
-- --

To Appear International Conference on Supercomputing (Tokyo, July 19-23, 1993).

-- --

Dynamic Control of Performance Monitoring
on Large Scale Parallel Systems

Jeffrey K. Hollingsworth Barton P. Miller
hollings@cs.wisc.edu bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

Abstract
Performance monitoring of large scale parallel com-

puters creates a dilemma: we need to collect detailed infor-
mation to find performance bottlenecks, yet collecting all
this data can introduce serious data collection bottlenecks.
At the same time, users are being inundated with volumes
of complex graphs and tables that require a performance
expert to interpret. We present a new approach called the
W3 Search Model, that addresses both these problems by
combining dynamic on-the-fly selection of what perfor-
mance data to collect with decision support to assist users
with the selection and presentation of performance data.
We present a case study describing how a prototype imple-
mentation of our technique was able to identify the
bottlenecks in three real programs. In addition, we were
able to reduce the amount of performance data collected by
a factor ranging from 13 to 700 compared to traditional
sampling and trace based instrumentation techniques.

1. Introduction
Performance monitoring of applications running on

large scale parallel computers can generate vast seas of
(mostly useless) data. This wealth of information is a prob-
lem for the programmer who is forced to navigate through
it, and for the tools which must store, process, or display it.
The large volume of data results from the number and
speed of the CPUs and the need to collect performance data
down to the loop and basic block level to explain certain
performance problems. As a result, there is so much data
available that it is impossible to collect it all, and so pro-
grammers and tools are forced to select a subset of the data
to collect. We propose a new paradigm based on dynamic
on-the-fly selection of what performance data to collect.
� ���������������������������

This work was supported in part by National Science Foundation
grants CCR-8815928 and CCR-9100968, Office of Naval
Research grant N00014-89-J-1222, and a grant from Sequent
Computer Systems Inc.

This approach permits us to collect the data we need when
we need it. Although this approach provides great flexibil-
ity, it also requires many decisions be made about what to
collect, when to collect it, and how to display what we col-
lect. In this paper, we introduce a strategy called the W3

Search Model, that is designed to provide decision support
for the selection and presentation of performance data. We
also describe a prototype implementation of the Perfor-
mance Consultant, a system that incorporates the W3

Search Model.
The W3 Search Model is based on trying to answer

three separate questions: why is the application performing
poorly, where is the bottleneck, and when does the problem
occur. To answer the why question, our system includes
hypotheses about potential bottlenecks in parallel pro-
grams. We collect performance data to test if these
bottlenecks exist in the program. Answering the where
question means that we isolate a performance bottleneck to
a specific resource used by the program (e.g., a disk sys-
tem, a synchronization variable, or a procedure). To iden-
tify when a problem occurs, we try to isolate a bottleneck
to a specific phase of the program’s execution. Finding a
performance problem is an iterative process of refining our
answers to these three questions.

We address the problem of selecting what perfor-
mance data to collect by using our search model to direct
the instrumentation to collect only the data necessary to test
the next step in our search process. This means that instead
of collecting large amounts of data to anticipate what the
user wants, we only collect the data we need. As the sys-
tem and the user refine their view of the performance prob-
lem, we adjust the instrumentation to collect more detailed,
but more focused information. In addition, we can control
the granularity of the performance data collected by
dynamically adjusting the sampling frequency.

The W3 Search Model addresses the problem of what
to display by providing decision support for selecting
appropriate displays and analyses. It is designed to give
specific advice about where the performance bottlenecks
lie in a program. Different displays are useful to explain
different bottlenecks. We integrate existing display tech-
niques and associate them with the appropriate types of
bottlenecks. Since our search model identifies the type of
bottleneck in a program, we can create useful displays. As
a result, the user is freed from having to sort through a sea
of pictures and tables trying to find one that will explain the



-- --

- 2 -

performance of their program. While our search model
was designed for dynamic instrumentation, it is also a use-
ful paradigm for post-mortem analysis.

