode

is known because many factors can cause an instruction to be

undefined or illegal. These factors include prefixes, addressing

modes, interacting operand values and even unallocated bits.

For example, x86 instructions are illegal if they contain a

lock prefix but do not contain a memory operand. Both ARM

and PowerPC have instructions that may be invalid because

of a combination of separate fields, like SIMD register loads

whose range of destination registers cannot contain the source

register. In these cases, only a synthesis of information from

different fields of the instruction can determine whether it will

be valid and defined.

Instruction Set Churn: Since its creation, x86 has had

at least 13 extensions (depending on how you count) and

now contains hundreds of opcodes, most of which were not

present initially [11]. Likewise, both ARM and PowerPC have

undergone significant revisions since their creation [3], [10].

Each revision or extension requires an updated decoder. Addi-

tionally, extensions can produce new interactions between op-

codes and operands that might affect existing instructions. The

result is noticeable in differential testing: the GNU decoder

incompletely deprecated 3DNow!, and Dyninst maintained old

versions of PowerPC decodings from POWER 2 that conflict

with a more recent vector extension.

These instruction set complexities have resulted in numer-

ous errors in the decoding tools for x86, PowerPC and ARM,

highlighting the need for comprehensive testing.

86



IV. TESTING PROCEDURE

The complexity of instruction sets makes thorough testing

of instruction decoders difficult. It is challenging to generate

input that includes all interesting test cases, and to verify the

results of the decoding. Given a set of instruction decoders and

an assembler, we generate a variety of test instructions that

provide good instruction set coverage and verify the output

of each decoder through differential testing and reassembly.

When the output of decoders differ, and the reassembly process

indicates a likely error, we produce labelled output indicating

which decoder appears to be at fault. These tasks are broken

into two main components: input generation (Section IV-A)

and output verification (Section IV-B), shown in Figure 1.
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Fig. 1. Overview of testing procedure.

A. Input Generation

Our approach to input generation is based on the observation

that, even though billions of byte strings decode to valid

instructions in an instruction set, most are similar. If two

instructions differ by only a single immediate or register

operand, testing both instructions is probably unnecessary.

Consider the x86 instruction at the top of Figure 2. While this

instruction is 16 bits long, the last 8 bits contain an immediate

operand, so changing these bits will produce an instruction that

differs only by that immediate. The same goes for bits 6-8,

which encode only a register operand. On the other hand, bits

1-5 encode the opcode. If we change any of these bits, we

will produce a significantly different instruction, as shown in

the bottom five rows of Figure 2. Our goal is to identify the

bits that can be changed to produce new and interesting test

cases so we can vary them to generate input with a variety of

opcodes, prefixes and addressing modes.

To identify bits that encode parts of the instruction that

we want to vary is to simply flip bits and determine the

new decoding. We observe that, in most of the cases that

we consider interesting (new opcodes, prefixes or addressing

modes), two or more operands are changed with a single bit

flip. We use this observation as the starting point for inferring

instruction structure and generating test cases.

1011010011011111: movb 0xdf, %ah

0011010011011111: xorb 0xdf, %al

1111010011011111: hlt

1001010011011111: xchgl %eax, %esp

1010010011011111: movsbb (%rsi), (%rdi)

1011110011011111: movb 0x65d5f5, (%esp)

Fig. 2. Changes made to any of the first 5 bits of the top movb

instruction produce an instruction that differs in a non-trivial way.

The top of Figure 1 shows an overview of the input

generation procedure. Given sequences of random seed bytes,

each of which is likely to contain a valid instruction (about

75% for x86 [17]), we detect structural information about these

instructions (Section IV-A1). Using this structural information,

we mutate the original instruction to create new test cases that

efficiently cover the ISA being tested (Section IV-A2). This

process continues iteratively by detecting the structure of each

new test case and mutating these instructions to produce new

inputs (Section IV-A3).

1) Inferring Structure: We start our testing process by

generating several random byte sequences, each as long as the

maximum instruction length for the ISA being tested (four

bytes for ARMv8 and PowerPC, 15 bytes for x86). For each

sequence of bytes that forms a valid instruction, we detect the

structure of the instruction by repeatedly altering the sequence

of bytes and decoding the result with each decoder. During

this process, we give each bit a label that will be used during

mutation to decide which bits of the instruction should be

changed to produce new inputs. Our labelling process has three

steps: detecting instruction length, assigning preliminary labels

to each bit, and refining the label of certain bits.

