Mechanismsfor Mapping High-Level Parallel Performance Data

R. Bruce Irvin
rbi @nform x.com

Informix Software, Inc.
921 SW Washington St.

Barton P Miller
bart @s. w sc. edu

Computer Sciences Department
University of Wisconsin

Portland, OR97205 1210 W Dayton Street

Madison, WI 53706-1685

Abstract

A primary problem in the performance measurement of
high-level parallel programming languages is to map low-
level eventsto high-level programming constructs. We dis-
cuss several aspects of this problem and presents three
methods with which performance tools can map perfor-
mance data and provide accurate performance informa-
tion to programmers. In particular, we discuss static
mapping, dynamic mapping, and a new technique that
uses a data structure called the set of active sentences.
Because each of these methods requires cooperation
between compilers and performance tools, we describe the
nature and amount of cooperation required. The three
mapping methods are orthogonal; we describe how they
should be combined in a complete tool. Although we con-
centrate on mapping upward through layers of abstrac-
tion, our techniques are independent of mapping direction.

To identify performance characteristics that are com-
mon across programming models, wevdhaeveloped a
framavork within which we can discuss performance
characteristics of programs written in these programming
models. This frameork is called the Noun&fb (NV)
model for parallel program performancepknation. In
the NV modelhouns are ag program elements for which
performance measurements can be made,varis are
ary potential actions that might be &akby a noun or per-
formed on a noun.d¥ example, in CM Brtran[11] nouns
include programs, subroutines, FORALL loops, arrays,
and statements.evbs in CM Brtran include statement
execution, arrayassignment andreduction, subroutinesxe-
cution, and filel/O.

An instance of a program construct described by a
verb is called aentence. A sentence consists of arb, a
set of participating nouns, and a cost. The cost of a sen-
tence may be measured in terms of such resources as time,
memory or channel bandwidthPerformance information
consists of the agggated costs measured from theeu-
tion of a collection of sentences.

The collection of nouns anctkbs of a particular soft-
e or hardare layer defines &evel of abstraction.
Nouns and erbs from one leel of abstraction are related
to nouns and arbs from other leels of abstraction with
mappings. A mapping gpresses he high-level language
constructs are implemented bywidevel software and
hardware. Wth mappings, performance information col-
lected at arbitrary ieels of abstraction can be related to
language Ieel nouns anderbs.

. This work is supported in part by Wright Laboratoryidnics Director- To build mappings layers of abstraction, performance
ate, Air Force Material Command, USABEnder grant F33615-94-1-1525 tools must collect mapping information; such information
(ARPA order no. B550), and 089024618, and Department of Eggr can talke maty forms in real systems. Mgrcompilers emit
Grant DE-FG02-93ER25176. The U.S. vw®mment is authorized to symbolic dehgging information, which alles program-
reproduce and distrilte reprints for Geernmental purposes notwith- mjing tools to map memory addresses to source code lines

standing ay copyright notation thereon. The wis and conclusions con- and data structures. Wever common symbolic dehy—
tained hgrem are thosje of thg guthor§ gnd should not be mterpreted asging information seldom prides the complete set of
necessarily representing theficil policies or endorsements, either

mappin n rforman .acampl
expressed or implied, of the Wright Laboratoryiénics Directorate or <’:.1pp 9 data needed by performa Ce. todss.ekal P e’. .
the ULS. Geemment. a list of data structures used on each line of code (which is

useful for mapping>ecution actiity to data structures) is

1INTRODUCTION

When application programs arailh on multiple layers of
abstraction, performance tools must considev tiee ele-
ments of one layer relate to the elements of the other lay- war
ers. Mapping provides a vay to represent the relations
between abstractionJels for the performance character-
istics of program elements. jmperformance information
that is measured for at one of abstraction isvesle not
only to itself, lut also to the othervels to which it maps.

. How to assign lar-level costs to high-eel
Type of Mapping Example structure
One-to-One Low-level message send S imple- | Measurements of S are egaient to mea-
ments high-leel reduction R. surements for R.
One-to-Mary Low-level function F implements (1) Cost of F is splitwenly over all R, or
reductions R1, R2, ... (2) Meme all R into one
set and assign cost of F to entire set.
Many-to-One Low-level functions (F1, F2, ...) First aggrgate costs of F1,F2,... then
implement one source line L. assign cost to line L.
Many-to-Mary Many source code lines L1, L2, ... | First aggrgate costs of F1, F2, ..., then
are implemented by arverlapping | treat as a one-to-mamapping to L1, L2,
set of lav-level functions F1, F2,...

