
Increasing Automated Vulnerability Assessment
Accuracy on Cloud and Grid Middleware ?

Jairo Serrano1, Eduardo Cesar1, Elisa Heymman1, and Barton Miller2

1 Computer Architecture & Operating Systems
Universitat Autònoma de Barcelona

Barcelona, Spain
{jairodavid.serrano,eduardo.cesar,elisa.heymann}@uab.es

2 Computer Sciences Department
University of Wisconsin-Madison

Madison, WI, USA
bart@cs.wisc.edu

Abstract. The fast adaptation of Cloud computing has led to an
increased speedy rate of novel information technology threats. The
targets of these new threats involve from large scale distributed system,
such as the Large Hadron Collider by the CERN, up to industrial
(water, power, electricity, oil, gas, etc.) distributed systems, i.e. SCADA
systems. The use of automated tools for vulnerability assessment is
quite attractive, but while these tools can find common problems in
a program’s source code, they miss a significant number of critical
and complex vulnerabilities. In addition, frequently middleware systems
bases their security on mechanisms such as authentication, authorization,
and delegation. While these mechanisms have been studied in depth
and can control key resources, they are not enough to assure that all
application’s resources are safe. Therefore, security of distributed systems
have been placed under the watchful eye of security practitioners in
government, academia, and industry. To tackle the problem of assessing
the security of critical middleware systems, we propose a new automated
vulnerability assessment approach, called Attack Vector Analyzer (AvA),
which is able to automatically hint which middleware components
should be assessed and why. AvA is based on automatizing part of
the First Principles Vulnerability Assessment, an innovative analystic-
centric (manual) methodology, which has been used successfully to
evaluate several known middleware systems. AvA’s results are language-
independent, provide a comprehensive assessment of every possible
attack vector in the middleware, and it is based on the Common
Weakness Enumeration (CWE) system, a formal list for describing
security weaknesses. Our results are contrasted against previous manual
vulnerability assessment of the CrossBroker middleware, and corroborate
which middleware components should be assessed and why.

Keywords: Vulnerability Assessment, Security, Weakness, Attack
Vector, Cloud, Grid, Middleware

? This research has been supported by the MEC-MICINN Spain under contract
TIN2007-64974 and by Department of Homeland Security grant FA8750-10-2-0030



2 Jairo Serrano, Eduardo Cesar, Elisa Heymman, and Barton Miller

1 Introduction

Vulnerability assessment is a security task that is insufficiently addressed in
most existing Grid and Cloud projects, and even in ”Supervisory Control and
Data Acquisition (SCADA)” [1] systems it is an afterthought. Such projects
use middleware software which usually bases its security on mechanisms such
as authentication, authorization, and delegation. These mechanisms have been
studied in depth and carry out control of key resources, but they are not enough
to assure that all middleware resources, nor that the project’s data running on
them are safe. However, middleware systems usually do not undergo a thorough
vulnerability assessment during their life cycle or after deployment, whereby
security flaws may be overlooked. One possible solution would be to use existing
automated tools such as Coverity Prevent [2] or HP Fortify SCA [3] to parse
source code for previously known threats, but even the best of these tools find
only a small percentage of the serious critical and complex vulnerabilities [4].

Nowadays security is one of the most desirable features of the computational
Grid, Cloud, and SCADA systems because of the increasing number of threats
and cybercriminal groups on the Internet, and more recently on industrial
systems, that could lead to millionary costs not only repairing damages but also
on investigating and unraveling the theft of personal and classified information.
Therefore, a thorough vulnerability assessment requires a systematic approach
that focuses on the key resources to be protected and allows for a detailed
analysis of those parts of the code related to those resources and their trust
relationships. Consistently, First Principles Vulnerability Assessment (FPVA)
[5] answers these requirements. FPVA have been successfully applied to several
large and widely-used middleware systems, such as Condor [6], a high-throughput
scheduling system; Storage Resource Broker (SRB) [7], a data grid management
system; Crossbroker [8], a Grid resource management for interactive and parallel
applications, among others [9].

FPVA starts with an architectural analysis. This step identifies key structural
components in a middleware system, including modules, threads, processes, and
hosts. It then goes for a resources analysis, which identifies the key resources
accessed by each component, and the operations supported on those resources.
Privilege analysis is the next step, it identifies the trust assumptions about
each component, answering such questions as how are they protected or who
can access them. A complex but crucial part of trust and privilege analysis is
evaluating trust delegation. By combining the information from the first two
steps, we determine what operations a component will execute on behalf of
another. The results of these steps are documented in diagrams that provide a
roadmap for the last stage of the analysis, the manual middleware source code
inspection. This top-down, architecture-driven analysis, can also help to identify
more complex vulnerabilities that are based on the interaction of multiple system
components and are not amenable to local code analysis.