First, we determine the length of each instruction. Given a

sequence of N bytes, we use a decoder to decode only the first

byte. If the result of decoding the first byte is identical to the

result of decoding all N bytes, then the instruction is one byte

long. We attempt decoding up to a maximum of N times. The

fewest bytes that produces the exact same output as decoding

all N bytes is considered to be the instruction length. The step

only has practical significance for variable length architectures

like x86, and it allows our process to function independently of

the explicitly returned instruction length provided by decoders.

Next, we flip each bit of the instruction and assign a

label based on the decoding of the resulting instruction. For

now, we assume that flipping each bit alone is sufficient to

determine which parts of the instruction each bit encodes. This

is equivalent to assuming that all bits independently encode

fields, i.e., flipping one bit will not affect the result of flipping

another. This is not always true, so we relax this assumption

later to refine our inferred structures. Bits are assigned one of

four labels: field, reserved, unused or structural.

Field bit: A bit is a field bit if it encodes only a single

field of the decoded instruction. These bits are marked with a

number indicating which field they encode. Often, these bits

encode only a single immediate or register operand. In cases
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where the opcode of the instruction can be changed without

modifying any other fields, a field bit can also be a part of the

opcode. During mutation, field bits will be grouped into the

fields that they changed, and each field will be given random

and special values intended to generate special instruction

forms that depend on the operands.

Reserved bit: A bit is a reserved bit if modifying it causes

the instruction to change from a valid instruction to an invalid

instruction. Because we focus on testing valid inputs, we do

not modify reserved bits during mutation.

Unused bit: A bit is an unused bit if modifying the bit has

no effect on the decoded instruction. As they have no effect on

the decoding, unused bits are not modified during mutation.

Structural bit: A bit is structural if modifying it changes

more than one field of the decoded instruction, the number of

fields in the instruction, or the preliminary labels of other bits.

These bits frequently encode the opcode, addressing mode or

operand size. Because we want to test these characteristics

of instructions, we modify structural bits in multiple ways to

generate new inputs.

The preliminary label given to each bit is determined by

comparing the decoding of the the instruction with that of the

instruction with the bit flipped. Figure 3 gives an example of

generating the sequence of bit-flipped instructions from the

original movb with the resulting labels given to each bit.

1011010011011111: movb 0xdf, %ah

0011010011011111: xorb 0xdf, %al        

1111010011011111: hlt

1001010011011111: xchgl %eax, %esp

1010010011011111: movsbb (%rsi), (%rdi)

1011110011011111: movb 0x65d5f5, (%esp)

Label:

STRUCT.

STRUCT.

STRUCT.

STRUCT.

STRUCT.

1011010011011111: movb 0xdf, %al FIELD 2

1011010011011111: movb 0xdf, %dh FIELD 2

1011010011011111: movb 0xdf, %ch FIELD 2

1011010011011111: movb 0x5f, %ah FIELD 1

1011010011011111: movb 0x9f, %ah FIELD 1

1011010011011111: movb 0xff, %ah FIELD 1

1011010011011111: movb 0xcf, %ah FIELD 1

1011010011011111: movb 0xd7, %ah FIELD 1

1011010011011111: movb 0xdb, %ah FIELD 1

1011010011011111: movb 0xdd, %ah FIELD 1

1011010011011111: movb 0xde, %ah FIELD 1

2 2 2 1 1 1 1 1 1 1 1

Preliminary Labels

Field 2: 
%ah

Structural Field 1: 
0xdf

Fig. 3. Example of flipping each bit in the example movb instruction
and assigning labels. Grayed spaces in the final instruction are
structural or reserved bits. Others are given a number corresponding
to the field that they encode. Note that changes made to any of the
first 5 bits of the top instruction produce an instruction that is different
in a non-trivial way, while changes to the remaining bits produce an
instruction that differs only by an immediate or register.

We originally assumed that all bits were independent, so

flipping each bit alone was sufficient to identify what those

bits encoded. This is not always true; for example when a

bit encodes a field-modifying x86 prefix that significantly

alters the instruction when changed in combination with the

field bits. We refine our preliminary labels by relaxing the

assumption that all bits operate independently. Now, we flip

two bits at a time to determine if any bits encode structural

information conditioned on the values of other bits. We

perform this two-bit test only for field bits and unused bits

because structural bits are already known to encode structural

information and changing reserved bits results in errors. We

test two bits flipped at a time by modifying each field one bit

at a time and recomputing the preliminary map (which flips

every bit once, giving us combinations of two bits flipped at

a time). If the new map is different from the original, then

the flipped bit encodes some structural information, so we

refine the preliminary label from field or unused to structural.

Figure 4 illustrates this case with a more complex example

adc instruction that contains a REX prefix (the first 8 bits).