Figure 1: Types of Upward Mappings

typically not aailable. Other mapping information is
stored only in application data-structures durixgoaition.
For example, a run-time system may determine data-to-
processor mappings at run time after it hasatadge of
available hardware resources; run-time systems usually
keep this information in the prograsraddress spaceraFr
ditionally, there has been no well-definedyafor run-time
systems and application programming libraries to commu-
nicate mapping information to performance tools.
Mappings can be one-to-one, one-to-ganary-to-
one, and maynto-mary, as shan in Figurel. This figure
shavs examples of each type of mapping. One-to-one
mappings (shen in the first rav of the table in Figuré)
are relatrely simple to handle in a performance toolyAn
performance information measured for one sentence is
associated with the one sentence to which it mapsa- Ho
ever, when a sentence maps tovesal other sentences
(one-to-mawg, shavn in the second w), the correct
assignment of performance data is mordatift. In this
case, maytools split the measured data equally across all

sentences to which the measured sentence maps [1,9]

However, such splitting assumes an equal distiin of
low-level work to high-level code. It is often better to han-
dle one-to-may mappings by meing the sentences to

which the measured sentence maps [6]. The latter tech-

nique (used in thedPadyn Performanceo®ls[8]) males
no assumption about the distrtion of performance data
and helps to identify highdel programming constructs
whose implementations Y& been meyed by an optimiz-
ing compiler It also aoids misleading the programmer
with overly precise information.

Many-to-one and manto-mary mappings (shen in
the third and fourth res of Figurel) can be reduced to
the two types of mappings described g@boln each case,
we aggreate (either sum owarage) the performance data
for the lov-level sentences and then treat the result as a

one-to-one or one-to-mgrmapping. V@ shov examples
of each of these cases in Secti8rend 4.

2TYPESOF MAPPING INFORMATION

Mapping information may include noun andrlv defini-
tions as well as detailed descriptions ofvhparticular
nouns and @rbs map to other nouns argtbs. In this sec-
tion we describe a generic inteck for communicating
mapping information to performance tools. In fallng
sections we describe Wwadhis information may be commu-
nicated from compilers to tools both prior to application
execution (static information) and duringxezution
(dynamic information)

The table in Figur8 shavs three components of
mapping information. Noun ancesb definitions describe
to a performance tool the set of nourexbs, and leels of
abstraction contained in an application. Mapping defini-
tions are eqwalence classes for performance data. Perfor-
mance data collected for the source sentence can be
presented in relation to either the source sentence or the
destination sentence.

Our simple definition of mapping information can
handle all the types mappings listed in Figur&or exam-
ple, we can bild a may-to-one mapping by defining
mary mappings from dférent source sentences to one
destination sentence. eVcan hild one-to-may and
mary-to-mary mappings from similar combinations of our
basic one-to-one mapping definition. The fatiénces
among the four types of mappings can thengdoged
and interpreted by grperformance tool that uses the map-

pings.

3 STATIC MAPPING INFORMATION

Static mapping information is grmapping information

NOUN
name = linel1160
abstraction = CM értran

description = line #1160 in source file /usr/src/prog/main.fcm

NOUN
name = linel161
abstraction = CM értran

description = line #1161 in source file /usr/src/prog/main.fcm

VERB

name = Ercutes

abstraction = CM értran
description = units are “% CPU”

NOUN
name = cmpe_corr_6_()
abstraction = Base

description = compiler generated function, source codevadthle

VERB

name = CPU Utilization
abstraction = Base

description = units are “% CPU”

MAPPING

destination = {line1160, Eecutes}

source = {cmpe_corr_6_(), CPU Utilization}

MAPPING

destination = {line1161, Eecutes}

source = {cmpe_corr_6_(), CPU Utilization}

Figure 2: Examples of Static Mapping Information

provided to a performance tool prior to theeeution of an
application program. dillustrate hav we might use static
mapping information, we present axaeple in Figure.
This figure shars a subset of static mapping information
for a CM Fortran program. The mapping information

into an inseparable unit, or nmalother interpretations of
the mappings.