For all the FPVA-analyzed systems we have noticed that there is a gap
between the three initial steps and the manual source code inspection. The
security practitioner should provide certain expertise about the kind of security
problems that the systems may present during the last stage of the analysis (e.g.
depending on the language used the analyst should look for different kind of
vulnerabilities) and be creative as to discover new vulnerabilities. Hence, this gap
directly affects the quality of the vulnerability assessment, because security flaws
may be overlooked due to either incomplete analyst knowledge or insufficient



Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 3

time for an in-depth analysis. We have realized that security practitioner
knowledge is similar to the one recorded on several available vulnerability
classifications, such as The Common Weakness Enumeration (CWE) [10], The
Seven Pernicious Kingdoms (McGraw-Fortify) [11], The OWASP Top Ten [12],
and The Microsoft SDL [13], and that it can be codified in the form of
rules, metrics, and scores to be applied automatically. The proposed Attack
Vector Analyzer (AvA) presented in this paper implements an automated
hinting of Grid and Cloud middleware vulnerabilities based on codified expert
knowledge. AvA’s results include a prioritized alert list of likely weaknesses,
which can lead to exploitable vulnerabilities. Results are based on a detailed joint
analysis of complex relationship between middleware components, which could
be potentially attractive targets for the attackers. Furthermore, results provide
particular guidance to the security practitioner to avoid overlooking security
flaws, and false positives. This paper discusses how to address the FPVA ”gap”
without looking at the middleware source code, or parsing it, and the automatic
tool AvA for systematically indicating which middleware components should be
assessed and why, before the analyst shift to the source code inspection.

The remainder of this paper is structured as follows. Section 2 introduces
the Attack Vector Analyzer approach and its components. Section 3 discusses a
case study: AvA applied to CrossBroker, and its results compared to the ones
obtained by a manual assessment of the same middleware. The related work
is introduced in Section 4. Finally, conclusions and future work are shown in
Section 5.

2 The Attack Vector Analyzer
Before proceeding with the description of the AvA approach it is needed to
stand out relevant aspects from the FPVA methodology that helped us to derive
needful concepts. One of these aspects is the FPVA aim of concentrating the
analyst’s attention on the (components and resources) assets of the middleware
system that are most likely to have critical vulnerabilities. Thus, on each stage
FPVA remains focusing in analyzing the data and control flows among the high-
value system assets looking for insecure features and/or attributes. Other aspect
is the artifacts produced on initial steps of FPVA: the architectural analysis
step produces a document that diagrams the structure of the system and the
interactions amongst the different components and with the end users. In this
diagram the Attack Surface of the system can be defined.

The Attack Surface is the set of coordinates from which an attack
(interaction user → system) might start, indeed it tells security practitioners
where to start looking for the attacker’s initial behavior. Then, the resource
analysis step produces a document that describes for each resource its value as
an end target (such as a database with personnel or proprietary information)
or as an intermediate target (such as a file that stores access-permissions).
These resources are the target of an exploit. From this step, we define other
useful concept: Impact Surface as the set of coordinates where exploits or
vulnerabilities might be possible. Finally, the artifact produced by the privilege
analysis step is a further labeling of the previous documents with trust levels and
labeling of interactions with delegation information. In this diagram the Attack
Vectors can be identified. An Attack Vector is the sequence of transformations
that allows control flow to go from a point in the attack surface to a point in
the impact surface.



4 Jairo Serrano, Eduardo Cesar, Elisa Heymman, and Barton Miller

Despite all the information gathered on the FPVA initial artifacts, finding
actual vulnerabilities in the selected system during the component analysis
depends on the implementation details of each component and the analyst’s
knowledge expertise. We have already claimed that this knowledge can be
found in several existing vulnerability classifications [2,13,23,28], and that, in
consequence, can be systematically codified in order to be able to automatically
indicate which attack vectors of a given system should be analyzed and why. We
have developed a complete methodology following this approach, and we have
also implemented this methodology in a prototype tool called Attack Vector
Analyzer (AvA) for demostrating how the FPVA gap can be sistematically
reduced.

In the following subsections we describe this automatic approach, which is
depicted in figure 1. It shows the components of the AvA architecture, composed

Fig. 1. Attack Vector Analyzer Architecture

by the (attack vector) analyzer engine, who receives as inputs: a single modified
version of the FPVA diagrams called the component-resource graph, and a
knowledge base (KB) with codified rules. The KB is based on three elements:
the most current knowledge about vulnerabilities the CWE, the CWSS scoring
system , and the system attributes. The outcome of the analyzer engine will be
security alerts concerning to use this inputs knowledge on a particular system.

