
A Lightweight Library for Building Scalable
Tools

Emily R. Jacobson, Michael J. Brim, and Barton P. Miller

Computer Sciences Department, University of Wisconsin
Madison, Wisconsin, USA

{jacobson,mjbrim,bart}@cs.wisc.edu

Abstract. MRNet is a software-based multicast reduction network for
building scalable tools. Tools face communication and computation issues
when used on large systems; MRNet alleviates these issues by provid-
ing multicast communication and data aggregation functionalities. Until
now, the MRNet API has been entirely in C++. We present a new,
lightweight library that provides a C interface for MRNet back-ends,
making MRNet accessible to a wide range of new tools. Further, this li-
brary is single threaded to accommodate even more platforms and tools
where this is a limitation.This new library provides the same abstrac-
tions as the C++ library, using an API that can be derived by applying
a standard translation template to the C++ API.

Keywords: scalability, tree-based overlay networks, tools.

1 Introduction

As high performance computers reach processor counts in the hundreds of thou-
sands, or even millions of cores, runtime tools are needed to support the per-
formance profiling and debugging of applications running on these computers.
Unfortunately, tools that previously worked at smaller scales do not work effec-
tively on the larger systems. To this end, we have developed a tree-based overlay
network infrastructure, called MRNet, for building tools that can scale to the
largest of computing platforms. MRNet makes operations such as command and
control, and data collection and reduction, efficient at large scale.

Runtime tools are often organized around two main activities: data collection,
with data originating from the tool daemons or back-ends and traveling to the
front-end, and application process control, initiated by a tool’s user interface or
front-end and directed to the back-end. These are the two areas in which tools
pay most costs: computation and communication. Computation is in the form
of data collection, aggregation, and analysis, and communication arises from the
transfer of data between tool components. Tools have typically been designed
with the front-end talking directly to the back-ends, causing the front-end to
become a bottleneck for both communication and computation.

MRNet is designed to address many of these issues by providing broadcast
and aggregation functionality [7,8]. MRNet uses a tree-based overlay network

2 A Lightweight Library for Building Scalable Tools

User Interface

Analysis and Control

. . .

. . .

Back-End1

Process1

Back-End0

Process0

Back-EndN−1

ProcessN−1

(a)

User Interface

Analysis and Control

Processes
Internal
MRNet

. . .

. . .

Back-End1

Process1

Back-End0

Process0

Back-EndN−1

ProcessN−1

(b)

Fig. 1. The components of a typical parallel tool (a) and an MRNet-based tool (b).
Shaded boxes show potential machine boundaries.

(TBON) of communication processes between the tool front-end and the tool
back-ends, as shown in Figure 1. MRNet leverages this structure to distribute
computation among internal processes and to support scalable multicast opera-
tions. Data can be filtered as it is passed up the tree; such filtering might do data
transformation or might simply aggregate packets to be passed to the front-end.
Data is transferred between nodes using an efficient, packed binary represen-
tation, which provides high-bandwidth communication. Further, the user may
designate multiple concurrent data channels, allowing for a variety of types of
data processing and aggregation to happen simultaneously. Together, these fea-
tures all work to mitigate the high costs of communication and computation
on large-scale systems. MRNet has been demonstrated on tools running on the
largest of existing computing platforms [2,4].

MRNet has two components: libmrnet, a library API that is linked into a
tool’s front-end and back-end components, and mrnet commnode, the program
that runs on intermediate nodes that forms the communication processes of the
tree-based network interposed between the front-end and back-ends.

A Lightweight Library for Building Scalable Tools 3

The standard MRNet library used in the front- and back-ends [7] provides
a C++ interface. While C++ offers many attractive software engineering fea-
tures, MRNet previously was incompatible with tools written in C. In practice,
few parallel applications are written using C++ and not all high-performance
computing systems support general-purpose threading. In this paper, we intro-
duce a lightweight back-end library with a pure C interface. The lightweight
library is intended for use only within MRNet back-ends and offers a subset of
the functionality normally provided by the C++ library to back-ends.

There are two classes of tools for which we anticipate this being useful. The
first class is tools written in C; these tools need a C interface with which to
interact. The second class are tools that interact with applications written in
C, where such a tool might instrument the application with MRNet API calls
in order to extract information; the language of the application limits the API
that may be used for such purposes. The new library makes MRNet available to
many tools that were previously unable to use it. In addition, this lightweight
library is single threaded, to accommodate even more platforms and tools where
this is a limitation. This lightweight MRNet provides the same abstractions as
the C++ library; only the API is different. In most cases, however, there is a
direct translation between the C++ API call and the new C version.