Static mapping information may bet in an appli-
cation prograns executable image, in a separate file, in an
auxiliary database, or in some other static location.

defines a mapping between a compiler generated function Regardless of its location, the mapping information must
and two CM Fortran source code lines. The first three pe communicated to performance tools beforg tdam use

records define tw source-leel nouns (linel160 and
linel161) and a sourceviel verb (Executes). The ne two
records defines a Base/éd noun (the compiler generated
function cmpe_corr_6 ()) anderb (CPU Utilization).
Finally, the last tw records define mappings between
CPU Utilization in the basevel function and xecution of
the source code lines.

The mapping information indicates that thetstate-

mappings for high-lel abstractions.

The method of communicating static mapping infor-
mation discussed in this section yides a simple method
with which compilers can describe important language-
specific and program-specific information to performance
tools. Because such information is defined staticply-
formance tools can process it before or after dee@tion
of the application program andvaid competition for

ments on lines 1160 and 1161 of the source code areresources with the app“cation program.wéxer, static

implemented by a singlevslevel routine, and that if our

mapping information usually cannot pide information

performance measurement tool can measure CPU Utiliza- about mappings that are determined during app”cation
tion for cmpe_corr_6_(), then it can present that informa- execution.

tion as Excution of the corresponding source code lines.

A performance tool may then split the&eeution costs
between the tev source code lines, nuyg the two lines

Type of Information Description

Noun definition name
level of abstraction
descriptive information

Verb definition name
level of abstraction
descriptive information

source sentence
destination sentence

Mapping definition

Figure 3: Types of Mapping Information

4 DYNAMIC MAPPING INFORMATION

Dynamic mapping information includes any mapping
information that is generated during application execution.
It includes the same types of information as static mapping
information (see Figure 3), and differs with static mapping
information only in that is communicated to performance
tools during program execution. For example, if an appli-
cation dynamically allocates parallel data objects, then the
application must dynamicaly communicate the definition
of the corresponding noun to the performance tool. If the
application dynamically distributes the data object across
paralel processing nodes, then the application must
dynamically define a mapping between the object and pro-
cessor nodes for the performance tool. The performance
tool can use the dynamic mapping information during or
after run time to relate performance measurements to
abstract program constructs and activities.

In this section we discuss two important techniques
for collecting dynamic mapping information. The first
uses dynamic instrumentation [5] to reduce the perturba-
tion effects of collecting dynamic mapping information,
and the second uses a data structure called the Set of
Active Sentences to discover verb mappings that are other-
wise difficult to detect.

4.1 Using Dynamic I nstrumentation

A mapping point is any function, procedure, or line of
code in an application where dynamic mappings may be
congtructed. For example, if we have a run-time system
routine that allocates parallel data objects and distributes
them across processors, then the return point of the routine
would be defined as a mapping point; the mapping of data
objects to processor nodes will be determined just prior to
that point. Our goal isto identify all such mapping points
in an application, and instrument them with code that
reports mapping information to our performance tool. We
can instrument all such points by adding source code that
calls our performance tool, or we can use dynamic instru-

mentation to insert the mapping instrumentation at run
time.

Dynamic instrumentation[5] is a technique whereby
an external tool changes the binary image of a running
executable to collect performance data. The basic tech-
nique defines points at which instrumentation can be
inserted, predicates that guard the firing of the instrumen-
tation code, and primitives that implement counters and
timers. Dynamic instrumentation provides an advantage
over traditional static techniques because it allows perfor-
mance tools to instrument only those points that are cur-
rently needed to provide performance data. Any point that
does not contain instrumentation does not cause any exe-
cution perturbations.

For dynamic mapping instrumentation, we can define
a subset of points consisting of all those points that gener-
ate mapping information. Typically, the subset is different
for each language, or programming library and includes
the return points for al subroutines in which data struc-
tures are allocated or in which distributions to parallel pro-
cessors are determined. As an application executes, a
performance tool can either insert mapping instrumenta-
tion once at the beginning of execution and leaveitin, or it
can insert and delete mapping instrumentation throughout
execution. The latter technique reduces run-time perturba
tion but may miss mapping decisions or houn/verb defini-
tions.