In Section 2 we describe the W3 Search Model. In
Section 3, we describe the prototype implementation of the
Performance Consultant along with some results from run-
ning it on real programs. Next, we discuss how this work
relates to previous performance tools. Finally, we outline
our plans for a full scale implementation.

2. The W3 Search Model
The potentially large amount of available perfor-

mance data is a problem both for the user to navigate and
for tools to collect. The W3 Search Model addresses the
user’s information overload problem by providing a well
defined, logical search model to assist them in finding per-
formance bottlenecks. In this section, we describe our
goals for such a search model and define the W3 Search
Model. Our model is based on answering three separate
questions: why is the application performing poorly, where
is the bottleneck, and when does the problem occur.
Finally, we explain how to automate this search.

The main goal of the W3 Search Model is to work
with long running applications that use large scale parallel-
ism (hundreds if not thousands of processors). Many per-
formance problems do not show up when applications are
tried on toy data sets or a small number of processors. To
help users to find real bottlenecks in real applications, we
need to be able to run our tools on a full scale version of
the program. We also need to minimize the performance
impact of our system on the application so that we find
existing bottlenecks and do not create new ones. Dynamic
control of the instrumentation makes a wealth of perfor-
mance data available while requiring that only a limited
amount be collected at any given time.

We feel execution time searching is an appropriate
approach because in long running programs, the interesting
behaviors tend to last a relatively long time, so we have a
long time interval to find and isolate the cause of the prob-
lem. If a behavior lasts for only a short interval of time we
might miss it, but since it is short, its impact on the total
execution-time of the program is also small. For a short
running program, the fact that it is short means the time to
re-run it is also short.

Our search model is designed for an execution-time
search; however we feel programmers will find searching
for bottlenecks in a running program to be difficult and
confusing. To make the system easier to use, we provide
post-mortem semantics. This means that programmers can
view their search as if it took place after the program had
completed execution, and the data necessary to answer
their performance questions has been collected. When it is
not possible to maintain this illusion, the system informs
the user.

We have two additional goals of usability and porta-
bility. Programmers should not have to write their applica-
tion for a performance tool. They should able to write their
application in whatever style they wish, and not be res-
tricted to a specific programming model. They also should
not be required to manually add code to their application to
collect performance data. The most that should be required

is to re-compile an application. Finally, our search model
should work for a variety of machine architectures and pro-
gramming styles. This is a particularly difficult goal due to
the diversity of machines and styles, and our desire to pro-
vide relevant guidance for a specific program on a specific
machine.

To permit users to quickly find their bottleneck
without having to look at extraneous details, our search
model starts from a high level view and iteratively refines
the detail about what is causing the program to perform
poorly. Users can independently refine the ‘‘why’’,
‘‘where’’, and ‘‘when’’ of a program’s performance. The
search process can be thought as traveling from one point
to another in a three dimensional space, and at each step we
can move in any direction.

2.1. ‘‘Why’’ Axis
The first performance question most programmers

ask is "why is my application running so slowly?" To
answer this question we need to consider what types of
problems can cause a bottleneck in a parallel program. We
represent these potential bottlenecks with hypotheses and
tests. Hypotheses correspond to bottlenecks, for example,
a program is synchronization bound. Tests are boolean
functions that indicate if a program exhibits a specific per-
formance behavior related to the hypothesis (e.g., more
than 10% of the time is spent doing synchronization).

Searching the ‘‘why’’ axis is an iterative process.
First we select a hypothesis and then we conduct the test to
see if it is true†. If it is, we consider possible refinements of
this hypothesis, and then test them. For example, a
hypothesis might be that an application has a synchroniza-
tion bottleneck. If the hypothesis is true, then we consider
possible refinements: (1) excessive synchronization due to
small work units, (2) high contention for a synchronization
object, or (3) excessive time spent waiting for messages
from other processes. We then test each of these
hypotheses to see if any of them are true.