We use the term “lightweight” to reflect that new library is less cumbersome
to integrate into existing tools as it does not require tool back-ends to use C++.
For many tools, a C-based library interface is much easier to develop against,
as C binding layers exist for many programming languages. As an example of
tools that benefit from MRNet’s new lightweight back-end library, consider two
MPI application profiling tools, TAU and the CEPBA Tools. The TAU Perfor-
mance System from the University of Oregon ([5],[9]) uses MRNet to aggregate
performance data from parallel processes. TAU inserts a tracing library into the
application and instruments the application with trace routines that use MR-
Net to send collected performance data for processing. A similar approach for
MPI profiling is used by the CEPBA-Tools from the Barcelona Supercomputing
Center([3]). Although it was previously possible to use standard MRNet in these
tracing libraries, it required them to be redeveloped in C++. This introduces a
dependency on the libstdc++ library that many tool and parallel application
developers feel is too heavyweight in terms of code size. The new lightweight
library makes it much easier to use MRNet in tools for profiling C-based MPI
applications with minimal overhead.

The remainder of this paper is organized as follows. In Section 2, we present
the basic abstractions of MRNet and describe how these are expressed in the
new C-based library. In Section 3, we describe our interface, and in Section 4,
we provide an example of a tool that can leverage this new library.

2 Abstractions

The MRNet library, libmrnet, allows a tool to use an overlay network of inter-
nal processes as a communication and data aggregation substrate between the

4 A Lightweight Library for Building Scalable Tools

tool’s front-end and back-end processes. MRNet uses a variety of abstractions to
support these functions. An MRNet end-point represents a tool or application
process. In particular, a back-end is a leaf node in the TBON. The front-end can
communicate in a multicast fashion with one or more of these endpoints. MRNet
uses communicators to represent groups of network end-points. Communicators
are created and managed by the front-end; currently communication is allowed
only between a tool’s front-end and its back-ends.

MRNet uses logical channels called streams to connect the front-end to the
end-points of a particular communicator. Streams can carry data packets down-
stream, from the front-end to back-ends, and upstream, from back-ends toward
the front-end. Packets are sets of data elements, where types are specified using
a format string similar to that used by C formatted I/O primitive printf. For
example, a packet whose data is described by the format ”%d %f %s” contains
an integer, float, and character string.

Data aggregation, the process of transforming input data packets into one
or more output packets, is a vital component of MRNet. MRNet uses filters to
aggregate data packets. When a stream is created, a filter is bound to the stream
that defines the aggregation operation to be performed and also the expected
packet data format that will be sent on the stream. MRNet supports two types
of filters: synchronization filters and transformation filters. Synchronization fil-
ters provide a mechanism to deal with asynchronous arrival of packets from
child nodes; these filters do no data transformation and operate on packets in a
type-independent fashion. MRNet supports three synchronization modes: Wait
For All, Time Out, and Do Not Wait. In contrast, transformation filters com-
bine data from multiple packets by performing an aggregation that yields one
or more new packets. Several general-use transformation filters are provided, in-
cluding basic scalar operations like min, max, sum, average, and concatenation
operations. Additionally, MRNet allows tool developers to use custom filters.
The developer simply writes one or more filter functions, compiles them into a
shared library, and loads the filter library in the network. Filters use a standard
function signature and can perform arbitrary computations.

The internal processes of the MRNet TBON provide the core functionalities,
including the logical channels for control messages and data. Further, these pro-
cesses perform the data aggregation or reduction operations. When a stream is
established, an internal process creates a new stream manager and initializes it
with a set of end-points to be associated with the stream and the filter(s) to
be used on the data packets sent on the stream. Upstream data buffers must
be unbatched, demultiplexed, processed, and then rebatched; downstream data
is similar, though the data packets may be placed in multiple output buffers
because the packet may be destined for multiple back-ends.

Although the new lightweight library provides the same abstractions as the
C++ library, there are a few cases in which an abstraction is not applicable in the
new library. Communicators are not present in the lightweight library because
they are a handle necessary only for the front-end. Standard MRNet allows for
both blocking and non-blocking receive operations; because the C-based API is

A Lightweight Library for Building Scalable Tools 5

not multi-threaded, only blocking receive is supported. Additionally, there are
slight differences in how filters are used. In standard MRNet, filtering is done
at every level of the tree, including at the back-end nodes. However, because
filtering at the C-based back-end nodes adds an additional level of complexity,
we have chosen initially to not filter at the back-ends.