4.2 The Set of Active Sentences

Some dynamic mapping information is difficult to deter-
mine by simply instrumenting mapping pointsin an appli-
cation. Verb mappings between layers of abstraction are
often difficult to detect because the implementation of one
layer isusually hidden from other layersfor software engi-
neering reasons. In this section we describe the Set of
Active Sentences (SAS), a data structure that allows us to
dynamically map concurrent sentences between layers of
abstraction. We describe the SAS with an example taken
from High Performance Fortran, describe the kinds of
questions that might be asked and answered with the SAS,
and describe limitations of the SAS approach.

1 ASUM = SUM A)
2 BMAX = MAXVAL(B)

Figure 4: Example HPF Code

4.2.1 Description of the SAS

The Set of Active Sentences (SAS) is a data structure that
records the current execution state of each level of abstrac-
tion similar to the way a procedure call stack keeps track
of active functions.Whenever a sentence at any level of

abstraction becomes agti it adds itself to the SAS, and
when aly sentence becomes inaetj it deletes itself from
the SAS. Al two sentences contained in the SAS concur-
rently are considered to dynamically map to one another

For example, consider thexample HPF code frag-
ment in Figuret. In this code, we are concerned with the
following problem: hw to relate a lov-level message to a
high-level array reduction. Th&UM reduction on line 1
and theVAXVAL reduction on line 2 of the code imply that
messages must be sent between processors on autkstrib
memory parallel compute¥We assume that each node of a
parallel computer holds subsections of arragsdB, and

In the SAS approach to dynamic mapping, we defer
the asking of performance questions until run time, and
then only measure those sentences that help to satisfy at
least one performance question. Aglained abwe, the
SAS leeps track of all sentences that arevadit ay level
of abstraction. Whewer ary sentence becomes et
monitoring code notifies the SAS, and the SAS remembers
all such actie sentences. When anldevel sentence is to
be measured (whether by a countener, or ary other
means), monitoring code queries the SAS to determine
what sentences are currently agetiand thereby relates
low-level sentences to ae sentences at highervéds.

each node reduces its subsections before sending its locaFigure5 shavs the contents of aypothetical SAS for our

results to other nodes to compute the global reductions.

We assume that a performance tool can measurewhe lo

example HPF code
The figure represents a snapshot of the SAS at the

level mechanisms for message transfer (e.g., message senthoment when a message is sent as part of the computation

and receie routines), and can monitor theeeution of the
high-level code (e.g., which line of code is aeti which
array is actie, what reduction is being performed on the
array).

We want to answer such questions as:

* How mary messages are sent for summationgdf
For finding theMAXVAL of B?

e How much time is spent sending messages for sum-
mations ofA?

Although these questions are specific to data-parallel
Fortran and in particular to the HPF code in Figliréhey
are representat of questions that weawmld like to ask
for ary language bilt on multiple layers of abstraction. In
ary such system, we amt to e&plain low-level perfor-
mance measurements in terms of higrelgorogramming
constructs (and viceevsa). .

HPF: line #1 executes
HPF: A sums
Base: Processor sends a message

(each line represents
one active sentence)

Figure 5: The SAS When a Message is Sent

of the sum of array. It shavs that three sentences are
active, two at the HPF el of abstraction, and one at the
base lgel. Any part of an application (e.g., user code, pro-
gramming libraries, or systemvid code) may add and
remove sentences from the SAS and need nowkaloout
the «istence of other layers to do so.

Our use of the SAS resembles thawin which some
performance tools for sequential programs enage of a
monitored prograns’ function call stack [2,3,4,7,10]. A
programs function call stack records the functions that are
active at ay given point in time. By xploring the call
stack, a performance tool can relate performance measure-
ments for a function to each of its ancestors in the pro-
grams call graph. Users of such a performance tool can
then understand ko function acwity relates to the
dynamic structure of their programs. The SASyaer,
may recordany active sentence, gardless of whether the
sentence could be dis@red by ®amining the call stack.

As defined, the SAS contairadl sentences that are
active. If we wish to reduce the size of the SAS, we can
also tale adwantage of run-time requests for performance
information [8] to eliminate uninteresting sentences from
the SAS. Br example, if we only eer request measure-
ments for arrayh, then the SAS mayvaid keeping sen-
tences that do not contatn

Performance Questions

Meaning

{A Suni

Cost of summations of A?