2.1 Building the Knowledge Base

Fig. 2. AvA’s Knowledge Base

In this section we describe the process followed for defining the propositions
included in the AvA knowledge base (KB) from the information provided by the



Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 5

Common Weakness Enumeration [10] system, the Common Weakness Scoring
[14] system, and the middleware system attributes extracted from the experience
using FPVA. All this information depicted in figure 2 has been used for building
the set of rules that will guide the analysis of a target system.

Common weakness enumeration: CWE is a community initiative
of security practitioners, including individual researchers and representatives
from industry, academia, and government, interested in actively reducing and
managing common software weaknesses that can occur in software’s architecture,
design, code or implementation, and that can lead to exploitable security
vulnerabilities. CWE could be roughly described as a three tiered approach,
the tier one consist of the full CWE List (hundreds of nodes); the tier two
consists of descriptive affinity groupings of individual CWEs, which is called the
Development View; and the tier three consists of high level groupings (pillars)
of the intermediate nodes to define strategic classes of vulnerabilities, which is
called the Research View. The Attack Vector Analyzer is based on the CWE
Research View approach.

Common weakness scoring system: CWSS is a part of the CWE project,
it provides a scoring mechanism for weaknesses in a flexible, open, and consistent
manner. CWSS works scoring CWE’s with 18 different factors in three metric
groups: (1) the Base Finding group, which captures the inherent risk of the
weakness, confidence in the accuracy of the finding, and strength of controls;
(2) the Attack Surface group, which captures the barriers that an attacker must
cross in order to exploit the weakness; and (3) the Environmental group, which
includes factors that may be specific to a particular operational context, such as
business impact, likelihood of exploit, and existence of external controls.

Name Description

Owner The owner’s component

User The user’s component

User-Admin Interface Is the component part of the user or admin interface

Sanitize Determines if the component performs data sanitizing operations

Transform Data Determines if the component performs data transforming operations

Transfer Data Determines if the component performs data transfering operations

Trust Determines if the component performs trustworthy operations

Server Interaction Determines if the component performs a DB, LDAP, etc., server operations

Timeout Determines if the component performs timeout operations

Max/Min Determines if the component performs data restriction operations

Third-party Determines if the component performs local/remote third-party operations

Spoofing Determines if the component performs operations against spoofing

Tampering Determines if the component performs operations against tampering

Encryption Determines if the component performs encryption operations

Attachment Determines if the component performs attachment operations

Error Handling Determines if the component performs operations against unexpected error

Client-Server Determines if the component is installed on client or server host

Web Determines if the component is a web service or application

Log-Backup Determines if the component performs Log and/or Backup operations
Table 1. AvA’s System Attributes

System attributes: The system attributes have been defined in a large
research and refining process, and it has been reflected in our initial works [15,



6 Jairo Serrano, Eduardo Cesar, Elisa Heymman, and Barton Miller

16]. System attributes are based on the information provided by several FPVA
artifacts, developer team interviews, and user, admin, and API documentation.
The attributes included in AvA, shown in table 1, have been derived from the
different middleware systems assessed and characterized using FPVA, such as
Condor, SRB, MyProxy [17], gLExec [18], VOMS-admin [19], and CrossBroker.

Rule generation: We use CWE, CWSS, and system attributes information
for defining assessment rules (propositions). First, we gathered the most useful
information from the CWE source, which is represented in the AvA analyzer by
twelve different elements with relevant details acquired through a public XML
file provided by the CWE community. These elements are:

1. The weakness identificator
2. The weakness name
3. The weakness description
4. The weakness extended description
5. The programming language in which the weakness may occur
6. The consequence scope, which identifies an individual consequence that may

be associated to the weakness
7. The consequence technical impact, which describes the technical impacts

that can arise if an attacker attempts to exploit the weakness
8. The consequence notes, which provides additional commentary about its

consequence
9. The mitigation description, which contains a single method for mitigating

the weakness
10. The mapped node names, which identifies the name of the entry to which

this weakness is being mapped in other taxonomies or classifications
11. The relationship, which contains a note regarding the relationships between

CWE entries.
12. The observed example description, which presents an unambiguous

correlation between the example being described and the weakness which
it is meant to exemplify.

Secondly, a comprehensive (word, synonyms) search over the twelve mentioned
elements have been conducted on the 682 CWE weaknesses to find the set
of weaknesses related to each system attribute. For example, for the system
attribute ”Owner”, 150 different related weaknesses were found, among these
we have the ”CWE-282: Improper Ownership Management”. In a nutshell, it
says ”The software assigns the wrong ownership, or does not properly verify the
ownership, of an object or resource”. Similarly, for each of the remaining system
attributes we found between 20 to 150 relationships.