3 Interface

To support the above abstractions, the MRNet API contains Network,
NetworkTopology, Communicator, Stream, and Packet classes. The Network
class is used to instantiate the TBON and access end-point objects representing
tool back-ends. The NetworkTopology class provides an interface for discovering
topology details of the instantiated Network. The Communicator class is used to
represent a group of end-points when creating a Stream for unicast, multicast,
or broadcast communication. The Packet class encapsulates the data packets
that are sent on a Stream.

C++: C:

return_type return_type

class:function_name (class_function_name (

param1_type param1, class class_object,

...); param1_type param1,

...);

Fig. 2. API Translation Template

C++: C:

int int

Stream::send (Stream_send (

int tag, Stream_t * stream,

char * fmt_string, int tag,

...); char * fmt_string,

...);

Fig. 3. API Translation Example

The lightweight library provides similar functionality for lightweight back-
ends, so its public API is comparable to the standard MRNet API. Lightweight
API classes are directly translated from the standard API. The translation
scheme is shown in Figure 2 and an actual example from the Stream class is

6 A Lightweight Library for Building Scalable Tools

provided in Figure 3. In practice, creating a tool that uses the lightweight li-
brary will require familiarity with both the C++ and C APIs. However, because
they are so similar, this should not be difficult.

Creating the MRNet overlay network is complicated by interactions with
various job management systems. In the simplest environments, MRNet launches
jobs using facilities like rsh or ssh. However, in more complex environments it is
necessary to submit requests to a job management system. In this case, we are
constrained by the operations provided by the job manager. To allow for these
models, we currently support two modes of instantiating MRNet-based tools.

In the first mode of process instantiation, MRNet creates the internal and
back-end processes, using the specified MRNet topology configuration to deter-
mine the hosts on which components should be located.

In the second mode, MRNet relies on a process management system to cre-
ate some or all of the MRNet processes [1]. This mode accommodates tools that
require their back-ends to create, monitor, and control parallel application pro-
cesses. MRNet creates its internal processes as in the first instantiation mode,
but does not instantiate any back-end processes. When the back-ends are started
by the process management system, MRNet provides the information necessary
to connect the back-ends to the MRNet internal process tree. This information
includes the leaf processes’ host names and connection port numbers. A tool
front-end can extract this information and provide it to the back-ends via the
environment, using shared file systems or other information services available
on the target system. The new lightweight library supports both methods of in-
stantiation. Additionally, examples of both methods of instantiation are provided
with the MRNet source code.

4 Example Tool

MRNet can be used in a wide variety of tools and application. Here, we provide
a simple example to demonstrate a few key concepts. At a high level, the tool
front-end sends an integer value and a number of iterations to each back-end.
During each iteration, or “wave,” the back-end sends the integer multiplied by
the wave number back up the tree. The values are aggregated using a summation
filter and passed to the front-end as a single value, which should be equal to
num backends × val × wave number.

Figure 4 provides code for a custom filter used in this example. For each
packet being aggregated, a value is extracted and added to the current sum
(lines 10-13). Then, a new packet containing this summation is created (lines 16-
18) and added to the outgoing packets (line 19).

Code for the tool front-end is shown in Figure 5. After several variable def-
initions in lines 2-7, an instance of the MRNet Network is created on line 10,
using the topology specified in topology file. The Network then loads a fil-
ter, queries for the auto-generated broadcast communicator that contains all
available end-points, and then establishes a stream that will use this filter. The
front-end broadcasts two integers, a value and then number of iterations to com-

A Lightweight Library for Building Scalable Tools 7

1. extern "C" {

2. void Integer_Add(std::vector<PacketPtr> & packets_in,

3. std::vector<PacketPtr> & packets_out,

4. std::vector<PacketPtr> & packets_out_reverse,

5. void ** /* filter state */

6. TopologyLocalInfo & /* topology information */)

7. {

8. int sum = 0, val;

9.

10. for (unsigned int i = 0; i < packets_in.size(); i++) {

11. PacketPtr cur_packet = packets_in[i];

12. cur_packet->unpack("%d", &val);

13. sum += val;

14. }

15.

16. PacketPtr new_packet (new Packet(packets_in[0]->get_StreamId(),

17. packets_in[0]->getTag(),

18. "%d", sum));

19. packets_out.push_back(new_packet);

20. }

21. } /* extern "C" */

Fig. 4. MRNet filter example code

plete, on the new stream (line 27). For each iteration, the front-end performs
a blocking receive (line 32); it unpacks a single integer and checks the value
(lines 33-34). Finally, the front-end sends a message to the rest of the TBON to
shut down the network, and then deletes the network itself (lines 38-39).