{Processor _P Send}

Cost of sends by processor P?

{A Sunt, {Processor_P Send}

Cost of sends by ®hile A is being summed?

{? Suni, {Processor_P Send}

Cost of sends by ®hile anything is being summed?

Figure 6: Example Performance Questions

4.2.2 Performance Questions

The SAS can alsodep track of performance questions if
they are askd using nouns ancexbs. V¢ define a perfor-
mance question to be &ator of sentences. The meaning
of a performance question is that performance measure-
ments (of resource utilization) should be made only when
all of the sentences of the question arevactFigure6
shavs a fev of the possible performance questions (and
their meanings) for ourxample HPF code. Although the
questions in the figure consist of sentences that contain
one noun and oneerb, we can easily generalize questions
to use more comptesentences without altering the opera-
tion of the SAS.

Monitoring code may use the SAS to answer the types
of questions listed in Figu@ Each component of a per-

formance question represents a predicate that must be sat

isfied before monitoring code can measure CPU time,
wall-clock time, channel bandwidth, oryaother &ecu-
tion cost for the question.

We can ma& the SAS more fidble by etending our
definition of performance questions. Thidemsion vould
include boolean disjunction and gation incurring only
the added cost ofvaluating more compleexpressions.

4.2.3 Distributed Memory

tention for such a globally shared data structumtu-
nately we can still use the SAS approach if we duplicate
the SAS on each node of a parallel computst as appli-
cation code is duplicated for Single Program Multiple
Data (SPMD) programs. Each imtlual SAS can operate
independently of others as long performance questions are
not asled that require information from\s&ral SASs. br
example, all of the performance questions listed in
Figure6 can be answered without sharing arformation
between nodes.

Of course, some interesting performance questions
can only be answered using information about sentence
activity on more than one nodeoiFexample, in a distrib-
uted database system, if a ssrprocess performs disk
reads on behalf of clients, then we may wish to measure
sener disk reads that correspond to a particular client or a
particular queryThe SAS information that is necessary to
answer such a performance questiesrver reads from
disk, client query is active) would be distribited between
the SAS on the client and the SAS on the exefthe cli-
ent's SAS and the sezv's SAS would need to communi-
cate before the performance question could be answered.
In particular the clients SAS vould need to send one sen-
tence (i.e.,client query is active) to the sergr's SAS
whenever that sentence became @etdr inacte.

We hare defined the SAS to be a global data structure. If 4-2.4 Limitations of the SAS Approach

our taget hardvare systems support shared global mem- The saS approach to relatingwdevel performance

ory, then we can use globally shared memory to store the jnformation to high-leel actiities has at least three limi-
SAS. Havever, mary of todays parallel systems do not {ations.

use globally shared memorgnd &en for those that do,
we may not want to pay the synchronization cost of con-

User Process Kernel SAS
func() { [B
wite(): I func() executes
} : =
I disk_wite —] _
I di sk_wri te§§ kernel writes to disk
I disk wite |
\"4
- active
= = nactive

Figure 7: Asynchronous Sentence Activations and the SAS (time advances downward)

First, the SAS approach does not handle asynchro- static mapping information viaalPadyn Information &r-
nous actration of sentencesoF example, in a UNIX sys- mat (PIF) files just after tlydoad each applicatiorxecut-
tem we may wnt to measuredtnel disk writes that occur able. PIF files are emitted by compilers, programming
on behalf of a particular function in a user process. ervironments, or othengernal sources that wish to define
Figure7 shavs time-lines for a ypothetical UNIX pro- source-lgel language code and data objects that are con-
cess and érnel. The user process neskawr it e() Sys- tained in an application. PIF files allosuch tools to
tem call to the &rnel and the drnel later writes the explain to Rradyn haev it should map requests for high-
information to disk. The actual writes to disk do not occur level language resources and metrics into requests for base

until later The third column of the figure she hav the resources and metrics such as functions and CPU time.
SAS records each of these wities. As the figure shus, The PIF format also alles external tools to communicate
the SAS may not contain both the functiomeution sen- descriptve information about resources and metrics to

tence and thedtnel disk write sentence at the same time, Paradyn. In this &y, language-dependent and application-
and therefore dérnel disk writes on behalf of function dependent visualization modules can reeaiescriptie
func() could not be measured with the help of the SAS information to add meaning to visual displays.