Several bits in the REX prefix are given a preliminary field

label because they encode only a single field of the assembly

language. However, these bits do not match the concept of

a field that we intended because they also encode instruction

structure. Bit 3 was given the label field 2 because it appeared

to encode field 2, but changing this bit alters the REX prefix

to a data16 prefix. Both of these prefixes modify field 2, but

they have different structures, so we revise the preliminary

label of this bit to be structural. We try only combinations

of two bits flipped at a time, so we cannot identify structure

bits depend on two or more other bits. We chose this value

empirically because using three bits provided only marginal

benefits at a high cost.

Not all fields are encoded such that any value can be sup-

plied while affecting only that field. Some have special values

that cannot be used with certain opcodes, and other fields

determine which alias of an instruction should be produced.

In these cases, changing a bit that encodes a single operand

may change multiple fields or the validity of the instruction,

so the labelling process may not give these bits field labels.

We do not consider this a significant limitation because these

field bits are often given the structural label, which is used

more rigorously to generate new inputs.

While the process of flipping each bit and re-decoding

an instruction allows us to label every bit, it requires the

instruction to be decoded many times to infer its structure. The

final labelling process is an O(N2) process with respect to the

number of bits because it repeatedly determines all preliminary

labels to identify structural bits like the one highlighted in

Figure 4. For a 16 bit instruction, this could mean that

hundreds of decodings are used to infer structure. To reduce

the total number of decodings required, we introduce an opti-

mization based on an observation used in DERIVE [6]: many

immediates are contiguous and printed in assembly exactly as

they appear in the bytes of the instruction. For example, movb

$0xdf, %ah has two bytes: b4 df. The second byte encodes

the immediate, and its value is used directly in the assembly

language representation of the instruction. Once we detect

the first bit of an immediate field through decoding, we then

directly compare the value decoded with the adjoining bits. If
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010001100001001100110001: adc (%rcx), %r14d

Input Instruction

2 2 2 1 0 0 0 2 2 2 2 1 1

2 0 0 0 2 2 2 2 1 1

2 2 1 0 0 0 2 2 2 2 1 1

2 2 1 0 0 0 2 2 2 2 1 1

2 2 1 0 0 0 2 2 2 2 1 1

2 2 1 0 0 0 2 2 2 2 1 1

Instruction Bits

011001100001001100110001: adc (%rcx), %si

010011100001001100110001: adc (%rcx), %r14

010000100001001100110001: adc (%rcx), %esi

010001000001001100110001: adc (%rcx), %r14d

010001110001001100110001: adc (%r9), %r14d

2 2 2 1 0 0 0 2 2 2 2 1 1010001100011001100110001: xor (%rcx), %r14d

2 2 2 1 0 0 0 2 2 2 2 1 1010001100000001100110001: add (%rcx), %r14d

2 2 2 1 0 0 0 2 2 2 2 1 1010001100001101100110001: sbb (%rcx), %r14d

STRUCT.

STRUCT.

STRUCT.

STRUCT.

STRUCT.

FIELD 2

FIELD 2

FIELD 2

UNUSED

FIELD 1

FIELD 0

FIELD 0

FIELD 0

Modified Instructions

Decoding

Prelim. Bit 

Label Preliminary Structure Final Label

010001100001001100110001: adc (%rcx), %r14d

Final Instruction

0 0 0 2 2 2 1

1Legend: Modified bit Structural/Reserved Field # Unused

FIELD 0

FIELD 0

FIELD 0

Differs from input

2 1 0 0 0 2 2 2 2 1 1010001100001101000110001: adc (%rcx), %r14b FIELD 2 STRUCT.

2 2 2 1 0 0 0 2 2 2 2 1 1010001100001101100010001: adc (%rcx), %r10d FIELD 2 FIELD 2

2 2 2 1 0 0 0 2 2 2 2 1 1010001100001101100100001: sbb (%rcx), %r12d FIELD 2 FIELD 2

2 2 2 1 0 0 0 2 2 2 2 1 1010001100001101100111001: adc (%rcx), %r15d FIELD 2 FIELD 2

2 2 2 1 0 0 0 2 2 2 2 1 1010001100001101100010011: adc (%rbx), %r14d FIELD 1 STRUCT.