These dependence relationships between hypotheses
define the search hierarchy for the ‘‘why’’ axis. One
hypothesis can have other hypotheses as pre-conditions and
anti-conditions. These relationships form a directed acy-
clic graph, and searching the ‘‘why’’ axis involves travers-
ing this graph. Figure 1 shows a partial ‘‘why’’ axis
hierarchy with the current hypothesis being that the appli-
cation has a HighIOBlockingTime bottleneck. This
hypothesis was reached by first concluding that an
IOBottleneck exists in the program.

The hierarchical ‘‘why’’ axis is one of the unique
features of our system. Many tools look only at one possi-
ble type of problem (e.g., memory bottlenecks, or syn-
chronization). Other tools can display multiple types of
bottlenecks, but do not guide the user’s search process.
�������������������������������

† We define a hypothesis to be true when the tests associated with
it return true for the data collected. We continue to verify that the
tests conditions associated with a hypothesis remain true as we
collect more performance data. Our definition of a true hy-
pothesis is really a working hypothesis that meets the test criteria.
It should not be confused with a statistical hypothesis or a
scientific hypothesis which have different connotations.



-- --

- 3 -

IOBottleneck

TopLevelHypothesis

FrequentIOoperations HighIOBlockingTime

HighSeekRateSmallIOoperations

Figure 1. Sample ‘‘Why’’ (hypothesis) Hierarchy.

Our structured model helps to focus the user on the prob-
lem, not bury them with details.

2.2. ‘‘Where’’ Axis
The ‘‘why’’ axis is used to isolate the type of prob-

lem in a parallel application (e.g., a synchronization
bottleneck). However, in a large application there might be
many different synchronization operations. For the our
search model to be useful, we must find which synchroni-
zation operation is causing the problem. To isolate a
bottleneck to a specific resource (e.g., a procedure, or a
lock), we search along the ‘‘where’’ axis.

The ‘‘where’’ axis is designed to be searched itera-
tively and has a hierarchical organization. It is separated
into several different hierarchies, each representing a class
of resources in a parallel application (e.g., synchronization
objects, code, disks). There are multiple levels in each
hierarchy, and the leaf nodes are the instances of the
resources that are used by the application.

The left tree in Figure 2 shows a sample resource
hierarchy. The root of the hierarchy is Synchronization
Objects. The next level contains four types of synchroniza-
tion (Semaphore, Message Receive, Spin Lock, and Bar-
rier). Below the Spin Lock and Barrier nodes are the indi-
vidual locks and barriers used by the application. The chil-
dren of the Message Receive node are the types of mes-

Compute 
Object Code

Other CPUs
Cpu #12

frob main stuff

Synchronization
Objects

Individual
Locks

Barriers

Individual
Barriers

Locks
Spin

Semaphores

Group 1 Group 2

Individual Semaphores

Individual

Msg Recv.

Message
Types

Figure 2. A sample ‘‘where’’ axis with three class hierarchies.
The highlighted object indicates the current focus. The oval objects are defined in the Performance Consultant.
The triangles are static based on the application, and the rectangles are dynamically (runtime) identified.

sages used. The children of the Semaphore node are the
semaphore groups used in the application. Below each
semaphore group are the individual semaphores.

Different components of the ‘‘where’’ axis are
created at different times. Part of the ‘‘where’’ axis is
defined statically, part when the application starts, and part
during the application’s execution. The static components
are at the top of each hierarchy, and the more dynamic
nodes are at the lower levels in each hierarchy. The root of
each hierarchy (resource class) is statically defined inside
the tool. Depending on the hierarchy, other nodes below
the root might also be statically defined. The next levels in
each hierarchy are defined when the specific machine and
application are selected. This step creates nodes for the
types of resources that the application might use. The
types of nodes that get created depend on the type of
machine used (e.g., shared memory vs. message passing)
and the style of parallelism the application uses. The
lowest levels in each hierarchy, representing specific
resource instances, are added during the application’s exe-
cution when the resource is first used.