Once the system attributes have been related to the weaknesses, we use
a customized version of CWSS for producing the final set of rules. It consists
essentially in defining logical propositions for each value of each system attribute,
to obtain a quantitative measurement of how the attribute contributes to each
of its related weaknesses. More precisely, we verify it through the three metrics
groups of the customized CWSS scoring system, linking up the system attributes
with its relevant factors, and scoring accordingly to them. The relevant factors
for the customized CWSS metrics groups are shown in table 2. Thus, each factor
has a list of possible values, and its corresponding score, e.g., the technical impact
(TI) factor is shown in the table 3. Finally, we illustrate the kind of propositions
in the KB with the next examples.



Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 7

Base Finding Attack Surface Environment

Technical Impact (TI) Required Privilege (RP) Business Impact (BI)

Acquired Privilege (AP) Required Privilege Layer (RL) Likelihood of Discovery (DI)

Acquired Privilege Layer (AL) Access Vector (AV) Likelihood of Exploit (EX)

Internal Control Effectiveness (IC) Authentication Strength (AS) External Control Effectiveness (EC)

Authentication Instances (AI) Prevalence (P)

Level of Interaction (IN)

Deployment Scope (SC)
Table 2. CWSS Metric groups

Technical Impact Critical High Medium Low None Default Unknown Not Applicable

Score 1.0 0.9 0.6 0.3 0 0.6 0.5 0.3

Table 3. TI Scoring (CWSS adaptation)

– Example I. Rule for the Owner attribute

If ”Owner” == ”Administrator” then:
”TI” == ”Critical”, ”AP” ==”Administrator”
”AL”==”Enterprise”, ”AV”==”Private Network”

– Example II. Rule for the User-Admin Interface attribute

If ”User-Admin Interface” == ”Yes” then:
”TI” == ”High”, ”AV”==”Local”, ”IN”==”Automated”
”DI”==”High”, ”EX”==”High”, ”AS”==”Moderate”

It can be appreciated in both examples that the ”Owner” and ”User-Admin
Interface” attributes are related with particular CWSS factors such as the TI
factor, which are influenced by their corresponding values. In the first example,
the TI factor answers with the ”Critical” value when the ”Owner” attribute
corresponds with the ”Administrator” value. On the other hand, for the ”User-
Admin Interface” rule example, the TI factor assumes a ”High” value, because
the component being assessed is part of the attack surface. Then, with the
knowledge base of rules stated, we proceed to describe the analysis process of
the attack vectors of a middleware system.

2.2 Analyzing Attack Vectors
This section describes how the AvA engine analysis works on the attack vectors,
the inputs required, and the security alerts produced. Below, we present the
component-resource graph, which is the input of the AvA engine, and then we
proceed with the AvA engine, as we can see depicted in figure 3.

Component-Resource graph: with the stated objective of reducing the
gap between the outcomes from the initial FPVA stages, and the manual
FPVA component code analysis, we have defined a structure called Component-
Resource graph [20] for representing the results of these initial stages in a more
suitable and readable format, which also includes relevant information about
middleware components such as the system attributes. A component-resource



8 Jairo Serrano, Eduardo Cesar, Elisa Heymman, and Barton Miller

Fig. 3. AvA Engine

graph is aimed to depict all attack vectors between middleware components,
given that most of the generated FPVA diagrams describe particular operations
of the middleware, such as submitting a job in a workload management system.
Thereby, the order in which an attack vector is built is also quite clear because
every edge in the diagrams is labeled with a number indicating when the
interaction represented by the edge takes place, and also indicating if a node
in the diagrams belong either to the attack or the impact surface.

To represent a component-resource graph we have chosen the GraphML
format [21]. Basically, a component-resource graph is an XML file composed
by the information gathered from the FPVA diagrams. Once the component-
resource graph is correctly depicted in the graphml format, we proceed to apply
the analysis process on it.

The AvA engine analysis: algorithm 1 shows the AvA engine analysis
process. It begins reading the component-resource graph, this step allows the
AvA engine to identify and to load the attack vectors of the middleware been
assessed. Then, the AvA knowledge base is read, in order to load both the
rules and the weaknesses - system attributes relationships. The next step of the
engine is to start traversing each attack vector, component by component. For
each component, its system attributes are fetched, and then assessed accordingly
to the KB-rules, taking into account our customized CWSS system. Hence, the
weaknesses related to the system attributes are assessed too. As a result of
this step, a mark is obtained for each attribute associated to every weakness
in every component of all identified attack vectors in the component-resource
graph. For example, for a weakness CWE-X with associated attributes X0, X1,
and X2 (such as: owner, user, tampering, etc.) and an attack vector composed by
components C0, C1, C2, the results shown in table 4 can be obtained. After this