2 2 2 1 0 0 0 2 2 2 2 1 1010001100001101100100000: adc (%rax), %r14d FIELD 1 FIELD 1

Fig. 4. An example of refining the preliminary map for an adc instruction. The first byte of this instruction is an x86 REX prefix, so the bits of this prefix
encode more than just operand 2, they also encode structural information. When each field bit is flipped, the preliminary labels are recomputed as shown on
the right side of the figure. Each bit whose change results in different (highlighted) preliminary labels is given the structural label in the final labels.

they match, we infer that all these bits encode an immediate,

without the need for additional decoding. Immediate bytes that

are labelled this way do not need to be checked for structural

properties because they are used in exactly one field. This

optimization reduces the number of times the sample movb

instruction must be decoded to infer structure from 192 (nearly

the number of bits squared) to 36 decodings.

2) Mutating Instructions: Once each bit of the input in-

struction has been labelled, we use these labels in a mutation

process that generates new input instructions through four

different types of modifications of the original instruction:

• Pairwise Structural Bit Flips: Each pair of structural

bits are flipped while all other bits are held constant.

Structural bits often correspond to opcode, addressing

mode or operand size, so changing a combination of these

bits should create inputs with new variations of those

characteristics.

• Single Structural Bit Flips: Each structural bit is flipped

individually while the other bits are held constant (this

process is equivalent to simply passing the single struc-

tural bit-flipped instructions from Section IV-A1 to the

filtering phase).

• Field Randomization: We choose a single random value

for each operand field. Special operand values (like all

zeros, all ones, or the same register used for source

and destination) often signify a distinct operation of

the instruction and may have a distinct decoding. By

choosing a random value for each field, we try to create

new inputs that do not contain special operand values.

• Setting Special Operand Values: We also set each operand

to all zeros and all ones because these values are com-

monly signify a special operation of an instruction. For

example, register operands with the value ”11111” in

ARMv8 can (but not always) signify the stack pointer.

By generating inputs with these common special values,

we try to test variations of instructions with special

operations based on their operands.

These mutations create new instructions that are likely to

differ in multiple fields and number of fields. While we are

not limited to two structural bit flips at once, we observed

a significantly reduced rate of new, valid instructions when

changing three or more structural bits. When mutating x86

instructions, which can vary in length, the newly-created

instructions may be longer than the input instruction, up to

the x86 maximum size of 15 bytes.

3) Filtering For New Inputs: While mutating the input

instruction creates new inputs to test, it can also create

instructions that are redundant with other inputs. For example,

the first output from mutating movb 0xdf, %ah is je 0xe1.

When the je instruction is mutated, it will recreate the original

movb instruction, which would again be tested and mutated. To

ensure that we do not loop through the same instructions, we

create a format string for each instruction we test. This string

is a modified version of the assembly language representation,

where the immediate operands are replaced with a generic
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symbol and the register operands are replaced with a generic

name indicating to which register set they belong. Instructions

are only tested and used to generate new input if no other

instruction with the same format string has already been tested.

This process requires information about the register sets of an

ISA, but this is a small subset of the knowledge required by

other methods. Figure 5 shows the format string for the movb

instruction previously discussed.

Original: movb 0xdf,%ah

Format Str: movb IMM, %reg1

Fig. 5. The format string of a movb instruction.

We place one final restriction on new test inputs: they cannot

have more than two optional bytes. Bytes are considered

optional if they can be removed from the instruction while

removing a subset of fields in the instruction, but without

altering any remaining fields of the instruction. In practice, the

only bytes with this characteristic are the x86 legacy prefixes

and unused REX prefixes. Consider an x86 instruction (the

movb from previous examples) with three optional bytes, each

of which is a prefix:

(data16 addr32 data16) movb 0xdf, %ah

This instruction can have up to 13 prefix bytes, each of

which can have 11 different values (repetition of some prefixes

is allowed). Using only permutations of the prefixes, we

could create more than 30 trillion versions of this instruction,

making exhaustive testing prohibitive. To limit the number of

instructions that differ only by permutations of optional bytes,

we filter out inputs with three or more optional bytes. Complex

x86 prefixes that affect the opcode or operands like the REX,

VEX and EVEX prefixes are not counted toward optional bytes

because removing them alters other fields of the instruction.

While it may seem reasonable to save the generated inputs

in the form of a model that can be used in future testing,

the resulting model will depend on the versions of the tested

decoders. If a decoder is updated to support new instructions or

remove incorrect decodings, the old model may not correctly

capture these changes. As a result, we chose to re-run input

generation each time we test decoders, requiring only a few

minutes for most ISAs. For 64-bit x86, this means testing

about 8 hours. We feel that this is an acceptable cost for a

thorough test. Of course, users can re-test specific instructions

by running the decoders on a binary with only those instruc-

tions.