alone. The Rradyn dynamic instrumentation library sends
Second, sentence adty notifications that are dynamic mapping information to thafadyn daemon pro-
ignored by the SAS cause unnecessagcetion costs. cess using the same communication channel used for per-
For our xkample code from Figur4, if we only ask per- formance data. The dynamic instrumentation library
formance questions about arraythen all actiation noti- linked into @ery application program that is measured by
fications about arrap are ignored by the SAS. But we Paradyn, contains inteae procedures that aNothe
must pay the run-time cost of the notificatione Wbuld application to describe mappings while Xeeutes. The
eliminate this cost by dynamically reming such notifica- dynamic instrumentation library sends the mapping infor-
tions from the gecuting code [5]. mation to the Bradyn daemons, and the daemons dodw

Third, sentences are not ordered in performance ques-the mapping information to the Data Manageme Data
tions. For our current definition of performance question, Manager uses the dynamic mapping informatiorxacty
the question “Hev mary messages are sent for the sum- the same way as it uses static mapping information.
mation of A?” is syntactically eqwalent to the question Paradyn uses dynamic performance instrumentation
“How mary summations ofA occur when messages are techniques to turn on or turnfafie flov of dynamic map-
sent?” If we were to takadwantage of sentence order in ping information. Dynamic instrumentation alls appli-
performance questions, then we could distinguish between cations to woid the cost of emitting mapping information

these tw very different performance questions. when thg are not run with &adyn and alles Raradyn
users to turn dfmapping information collection when it is
5STUDY: CM-FORTRAN AND PARADYN not needed. Currentlyraradyn allavs users to turn on or

turn of all dynamic mapping instrumentation points at
once. Eentually we could tie the enabling and disabling
of individual mapping instrumentation points to requests
for performance information.

Paradyn is a performance measurement tool that uses
dynamic instrumentation to measure only the performance
data requested by usersr&dyn starts an applicatioree
cuting, waits for user requests to measure performance
metrics, instruments the running application (usually by
rewriting the applicatiors executing binary image), and 6 CM FORTRAN-SPECIFIC RESOURCES
then sends a stream of performance measurements back tOAND METRICS
the userBy limiting its instrumentation to only requested Using the static and dynamic mapping ireeds described
data, Rradyn can greatly reduce instrumentation intrusion in Sections3 and 4, Bradyn measures important resources
and allevs users to measure ga; long-running applica- and metrics that are unique to Chrffan and the CM
tions on lage-scale parallel computersarBdyn includes Runtime System (CMRS). In this section we describe the
performance display modules that allasers to vie per- details of hav Paradyn measures performance data for CM
formance metric streams graphically during tkecetion Fortrans parallel assignment statements and parallel
of their applications. &adyn also includes an automated arrays and measures CNMI®-specific actiities such as
module (called the Performance Consultant) to help users Broadcast Messages, Point-to-Point Messages, Reduc-
find performance problems in their applications. tions, and Agument Processing.

Paradyn receies information about me levels of
abstraction, ng resources, and wemetrics from tw
mapping information inteaices. Bradyn daemons import

Window Selections Mavigate Abztraction
| Whole Program
ChFarrays | CHhF stmts |
bow.fcm | bow.fcm |
CALC M CORNER' CORMER P CALC'
CORR M CORR »
FRIC B AREAT TOT FRIC » [470
MAIN TEMP SPOT » a36
SLIP » WIDTHT [0:1023,0:511] STICK b 5978
1 SPOT B = [10240:11263,1024:1533] 591
[1024:2047,512:1023] 291
[11264:12287,1536:2047] 599
[12288:13311,20418:2559] 602
[13312:14335,2560:3071] 612
/ |~
Click to select; double-click to expandfun-expand
Shift-double-chick to expandfun-expand all subtrees of a node
CtH-double-click to selectfun-select all subtrees of a node
Search: |

Figure 8: CMF-Level Where Axis

6.1 Performance Data for Parallel Arrays

Arrays are the fundamental source of parallelism in data-
paralel CM Fortran. They are the only data objects that
use memory on the nodes of a CM-5 system, and the per-
formance of any particular CM Fortran program depends
greatly on its efficiency of computation and communica-
tion of arrays.