Figures 6 and 7 provides code for the back-ends that reciprocate the actions
of the front-end. We provide code both for a standard back-end and a lightweight
back-end. It is easy to observe that the code is nearly identical. Each tool back-
end first connects to the MRNet network in line 8, using a Network constructor
that receives its arguments using the program argument vector. While the front-
end makes a stream-specific receive call, the back-end uses a stream-anonymous
network receive that returns the tag sent by the front-end, the Packet with
actual data, and a Stream object representing stream that the front-end has
established (line 12). In both cases, this receive operation is a blocking receive;
for the C++ version, this is the default mode, and for C this is the only mode
supported. For each iteration, the back-end sends an integer value upstream
towards the front-end (line 20).

While this example shows many of the basic concepts of MRNet, including
Network and Stream creation, Filter loading, and Stream send and receive,
these basic ideas allow for many other functionalities. The MRNet API Guide
provides a thorough explanation of these core abstractions and their possible
uses[6].

8 A Lightweight Library for Building Scalable Tools

1.void front_end_main(int argc, char ** argv) {

2. int send_val=32, recv_val=0;

3. int tag, retval, filter_id, num_backends, num_iters;

4. Network * net;

5. Communicator * comm;

6. Stream * stream;

7. PacketPtr pkt;

8.

9. // Create a new instance of a network

10. net = Network::CreateNetworkFE(topology_file,

11. backend_exe, &dummy_argv);

12. filter_id =

13. net->load_FilterFunc(so_file, "Integer_Add");

14.

15. // A Broadcast communication contains all the backends

16. comm = net->get_BroadcastCommunicator();

17.

18. // Create a stream that will use the Integer_Add filter

19. stream = net->new_Stream(comm, filter_id,

20. SFILTER_WAITFORALL);

21. num_backends = comm->get_EndPoints().size();

22.

23. // Broadcast a control message to back-ends to send us "num_iters"

24. // waves of integers

25. tag = PROT_SUM;

26. num_iters = 5;

27. stream->send(tag, "%d %d", send_val, num_iters);

28.

29. // We expect "num_iters" aggregated respnoses from all back-ends

30. for (unsigned int i = 0; i < num_iters; i++) {

31. // Receive and unpack packet containing single int

32. retval = stream->recv(&tag, pkt);

33. pkt->unpack("%d", &recv_val);

34. assert(recv_val == send_val*i*num_backends);

35. }

36.

37. // Tell the back-ends to exit; cleanup the network

38. stream->send(PROT_EXIT, "");

39. delete stream;

40. delete net;

41.}

Fig. 5. MRNet front-end sample code

A Lightweight Library for Building Scalable Tools 9

1.void back_end_main(int argc, char ** argv) {

2. Stream * stream;

3. PacketPtr pkt;

4. int tag = 0, retval = 0, num_iters = 0;

5.

6. // Create a new instance of a network

7. Network * net = Network::CreateNetworkBE(argc, argv);

8.

9. do {

10. // Anonymous stream receive

11. net->recv(&tag, pkt, &stream);

12. switch(tag) {

13. case PROT_SUM:

14. // Unpack packet with two integers

15. pkt->unpack("%d %d", &recv_val, &num_iters);

16.

17. // Send num_iters waves of integers

18. for (unsigned int i = 0; i < num_iters; i++) {

19. stream->send(tag, "%d", recv_val*i);

20. }

21. break;

22. case PROT_EXIT: break;

23. }

24. } while (tag != PROT_EXIT)

25.

26. // Wait for stream to shut down before deleting

27. while(!stream->is_Closed()) sleep(1);

28. delete stream;

29.

30. // Wait for the front-end to shut down the network, then delete

31. net->waitfor_ShutDown();

32. delete net;

33.}

Fig. 6. MRNet standard back-end sample code

10 A Lightweight Library for Building Scalable Tools

1.void back_end_main(int argc, char ** argv) {

2. Stream_t * stream;

3. Packet_t * pkt = (Packet_t*)malloc(sizeof(Packet_t));

4. int tag = 0, retval = 0, num_iters = 0;

5.

6. // Create a new instance of a network

7. Network_t * net = Network_CreateNetworkBE(argc, argv);

8.