B. Output Verification

Our approach to output verification uses differential testing

combined with reassembly to avoid the error-prone process

of decoding instructions by hand and referencing the ISA

manuals. When verifying the output of decoders, we use the

assembly language representation because it is a common

form of output available from all the instruction decoders

that we tested (and because the assembly language decoding

can be verified using an assembler). Our approach first uses

each decoder to decode an instruction (Section IV-B1), and

then attempts to reassemble the resulting assembly language

representations of the instruction to compare representations

(Section IV-B2). We produce an error report when it appears

that one or more decoders produced incorrect assembly lan-

guage for the input bytes (Section IV-B3).

1) Differential Decoding: We begin output verification with

differential decoding: each instruction is decoded with all

decoders, and the results are normalized and compared. Our

rationale for decoding each instruction with all decoders is

that if all decoders produce the same output, it is likely to

be correct, so no further testing of this input is needed. We

differ from Paleari et. al [17], who require 75% of decoders

to be correct. We require that all decodings match to be

considered correct, as we have found cases where only one

decoder produces a correct decoding.

Ideally, there is one assembly language representation of

each instruction, so a simple string comparison could identify

errors. Unfortunately, the decoder output can differ in minor

ways, like different register name formats, and complex ways,

like aliases of an opcode with a different number of operands.

We address these differences by applying normalization rules.

When the assembly language from different decoders are

almost identical, except for spacing or minor formatting,

normalization can produce the same output from each de-

coder, obviating the need for reassembly. In cases where

there are significant differences in decoder output, we use

normalization to ensure that the assembly language produced

by each decoder conforms to the input expected by the

assembler. (Decoders frequently produce assembly language

that cannot be reassembled.) Figure 6 shows a case where an

ARM instruction produced different decodings with different

decoders.

In this case, there are a few trivial differences, like spac-

ing between operand and register name capitalization, but

the outputs of the decoders differ in other, more significant

ways including opcode, operands and even validity. While

differences in decoding often indicate an error in at least one

decoder, this may not always be the case. Reassembly of the

instruction provides a tool to make this determination.

2) Reassembly: Consider the output of LLVM and libop-

codes in Figure 6. While the opcodes appear to differ, the mov

opcode is actually an alias of ins. Explicitly programming all

such aliases as normalization rules would require substantial

expert knowledge of the ISA being tested, and may introduce

errors in the testing process. By using an assembler that

accepts different assembly language representations of an

instruction, we can determine whether two different assembly

language strings encode the same instruction.

If the output of a decoder assembles to the input bytes,

we believe that the decoding is correct. For all other cases,

we record whether the assembler produced an error and what

bytes were produced by assembling the instruction. We use this

information during error reporting to determine which decoder

outputs appear to be incorrect.

3) Error Reporting: Once we have discovered that the out-

put of instruction decoders differs, and the difference cannot
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Decoder Output Normalized Reassembled

libopcodes mov v0.d[0], v7.d[1] mov v0.d[0], v7.d[1] 0x630844e0

Capstone invalid invalid N/A

Dyninst ins Q0, Q7 ins q0, q7 Error

LLVM ins v0.d[0], v7.d[1] ins v0.d[0], v7.d[1] 0x630844e0

Fig. 6. A single ARM instruction decoded by each decoder.

be resolved through reassembly, we suspect that the difference

indicates an error in one or more of the decoders. We define

three ways that our testing procedure can identify errors in

decoders:

Output of decoder results in an error when reassembled:

These errors often signify that the input instruction is invalid

or that an instruction is not supported by the assembler. These

errors are always reported.

Decoder reports ”invalid”: If a decoder reports an input to

be invalid, and the other decoders report the same input to

be valid, we check the reassembly of the valid decodings. If

any valid decodings can be reassembled without error, then

we report the invalid decoding as an error.

Output of decoder does not reassemble to the same input

bytes: This often indicates that the decoder has produced a

valid but incorrect decoding for the input bytes. However,

not all reassembly differences are the result of errors. Some

differences occur when the assembler produces an equivalent

instruction encoded by different bytes. We detect this case

by comparing the reassembled bytes of all valid decodings.

If all valid decodings reassemble to the same bytes, then the

decodings are equivalent and not reported as errors.

For each decoder with an error, we produce a report that

contains the input bytes, the output of every decoder, and any

error messages produced by the assembler. We organize these

reports into files based on the reassembly error. For example,

all x86 decodings that produced the error ”expecting lockable

instruction after lock prefix” are placed in the same file.

This grouping simplifies the task of condensing many similar

reports. Ideally, we would like to automatically condense these

reports for the developers of each decoder. Unfortunately, the

process of determining which errors are the result of the same

underlying issue in a decoder is challenging and requires a

reference manual and significant expert knowledge of the ISA.