Paradyn measures CM Fortran arrays in a two step
process. First, Paradyn’s dynamic instrumentation library
detects array allocations (and deallocations) and forwards
resource and mapping information to Paradyn. When an
array isalocated (viaacall to aparticular CMRTS alloca
tion routing) the dynamic instrumentation library notifies
Paradyn of the new array, establishes a unique identifier
for the array, and tells Paradyn (via the dynamic mapping
interface described in Section 5) which subregion of the
array is stored on which node of the system. Paradyn uses
this information to build a CMFarrays hierarchy as shown
in Figure8. The figure shows that the module bow.fcm
contains six functions, and one of those (CORNER) con-
tains five arrays. One of the arrays within CORNER
(called TOT) has been expanded to show its subregions

The second step occurs when the user requests a per-
formance metric for a particular array. When the user
chooses an array to measure, Paradyn’s Data Manager
maps the array to the proper CMRTS identifier and system

node, and sends a message (via the same parallel debug-
ging interface used for dynamic instrumentation) to a Set
of Active Sentences (or SAS, described in Section 4.5)
modul e located on the appropriate node of the system. The
SA S module then sets a boolean variable to true whenever
the requested array is active and sets the variable to false
when the array becomes inactive. The CMRTS node code
block dispatcher notifies the SAS of array activation/deac-
tivation by sending the input arguments for each node code
block to the SAS. The SAS only searches the arguments
for those arrays that are requested by Paradyn.

To collect metrics, Paradyn dynamically inserts
instrumentation code into node-level subroutines. If amet-
ric is to be measured for an array, then the dynamically-
inserted instrumentation code checks the array’s node-glo-
bal boolean variable (discussed above), before measuring
the metric. Paradyn can thereby constrain any metric to an
array of interest.

Paradyn can easily use its existing visualization mod-
ules (time plots, bar charts, and tables) for visual display
of performance information for data objects. These visual-
ization modules simply treat a data object as a resource
like any other. However, Paradyn’s visualization interface
is open; we could build specialized visualization modules
to take advantage of properties (such as geometric struc-
ture) that are unique to arrays.

6.2 Parallel Code Constructs

Parallel code constructs aloCM Fortran programmers to
manipulate parallel arrays. Code constructs include paral-
lel assignment statemenB&ORALL iterators, and intrinsic
operations such &JM M N, andTRANSPOSE.

Paradyn measures parallel code constructs by map-
ping each statement to the node code blocks that imple-
ment it. Riradyn receies this mapping information via
PIF files as described in Section 5e \éteate CM &rtran
PIF files with a simple utility that parses CMrFan com-
piler output files. The utility scans the compiler output
files for lists of parallel statements, parallel arrays, and [3]
node-code blocks. It then produces a PIF file that defines
the statements and arrays far&yn and describes the
mappings from statements to code blocks.

Paradyns user intedce displays statements in the
CMFstmts hierarcly within the where axis displayas
shavn in Figure8. Users may interact with the where axis
display to choose resources from the CMFstmts hieyarch 5
from the CMFarrays hierarchp) or from a combination of
the two hierarchies. Users may also choose resources from
hierarchies for the CMRS-level of abstraction, or the
base lgel of abstraction.

(1]

(2]

[4]

(6]
6.3CMRTSMetrics

Paradyns dynamic instrumentation system includes a lan-
guage for describing hoto measure mwe metrics. This
language (called Metric Description Language, or MDL)
allows users to precisely specify when to turn dngod-
cess-clock timers andal-clock timers and when to incre-
ment and decrement countersarddyn compiles the
descriptions into code that is inserted into running applica-
tions at precisely the moment when the particular metric is
requested.

We hare used MDL to define mgmew metrics that
are specific to CM értran and CMRS. Some of these are
shawn in the table in FigurB. The table lists the name of
each metric and a brief description of what the metric
measures. Each of these metrics can be constrained to par-
allel arrays, subsections of arrays, parallel assignment

[7]

(8]

(9]

sented the Set of Aot Sentences as a method for identi-
fying complex dynamic actiity mappings.