CWE-X````````Component
Attribute

X0 X1 X2

C0 SC00 SC01 SC02

C1 SC10 SC11 SC12

C2 SC20 SC21 SC22

Table 4. Individual marks

first assessment, with the objective of obtaining a single score for each weakness
associated to the attack vector, the algorithm applies the following steps:



Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 9

(1) assign to each attribute the minimum score obtained by any component
of the attack vector (line 12). Using the same example of table 4, the score
of attribute X0 for the weakness CWE-X will be min(SC00,SC10,SC20). We
have choosen the minimun value because it means that in that component at
least, a weakness mitigation has been implemented; (2) once the minimum
scores are computed then proceed to weigh them accordingly to the CWE
research view (line 13) because the system attributes might have a different
impact for each weakness depending of one pillar or another, i.e., a system
attribute such as owner has a high weight regarding the ”CWE-693 Protection
Mechanism Failure” pillar, while the encryption attribute has a low weight. On
the contrary, for the ”CWE-330 Use of Insufficiently Random Values” pillar the
encryption attribute has a high weight, while the owner has a low weight; at
last, (3) the maximum weighed score for the weakness is computed, bearing in
mind how was the score of its child weaknesses (line 14). It means that child
weaknesses provide more information to the top-level weaknesses. Once all the
weaknesses are processed, the last step is to sort them into the eleven pillars of
the CWE research view accordingly to their maximum weighed score. Finally,

Algorithm 1
1. Read the Component-Resource graph
2. Load the Attack Vectors
3. Read the Knowledge Base
4. Load the Rules
5. Load the Weaknesses
6. For each Attack Vector
7. For each Component
8. Fetch the system attributes
9. Parse the system attributes with KB-rules
10. Assess the weaknesses related
11. For each Weakness
12. Compute the minimum score components
13. Weigh the computed score for the weakness
14. Compute the max weighed score based on CWE
15. For each Pillar at the CWE research view
16. Sort weaknesses in order of max weighed score
17. Write the sorted security alert lists

the security alerts for the assessed attack vector are delivered as a hierarchical
list of weighed weaknesses for each CWE pillar. Thus, we are systematically
providing comprehensive information to the security practitioner, pointing out
not only which vulnerabilities should be analyzed, but also why we should pay
attention to them in the assessed attack vector.

3 Case Study
This case study shows the benefits of AvA approach by using it on a grid
middleware system and then verifying the results against the previous FPVA
assessment on the same middleware. CrossBroker is a Grid resource management
system for interactive and parallel appplications used in various european
projects, including Crossgrid [22] the Interactive European Grid [23], and it
is being used by the Spanish Grid Initiative. CrossBroker was built by extending
the functionality provided in LCG [24] and gLite WMS [25].

3.1 FPVA applied to CrossBroker
The manual vulnerability assessment following the FPVA guidelines on
CrossBroker identified serious and complex vulnerabilities affecting high value



10 Jairo Serrano, Eduardo Cesar, Elisa Heymman, and Barton Miller

assets. A completed and detailed information about them can be found on
previous work [15], which is out of scope for this paper. Below, we introduce
a summarized description of the CrossBroker FPVA found vulnerabilities:

Vulnerability 1 : If CrossBroker is used in an environment where the user
can control certain attributes of the jdl submission file, but the executable to run
must be selected from a white list of valid executables, then there exists a flaw
that allows the user to run arbitrary code as the execute user beyond the white
listed executables. Cause: Code injection, Improper data validation, Incorrect
authorization. Component: submit, network server.

Vulnerability 2 : Certain types of user’s job submitted to CrossBroker
are not protected from manipulation from other user’s jobs. Cause:
Incorrect privileges, Missing authentication, Multiple unique privilege domains.
Component: scheduling agent.

Vulnerability 3 : Remote resources are prone to a hijacking through
CrossBroker. If Computing Elements use a firewall/NAT traversal solution
to allow access to grid site elements, attackers will build an independent
high throughput computing system without Crossbroker interactions and
restrictions. Cause: Missing authorization, Misconfiguration. Component:
scheduling agent.

Vulnerability 4 : The CrossBroker is prone to a Denial of Service
vulnerability. As a result of this attack, Crossbroker will not be able to
process the submission of the user jobs, being necessary to stop and restart
the Crossbroker host. Cause: Improper error handling, Inability to handle
missing/invalid field or value. Component: submit, logging and bookkeeping,
mysql.

Up to now, the security practitioners who applied FPVA on several
middleware provided their own expertise and creativity about different kind
of security problems over the key structural components identified on FPVA
artifacts, without further guidance or information. The goal of the following
subsection is to demonstrate that the AvA concepts can be used to increase
the effectiveness of the FPVA component analysis, with a more comprehensive
guidance to automatically indicate where and why the components should be
assessed.