V. EVALUATION

We implemented our testing procedure in a tool named

Fleece and used it to evaluate popular instruction decoders for

three architectures: x86-64, ARMv8.0 and PowerPC version

3.0. We tested libopcodes (2.26), LLVM (3.9), Dyninst (9.2)

and Capstone (3.0.4) for all three architectures, and Intel XED

(6.26) for only x86-64. We also compared the efficiency of

Fleece with random input generation for each of the architec-

tures, and demonstrated that Fleece produces instructions with

a substantially greater variety of formats.

A. Decoder Evaluation

For each ISA, we configured our tool to use the GNU

assembler (version 2.26) and began our testing procedure with

ten seed byte sequences (enough to frequently have at least

one valid instruction in our input). We allowed the testing

procedure to run until it exhausted the list of inputs that it

could discover using our mutation process. Table II provides

data summarizing the testing of each ISA.

TABLE II
TESTING RESULTS FROM APPLYING FLEECE TO SEVERAL DECODERS. X86

TESTING GENERATED ABOUT 100X AS MANY INPUTS AS ARM AND

POWERPC TESTING.

Arch Inputs Differences Time (mins:secs)

x86 482,711 480,034 508:00
ARM 6,051 4,337 3:09
PowerPC 3,629 3,067 1:02

To our initial surprise, the vast majority of inputs resulted

in differences. However, because we independently vary fields

of an instruction, an error in the decoding of a single type of

operand or addressing mode will result in many differences.

As a concrete example, few x86 instructions are valid with

a lock prefix, but our testing procedure tests many different

opcodes and addressing modes with a lock prefix, resulting in

more than 120,000 test cases with lock prefixes, most of which

result in differences because only libopcodes decoded them

as valid. Similar issues with x86 prefixes exist for multiple

decoders, resulting in almost every test case differing among

the five decoders.

We handle this large number of differences in two ways.

First, as mentioned in Section IV, output is placed into files

based on any assembler errors produced, so all 128,331 test

cases with lock instructions that were decoded incorrectly

by libopcodes are in the same file whose name includes

”expecting lockable instruction”. Second, we use shell scripts

that search for a certain feature, like an instruction pointer

dereference ((%eip) or (%rip) in x86), and we compare

the correct outputs to any incorrect outputs. If they differ

by which instruction pointer was used, then we know this

decoding error contributed to the report. If the decodings are

different, but neither produced an assembler error, then we

refer to the ISA manual to determine which decoder is correct.

We check several such decodings before using a shell script

to automatically categorize the rest. For example, LLVM and

Capstone correctly decoded all instruction pointer dereferences

(their outputs reassemble to the input bytes without error), but

Dyninst, libopcodes and XED did not. To identify all errors

of this type, we use a single shell script that selects all reports

involving instruction pointer dereferences and outputs those

where a decoder deviates from the known-correct decoders.

While many of the differences that we report are the result

of an error in at least one decoder, other differences are the re-

sult of different ISA support. For example, libopcodes version
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TABLE I
EXAMPLES OF ERRORS FOUND FOR EACH DECODER AND EACH ARCHITECTURE.

Decoder Input Output Correct

x86-64 XED & LLVM 67 00 05 00 00 00 00 addb %al, (%rip) addb %al, (%eip)

libopcodes c4 02 51 90 51 19 vpgatherdd %xmm5, vpgatherdd %xmm5,

51 19 0x19(%r9), %xmm10 0x19(%r8, %xmm8, 1), %xmm10

Dyninst de 6c 50 6e fisubr 0x6e(%rsp) fisubr 0x6e(%rax, %rdx, 2)

Capstone 66 3e 97 xchgl %di, %eax xchg %ax, %di

ARMv8 libopcodes e8 13 5a 2a mov w8, w26 orr w8, wzr, w26, lsr #4

LLVM f8 e3 4f 08 invalid ldaxrb w24, [sp]

Dyninst a9 1c 20 6e eor q9, q5, q0 eor v9.16b, v5.16b, v0.16b

Capstone 6a 2d 1e 6e invalid mov v10.h[7], v11.h[2]

PowerPC libopcodes: 7c 00 12 6e lhzux r0, 0, r2 invalid

LLVM 41 80 80 00 bt 0, .+32768 bt 0, .-32768

Dyninst 43 77 dc 23 bdzla- 0xffffdc20 bcla+ 26, 4*cr5+so, 0xffffdc20

Capstone 43 77 dc 23 bdzla+ 0xffffdc20 bcla+ 26, 4*cr5+so, 0xffffdc20

2.26 supports ARMv8.1, so it decoded 727 instructions that

are only valid in ARMv8.1, while the other decoders viewed

these as invalid inputs. In our x86 testing, there were also

129 differences in x86 output due to imperfect normalization.