8 BIBLIOGRAPHY

V.S. Adve, J.-C. Wang, J. Mellor-Crummey, D.A. Reed, M.
Anderson, and K. Kennedy. An integrated compilation and
performance analysis environment for data parallel pro-
gramming. Technical Report 94513-S, CRPC, 1994.

A. J. Goldberg and John Hennessey. Performance debug-
ging shared memory multiprocessor programs with mtool. In
Supercomputing 199pages 481-490, November 1991.

S.L. Graham, PB. Kessler, and MK. McKusick. Gprof: A
call graph execution profiler. IACM SIGPLAN Symposium
on Compiler Constructignjune 1982.

Anoop Gupta, Margaret Martonosi, and Tom Anderson.
Memspy: Analyzing memory system bottlenecks in pro-
grams.Performance Evaluation Revie®0(1):1-12, June
1992.

JeffreyK. Hollingsworth, BartorP. Miller, and Jon Cargille.
Dynamic program instrumentation for scalable performance
tools. In Scalable High Performance Computing Confer-
ence May 1994,

R. Bruce Irvin and Bartoi®. Miller. A performance tool for
high-level parallel programming languages. In Kardfen
Decker and Renkl. Rehmann, editor&rogramming Envi-
ronments for Massively Parallel Distributed Systepages
299-314. Birkhauser Verlag, 1994.

Alvin R. Lebeck and Davi&. Wood. Cache profiling and
the spec benchmarks: A case studgEE Computer
27(10):15-26, October 1994.

BartonP. Miller, MarkD. Callaghan, Jonathawi. Cargille,
JeffreyK. Hollingsworth, R Bruce Irvin, KarerL. Karavan-

ic, Krishna Kunchithapadam, and Tia Newhall. The Paradyn
parallel performance measurement tot&&EE Computer
28(11), November 1995.

Steve Sistare, Don Allen, Rich Bowker, Karen Jourdenais,
Josh Simons, and Rich Title. Data visualization and perfor-
mance analysis in the Prism programming environment. In
Programming Environments for Parallel Computimpgages
37-52. North-Holland, 1992.

statements, or combinations of assignment statements and10] Pure Software Incorporated, Menlo Park, CAantify Us-

arrays. bgether the metrics oger most of the aatities

er's Guide 1993.

(or verbs) necessary to understand the performance of CM[11] Thinking Machines Corporation, Cambridge M&M For-

Fortran applications.

7SUMMARY

We have described the important problems of collecting,
storing, communicating, and using mapping information
in performance tools for highsel parallel programming
languages. W hare described a format and intcé for
static and dynamic mapping information, and weehare-

tran Reference Manualanuary 1991.

Metric

Description

Computations
Computation Time

Count of computation operations.
Time spent computing results.

Reductions
Reduction Time
Summations
Summation Time
MAXVAL Count
MAXVAL Time
MINVAL Count
MINVAL Time

Count of array reductions.

Time spent reducing arrays.
Count of array summations.
Time spent summing arrays.
Count of MAXVAL reductions.
Time spent computing MAXVALSs.
Count of M NVAL reductions.
Time spent computing M NVALSs.

Array Transformations
Transformation Time
Rotations

Rotation Time

Shifts

Shift Time

Transposes

Transpose Time

CM-Fortran (CMF) Level

Count of array transformations.
Time spent transforming arrays.
Count of array rotations.

Time spent of rotations.

Count of array shifts.

Time spent shifting arrays.
Count of array transposes.
Time spent transposing arrays.

Scans Count of array scans.

Scan Time Time spent scanning arrays.

Sorts Count of array sorts.

Sort Time Time spent sorting arrays.

Argument Processing Time Time spent receiving arguments from CM-5 control processor.
Broadcasts Count of broadcast operations.

Broadcast Time Time spent broadcasting.

Cleanups Count of resets of node vector units.

Cleanup Time Time spent resetting node vector units.

Idle Time Time spent waiting for control processor.

Node Activations

Count of node activations by control processor.

Point-to-Point Operations
Point-to-Point Time

CM-Runtime (CMRTS) Level

Count of inter-node communication operations.
Time spent sending data between parallel nodes.

Figure 9: Paradyn metrics for CM Fortran Applications