9. do {

10. // Anonymous stream receive

11. Network_recv(net, &tag, pkt, &stream);

12. switch(tag) {

13. case PROT_SUM:

14. // Unpack packet with two integers

15. Packet_unpack(pkt, "%d %d", &recv_val, &num_iters);

16.

17. // Send num_iters waves of integers

18. for (unsigned int i = 0; i < num_iters; i++) {

19. Stream_send(stream, tag, "%d", recv_val*i);

20. }

21. break;

22. case PROT_EXIT: break;

23. }

24. } while (tag != PROT_EXIT)

25.

26. // Wait for stream to shut down before deleting

27. while (!Stream_is_Closed(stream)) sleep(1);

28. delete_Stream_t(stream);

29.

30. free(pkt); // Cleanup malloc’d variables

31.

32. // Wait for the front-end to shut down the network, then delete

33. Network_waitfor_ShutDown(net);

34. delete_Network_t(net);

35.}

Fig. 7. MRNet lightweight back-end sample code

5 Conclusions

MRNet is a customizable, software-based multicast reduction network for scal-
able performance and system tools. MRNet reduces the cost of tool activities by
leveraging a tree-based overlay network of processes between the tool’s front-end
and back-ends. MRNet uses this overlay network to distribute communication
and computation, reducing analysis time and keeping tool front-end loads man-
ageable. Previously, MRNet had only a C++ interface. We have presented a new
lightweight library for MRNet back-ends that is single-threaded and in C. This

A Lightweight Library for Building Scalable Tools 11

addition makes MRNet accessible to a wide variety of tools that previously were
unable to use MRNet.

6 Acknowledgements

This work is supported in part by Department of Energy grants DE-SC0004061,
08ER25842, DE-SC0003922, DE-SC0002153, DE-SC0002155, Lawrence Liver-
more National Lab grant B579934, and a grant from Cray Inc. through the
Defense Advanced Research Projects Agency under its Agreement No. HR0011-
07-9-0001. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views
of the Defense Advanced Research Projects Agency.

The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

References

1. D. H. Ahn, D. C. Arnold, B. R. de Supinki, G. Lee, B. P. Miller, and M. Schulz.
Overcoming Scalability Challenges for Tool Daemon Launching. In 37th Interna-
tional Conference on Parallel Processing (ICPP-08), pages 578–585, Portland, OR,
September 2008.

2. D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. Lee, B. P. Miller, and M. Schulz.
Stack Trace Analysis for Large Scale Debugging. In 2007 IEEE International Par-
allel and Distributed Procesing Symposium (IPDPS), pages 1–10, Long Beach, CA,
March 2007.

3. G. Llort and J. Gonzalez and H. Servat and J. Gimenez and J. Labarta. On-line
detection of large-scale parallel application’s structure. In 2010 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 1–10, Atlanta, GA,
April 2010.

4. G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. de Supinski, M. Legendre, B. P. Miller,
M. Schulz, and B. Liblit. Lessons Learned at 208K: Towards Debugging Millions of
Cores. In Supercomputing 2008 (SC2008), Austin, TX, November 2008.

5. A. Nataraj, A. D. Malony, A. Morris, D. C. Arnold, and B. P. Miller. TAUoverMR-
Net (ToM): A Framework for Scalable, Parallel Performance Monitoring using TAU
and MRNet. In International Workshop on Scalable Tools for High-End Computing
(STHEC 2008), Island of Kos, Greece, June 2008.

6. Paradyn Project. The Multicast/Reduction Network: A User’s Guide. University
of Wisconsin-Madison. http://www.paradyn.org/mrnet/release_3.0.

7. P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet: A Software-Based Multi-
cast/Reduction Network for Scalable Tools. In Supercomputing 2003 (SC2003),
Phoenix, AZ, November 2003.

8. P. C. Roth, D. C. Arnold, and B. P. Miller. Benchmarking the MRNet Distributed
Tool Infrastructure: Lessons Learned. In 2004 High-Performance Grid Computing
Workshop, held in conjunction with the 2004 International Parallel and Distributed
Procesing Symposium (IPDPS), Santa Fe, NM, April 2004.

9. S. Shende and A.D. Malony. The TAU Parallel Performance System. Interna-
tional Journal of High Performance Computing Applications, SAGE Publications,
20(2):287–331, 2006.

http://www.paradyn.org/mrnet/release_3.0

	A Lightweight Library for Building Scalable Tools
	Introduction
	Abstractions
	Interface
	Example Tool
	Conclusions
	Acknowledgements