3.2 AvA applied to CrossBroker
The validation consists of applying the AvA assessment process to the
CrossBroker component-resource graph (figure 4), and look for those weaknesses
in the security alerts that are related with the vulnerabilities found manually,
and those weaknesses that can depict likely new vulnerabilities that were not
found initially. CrossBroker has several attack vectors that can be observed from
its graph, and for the sake of simplicity we just introduce two different attack
vectors with completely different impact surfaces. It is worth to state that the
number of attack vectors depends on the number of attack and impact surfaces
components we have identified using a graph editor tool.

Attack vector I: The attack vector I is composed by ten components
starting with the submit component which is the attack surface component in
this case, passing through the network server, input queue, scheduling agent,
output queue, application launcher, condor daemon I, local resource manager,
condor daemon II, until achieve its impact surface the job component. To
visualize the results of asssessing the attack vector I, the AvA security alerts
were clustered in accordance to every hierarchical pillar of the CWE research



Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 11

Fig. 4. CrossBroker component-resource graph with attack vectors I-II highlighted

view, and regarding to the max score of the weaknesses and the total number
of them belonging to every pillar, as we can see in figure 5. Therefore, for the
”CWE-664” pillar composed of 150 weaknesses, considering the characterization
of the attack vector components, and the whole assessment process, we found
that around 20 % of weaknesses in the whole pillar can derive into one of
three vulnerabilities found with FPVA, which are distributed as follows: 11
weaknesses related to ”Vulnerability 3”, 17 weaknesses related to ”Vulnerability
2”, and one weakness related to ”Vulnerability 1”. In this attack vector there
are no weaknesses matches for ”Vulnerability 4”, due that its underlying
cause belong to other middleware components. Itemizing, from the 15 first

Fig. 5. Security Alerts for attack vector I clustered by CWE-664 pillar.

weaknesses with the highest scores, nine are related to three of the vulnerabilities
found manually, as for example the ”CWE-862: Missing Authorization” whose
description is ”The software does not perform an authorization check when
an actor attempts to access a resource or perform an action”, and reviewing
again the CrossBroker vulnerabilities summary along with the CWE-664 pillar
description ”The software does not maintain or incorrectly maintains control
over a resource throughout its lifetime of creation, use, and release”. Thus,
it can be seen the straight relationship between the weakness-pillar and the
”Vulnerability 3” because although the AvA analysis has taken into account
those system attributes related to authentication and authorization underlying



12 Jairo Serrano, Eduardo Cesar, Elisa Heymman, and Barton Miller

mechanisms for the attack surface, the attacker is able to handle at will the
impact surface.

The AvA analisys corroborated this relationship, due that there is no
more control found for the same system attributes on any other attack vector
component after a job is submitted in CrossBroker. For some of the remaining
CWE pillars their security alerts also hinted related weaknesses to the same
vulnerabilities, which gives the attack vector I results consistency, and some
others security alerts hinted a likely new vulnerability related to certificate issues.

Attack vector II: Since the attack vector II has only three components
starting with the submit component which is again the attack surface component,
the logging and bookkeeping component, and its impact surface the mysql
component, then we put together all its AvA security alerts to visualize the
results from a global perspective regarding the whole CWE research view,
as we can see in figure 6, instead of an individual pillar visualization as in
the attack vector I. By inspecting the security alerts for all the pillars, the
assessment of the attack vector II with the AvA analyzer hinted 19 weaknesses,
all of them related with the ”Vulnerability 4” found with FPVA, which are
distributed as follows: 8 weaknesses in ”CWE-703 Improper Check or Handling
of Exceptional Conditions” , 4 weaknesses in ”CWE-664 Improper Control of a
Resource Through its Lifetime”, 3 weaknesses in ”CWE-691 Insufficient Control
Flow Management” , 1 weakness in ”CWE-710 Coding Standards Violation”
, 1 weakness in ”CWE-682 Incorrect Calculation” , 1 weakness in ”CWE-118
Improper Access of Indexable Resource”, 1 weakness in ”CWE-435 Interaction
Error”, and 0 weaknesses for the rest of pillars. Just like in attack vector I
for ”Vulnerability 4”, it happens that there are no weaknesses matching for
”Vulnerabilities 1, 2, and 3”, due that their underlying causes belong to other
middleware components. If we look inside the pillars with hinted weaknesses,

Fig. 6. Security Alerts for attack vector II clustered by entire CWE research view.
we found that the sum of all the issues, such as improper check for unusual or
exceptional conditions, unexpected status code or return value, return of wrong
status code, missing report of error condition, uncontrolled resource comsuption,
improper resource shutdown or release, insufficient control of network message
volume, uncontrolled recursion, improper validation, or incorrect control flow
scoping, among others are indeed strongly related to the ”Vulnerability 4”
causes. In summary, to focus the security alerts clearly, we visualized from either
individually or globally point of view the hinted weaknesses by the AvA analyzer
in both of the attack vectors illustrated, which are strongly related with the
vulnerabilities found previously with FPVA.



Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 13

4 Related Work

Vulnerability Assessment of middleware systems is a field that has attracted
the interest of both research and commercial communities, due to the rapid
growth of the use of distributed and high performance computing, as well as the
increasingly rapid growth of threats. Accordingly, in this section we introduce
those vulnerability assessment projects that are most related to the AvA
approach, such as the Microsoft Threat Modeling [13], the Open Vulnerability
and Assessment Language [26] project, and the vulnerability cause graphs [27].

4.1 Microsoft Threat Modeling
The methodology that has the most in common with the AvA approach is
Microsoft Threat Modeling. It is aimed at identifying and rating the most
likely threats affecting applications, based on understanding their architecture
and implementation during the entire development life cycle. While Microsoft’s
methodology is the closest to AvA approach, there is a key difference:
after developing the architectural overview of the application, the Microsoft
methodology applies a list of pre-defined and known possible threats, and tries to
see if the application is vulnerable to these threats. As a consequence only known
vulnerabilities on individual components may be detected, and the vulnerabilities
detected may not refer to high value assets. With AvA, the component evaluation
is performed only on the critical parts of the system, and we may be able to
hint vulnerabilities based on a list of weaknesses, particularly those resulting
from the interaction of complex relationships between attack vector components.
In addition, Microsoft threats identification suggest a brainstorming with the
developers and test teams, these interactions could lead to a biased analysis and
may result in threats going undetected.

4.2 The Open Vulnerabilities and Assessment Language (OVAL)
OVAL is an international, information security, community standard to promote
open and publicly available security content, and to standardize the transfer
of this information across the spectrum of security tools and services. OVAL
includes a language used to encode system details, and an assortment of content
repositories held throughout the community. The repositories are collections
of publicly available and open content that utilize the language. In short it
means that OVAL is an open language to express checks for determining whether
software vulnerabilities and configuration issues, programs, and patches exist on
a system. It is based primarily on known vulnerabilities identified in Common
Vulnerabilities and Exposures (CVE) [28], a dictionary of standardized names
and descriptions for publicly known information security vulnerabilities and
exposures developed by the MITRE Community and stakeholders. In contrast
to OVAL, our effort is neither based on the specific CVE dictionary nor
alleged vulnerabilities according to machine states, instead we claim that AvA
approach works with CWE and CWSS systems, and with nonspecific software
vulnerabilities, also AvA approach is based on FPVA stages, thereby AvA
gathers more meaningful information for the assessment process.

4.3 Vulnerability Cause Graphs
It is based on a thorough analysis of vulnerabilities and their causes, similar
to root cause analysis. The results are represented as a graph, which Byers et
al. [27] called vulnerability cause graph. Vulnerability cause graphs provide the



14 Jairo Serrano, Eduardo Cesar, Elisa Heymman, and Barton Miller

basis for improving software development best practices in a structured manner.
The structure of the vulnerability cause graph and the analysis of each individual
cause are used to determine which activities need to be present in the software
development process in order to prevent specific vulnerabilities. In a vulnerability
cause graph, vertices with no successors are known as vulnerabilities, and
represent classes of potential vulnerabilities in software being developed. Vertices
with successors are known as causes, and represent conditions or events that may
lead to vulnerabilities. In our case, the most noticeable difference is that we want
to know whether a vulnerability may exist and why, instead Byers’ work knows
the vulnerabilities and looks for their causes.

5 Conclusions

In this paper we described a novel approach for hinting Grid and Cloud
middleware vulnerabilities. The proposed methodology was implemented in
a prototype tool, called the Attack Vector Analyzer (AvA). The absence
of a formal method that attempts to systematically use the information
gathered by the First Principles Vulnerability Assessment (FPVA) methodology,
and the knowledge found on the Common Weakness Enumeration (CWE),
motivated us to develop the AvA prototype, which validates the AvA approach.
AvA demonstrates effectiveness for filling the gap between different steps
of the FPVA methodology; and provides significant guidance for security
practitioners to determine which middleware components should be assessed
and why. We corroborated AvA’s efectiveness with the assessment of the Grid
middleware CrossBroker. In order to get comprehensive and accurate results,
the CrossBroker’s security alerts produced by AvA were analyzed from two
perspectives, the first one, considering them through each CWE pillar, and
the second one, considering them through the whole CWE research view.
Thus, it was possible to correlate previous vulnerabilities found manually with
several attack vector weaknesses, and automatically identify the most likely
vulnerabilities.