Most (79) of these instructions are variants of mov for which

the correct representation is not always clear because the as-

sembler error is generic (”unsupported instruction ’mov’”) and

the assembler will not accept instruction suffixes in some cases

while requiring suffixes in other cases of the same opcode.

The difference in syntax requirements of the assembler could

not be resolved even when considering opcode and addressing

mode together. Normalization rules intended to address this

issue reached too far and altered correct output, so they were

removed. In all other outputs, there was at least one incorrect

decoder or difference in support for an assembly feature.

Table III shows the number of real errors reported for each

decoder and architecture.

TABLE III
NUMBER OF ERRORS REPORTED FOR EACH TOOL. X86 DECODERS HAD

FAR MORE ERRORS ON AVERAGE THAN OTHER DECODERS, WHILE ARM
DECODERS TENDED TO HAVE THE FEWEST ERRORS.

Arch XED libopcodes LLVM Dyninst Capstone

x86 3 13 8 18 12
ARM n/a 2 1 7 3
PowerPC n/a 7 4 6 7

The most common type of error discovered was invalid

instructions being decoded as valid. Decoders also had errors

decoding control flow targets and memory access locations.

x86-64 Summary: We found the most errors in x86 decoders,

the majority of which (44 of the 54 issues) involved instruc-

tions with at least one prefix. This finding agrees with the

work of Paleari et. al, who also observed that x86 instructions

with prefixes were frequently decoded differently by a variety

of decoders [17]. While decoders agreed on many general-

purpose instructions, instructions from recent extensions were

often decoded incorrectly by at least one decoder, particularly

when prepended with a legacy prefix. Table I gives an example

error reported for each of the decoders. In the example given

for XED and LLVM, the first byte, 67 specifies that a 32-bit

address should be used to determine the memory operand.

Both XED and LLVM ignore this byte when the register

specified is the instruction pointer (%rip). The examples given

for both libopcodes and Dyninst show cases where an address

is computed using the wrong addressing mode and registers.

Given the bytes 66 3e 97, Capstone produces an incorrect

xchg instruction whose operands are different sizes (%di is a

16-bit register while %eax is 32 bits) because it incorrectly

applies the data16 prefix (0x66) to only one of the two

operands. Although operand order is swapped by Capstone,

this has no effect for xchg instructions.

Decoders can also terminate unexpectedly due to invalid

inputs. LLVM will terminate with an ”unreachable” message

when used to decode an EVEX instruction with opcode byte

0xc2, and libopcodes will terminate unexpectedly for some

EVEX instructions with opcode byte 0x02.

ARM Summary: ARMv8 decoders had the fewest errors, but

each decoder had at least one. LLVM was the most reliable

decoder, which is not surprising, because it receives commits

from ARM employees and is recommended as the authoritative

ARM decoder. The most common error in ARM decoding is

the example provided for LLVM in Table I, a load instruction

used for transaction-based computation. LLVM decodes this

instruction as invalid because unused operands have values

other than the typical compiler-generated values (all 1s) for

this instruction. In the error shown for libopcodes, the decoder

produced an incorrect alias. While the correct orr instruction

includes a shift of 4 bits, the mov instruction given by

libopcodes incorrectly omits this shift. The Dyninst error is a

decoding in which registers of the wrong type (general purpose

instead of vector) are produced by the decoder. The incorrect

Capstone output shows a case where the decoder fails to

recognize a valid instruction (this instruction was supposedly

supported by the decoder). Compared to the errors identified in

x86-64 decoders, the errors we discovered in ARM decoders

are more related to aliasing and correctly identifying valid

instructions and less related to operands and addressing modes,

likely because ARM instructions have distinct forms of each

opcode that describe the types of operands used, while x86-64

instructions have a variety of different operands and operand-

modifying prefixes that can be used for any given opcode.

PowerPC Summary: For each decoder, PowerPC had fewer

errors than x86-64, and for all but Dyninst, they had more

errors than ARM. The majority of these errors are cases where

an invalid instruction is decoded as valid. Table I shows an

example of a difference found for each decoder. libopcodes
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TABLE IV
COMPARISON OF TESTING RESULTS USING RANDOM INPUTS AND

FLEECE-GENERATED INPUTS. RANDOM TESTING WAS RUN FOR AS LONG

AS FLEECE FOR X86, AND 10 MINUTES FOR ARM AND PPC. FOR EACH

ARCHITECTURE, FLEECE DISCOVERS MORE UNIQUE DIFFERENCES IN

LESS TIME.