AvA will positively impact security practitioners empirical research during
the source code inspection, and consequently its quality and accuracy of
vulnerability assessment. Our methodology approach has produced several key
accomplishments that distinguish it from formal related vulnerability assessment
works. A list of our accomplishments include:

– Our assessment methodology has the important characteristic that it focuses
on complex interrelationships among component, and not only on single
components.

– The development of a well defined knowledge base based on rules, which
allows to match system attributes into multiple weaknesses, and quantifying
attack vector weaknesses according to complex component interrelationships.

– A systematic guidance provided for the last FPVA analysis stage, automated
by a software tool. The AvA’s results provide significant guidance to security
practitioner. These results are not sensitive to source code analysis, which
makes results language independent.

Future work around AvA approach will involve considering the use of machine
learning techniques for improvements of the whole knowledge base architecture,
where rules could change in function of new acquired data at middleware
runtime.



Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 15

References

1. T. Sommestad, G. Ericsson, and J. Nordlander, “Scada system cyber security - a
comparison of standards,” in Power and Energy Society General Meeting IEEE,
pp. 1 –8, july 2010.

2. “Coverity Prevent. http://www.coverity.com.”
3. “Fortify Source Code Analyzer. http://www.fortify.com.”
4. J. Kupsch and B. Miller, “Manual vs. automated vulnerability assessment: A case

study,” International Workshop on Managing Insider Security Threats, vol. 469,
pp. 83–97, June 2009.

5. J. Kupsch, B. Miller, E. Heymann, and E. Cesar, “First principles vulnerability
assessment, mist project,” tech. rep., UAB & UW, September 2009.

6. “Condor Project. http://www.cs.wisc.edu/condor.”
7. “Storage Resource Broker. http://www.sdsc.edu/srb/.”
8. E. Fernandez del Castillo, Scheduling for Interactive and Parallel Applications on

Grid. PhD thesis, Universitat Autònoma de Barcelona, 2008.
9. “MIST Group: Middleware security and testing web site.

http://www.cs.wisc.edu/mist.”
10. “The Common Weakness Enumeration. http://cwe.mitre.org/.”
11. G. McGraw, K. Tsipenyuk, and B. Chess, “Seven pernicious kingdoms: A taxonomy

of software security errors,” IEEE Security and Privacy, vol. 3, pp. 81–84, 2005.
12. “The open web application security project (owasp). https://www.owasp.org/.”
13. F. Swiderski and W. Snyder., Threat Modeling. Microsoft Press, 2004.
14. “The Common Weakness Scoring System. http://cwe.mitre.org/cwss/.”
15. J. D. Serrano Latorre, E. Heymann, and E. Cesar, “Manual vs automated

vulnerability assessment on grid middleware,” in III Congreso Espanol de
Informatica - CEDI 2010., Sep 2010.

16. J. D. Serrano Latorre, E. Heymann, and E. Cesar, “Developing new automatic
vulnerability strategies for hpc systems.,” in Latinamerican Conference on High
Performance Computing - CLCAR, pp. 166–173, August 2010.

17. “MyProxy. http://grid.ncsa.illinois.edu/myproxy.”
18. “gLExec - Gluing grid computing jobs to the Unix world. https://www.nikhef.nl/.”
19. “The virtual organization membership service (voms) - http://edg-

wp2.web.cern.ch/edg-wp2/security/voms/voms.html.”
20. J. D. Serrano Latorre, E. Heymann, E. Cesar, and B. Miller, “Vulnerability

assessment enhancement for middleware,” in 5th Iberian Grid Infrastructure
Conference (IBERGRID), June 2011.

21. “The GraphML File Format. http://graphml.graphdrawing.org/.”
22. “Crossgrid EU Project. http://www.eu-crossgrid.org/.”
23. “Interactive European Grid Project. http://grid.ifca.es/inteugrid ifca.htm.”
24. J.-P. B. Baud, J. Caey, S. Lemaitre, C. Nicholson, D. Smith, and G. Stewart, “Lcg

data management: From edg to egee,” 2005.
25. P. Andreetto and et alter, “Practical approaches to grid workload and resource

management in the egee project.,” Proceedings of the International Computing in
High Energy and Nuclear Physics, pp. 899–902, 2004.

26. “OVAL - Open Vulnerability and Assessment Language. http://oval.mitre.org/.”
27. D. Byers, S. Ardi, N. Shahmehri, and C. Duma, “Modeling software vulnerabilities

with vulnerability cause graphs,” in Software Maintenance, 2006. ICSM ’06. 22nd
IEEE International Conference on, pp. 411 –422, 2006.

28. “The Common Vulnerability and Exposures. http://cve.mitre.org/.”