Fleece Random

Arch. Inputs Unique Time Inputs Unique Time
Diffs. (mins:secs) Diffs. (mins:secs)

x86 482,711 480,034 508:42 2,679,254 9,494 508:00
ARM 6,051 4,337 3:09 1,706,422 600 10:00
PPC 3,629 3,067 1:02 64,360 1,100 10:00

decodes an invalid lhzux instruction as valid. This atomic

update lhzux instruction cannot use r0 as the first operand,

but the bits for this instruction encode r0, so it is invalid.

The example error given for LLVM shows a case where it

incorrectly decodes the offset of a branch instruction. Both

Capstone and Dyninst incorrectly decode branch instructions

for PowerPC. In the case shown in the table, Dyninst and

Capstone both give a version of the branch mnemonic with

fewer operands, but the alias is incorrect. The correct version

is a branch based on the overflow bit (so) of condition register

5 (cr5), as indicated by the second operand. The incorrect

version produced by Dyninst and Capstone implicitly branches

based on the less-than bit of cr0.

The decoding errors we discovered have implications for a

variety of higher-level analysis techniques that rely on accurate

decoding. Decoding errors make debugging more difficult, and

many of the errors also have implications for analysis tools.

Decodings with incorrect addressing information will produce

errors when tracing memory accesses for data flow. Incorrect

decodings of branch instructions, including conditions and

destinations can result in incorrect control flow analysis and

incomplete or incorrect code discovery as a result. Decoders

that fail to decode instructions that do not contain typical

compiler-generated instructions risk failure when given hand-

written executables, allowing malicious programmers to ob-

fuscate code and defeat higher-level tools.

B. Fleece Evaluation

Input generation is a critical part of our testing procedure,

but there are few good benchmarks against which we can

evaluate our input generation. While Paleari et al. [17] used

input generation that was more sophisticated than a purely

random approach, they chose most of their input bytes at

random. Additionally, their testing for x86 occurred before the

introduction of complex EVEX prefixes, so we compare Fleece

to a random approach given the same, or greater period of

testing time. To evaluate the usefulness of Fleece, we compare

the number of unique differences found (meaning no duplicate

prefix-opcode-operand type instructions).

Table IV gives an overview of the inputs generated and

differences discovered by testing random input compared to

testing Fleece-generated input.

Random testing requires very little time to generate inputs,

so the primary bottleneck for this approach was reassembly.

For ARM random testing, most decodings were exact string

matches, which do not require reassembly, allowing random

inputs to be tested more quickly. Despite this speed, ARM

testing still tested instructions with about 1/10th of the format

string variety discovered by Fleece. While the random ap-

proach discovered a greater total number of differences, most

of these differences are redundant, covering instructions with

similar opcodes, addressing modes and register sizes.

Fleece discovered unique differences much more quickly

because it varied instruction features using inferred structure,

only testing instructions with new structure. For example, a

single x86-64 instruction with a data16 and EVEX prefix

will be produced at a rate of about one in 65,000 at random

(because it must contain 67 and 62 as prefixes), yet one in five

of the Fleece-generated input contained these prefixes because

they produce instructions with unique opcode-addressing mode

combinations. For both ARM and PowerPC, the difference be-

tween Fleece and the random input generation is less dramatic,

yet it persists because instructions with 15 bits devoted to the

opcode or reserved are still fairly rare in random inputs (1 in

32768), but are frequently generated by Fleece.

For all architectures, Fleece was able to use inferred in-

struction structure to generate inputs with a variety of features

much more efficiently than a random approach.

VI. CONCLUSION

Binary decoders play a critical role in analyzing executable

files, a task fundamental to numerous applications in pro-

gram performance, security analysis and debugging. Decoders

provide instruction-set-specific knowledge that allows higher

levels of analysis to work with abstractions about control-

and data-flow. Unfortunately, the ISA-specific knowledge con-

tained in decoders can be inaccurate, leading to inaccurate

conclusions from higher level analyses. We designed and

implemented a method of input generation, differential testing,

and reassembly that can be used with very little ISA-specific

knowledge to discover decoding errors. We demonstrated the

effectiveness of our method by testing a variety of instruction

decoders for a variety of architectures and reporting errors

for each. In addition, we showed that our testing procedure

can use inferred structural information to substantially im-

prove the variety of instruction formats tested during ran-

dom testing. The code used in this paper can be found at:

https://github.com/dyninst/tools.
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