Figure 2 shows a few sample resource class hierar-
chies, and the shape of each node indicates when it is
defined. Oval nodes are statically defined. Triangle nodes
are defined when the machine and application are selected.
Rectangular nodes are created during the application’s exe-
cution.

The current status of the search along the ‘‘where’’
axis is called the focus, and consists of the current state of
each resource class hierarchy. Figure 2 shows a sample
‘‘where’’ axis containing three resource hierarchies. The
highlighted nodes show the current focus component of
each hierarchy. The focus shown in the figure is all spin
locks on cpu #12 used in any procedure.

Searching for performance problems along the
‘‘where’’ axis is called magnifying the focus. It is possible
to magnify the focus of each hierarchy independently.
Magnifying a focus is a four step process. First we pick a
resource class hierarchy to magnify. Next we determine
the children of the current node. Third we select the poten-
tial focuses to consider (i.e., restricting our magnification to
a subset of all possible children of the current node).



-- --

- 4 -

Finally we test each true hypothesis for each potential
focus. If the tests indicate that the criteria for hypothesis is
met, the potential focus is added to the current focus list;
otherwise it is discarded.

Consider a sample magnification starting from the
focus shown in Figure 2. First, we might select the Code
hierarchy. We then get a list of the children of the current
node in that hierarchy (the procedures frob, main, and
stuff). Then we select which ones to test (we choose to
check all of them). Finally, we run the tests and conclude
that the current hypothesis holds for frob. This results in
the new focus all Spin Locks on Cpu #12 in procedure frob.
If the test was true for more than one procedure, they all
would be added to the focus.

2.3. ‘‘When’’ Axis
The ‘‘why’’ and ‘‘where’’ axes isolate a perfor-

mance problem to a specific type of bottleneck in a specific
resource. However, the performance of parallel programs
varies during different parts of its execution (i.e., the pro-
gram goes through several phases). The purpose of the
‘‘when’’ axis is to isolate performance bottlenecks to
specific time intervals during an execution. We first
explain the ‘‘when’’ axis based on our post-mortem model,
and then we describe how to approximate this model dur-
ing execution.

Searching along the ‘‘when’’ axis involves testing
the current hypotheses for the current focus (or focuses) for
different intervals of time during the application’s execu-
tion. We start by considering the entire execution-time of
the program, and iteratively refine our search to smaller
sub-intervals of time. For example, we might start by look-
ing at an entire program, and then refine the bottleneck to
an initialization interval, and finally isolate the problem to a
sub-interval where data is being read into memory. Figure
3 shows a sample time-line for a program’s execution, and
a table showing the start and end of each interval.

� �������������������������������������������������������������������������������������
Start End

Interval
Interval Interval

Description
� �������������������������������������������������������������������������������������

i0 0 26 Entire Execution
i1 0 8 Initialization
i2 0 4 Read Data
i3 4 8 Init Nodes
i4 8 14 Compute1
i5 13 19 Exchange
i6 18 23 Compute2
i7 23 26 Output� �������������������������������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

i0
i1

i2 i3
i4

i5
i6 i7

Figure 3. Intervals during a program’s execution.

We represent the intervals of time along the ‘‘when’’
axis with a hierarchical structure with the root being the
entire execution of the program. The children of a node are

sub-intervals of that node. In addition, sub-intervals can
overlap†. Figure 4 shows a ‘‘when’’ axis for a hypothetical
application. The Initialization interval (i0) contains two
sub-intervals Read Data (i1) and Init Nodes (i2). The fifth
interval, Exchange, overlaps both of the compute intervals
(i4 & i6). A final interval, Output (i7), is at the end of the
computation. We have restricted our search to i1, Initiali-
zation.

i0

i1

i2 i3

i4 i5 i6 i7

Figure 4. Sample ‘‘When’’ (time) Hierarchy.

Approximating post-mortem semantics is difficult
because we do not have a fully built ‘‘when’’ hierarchy.
We have part of the hierarchy for the time from when the
program started until the current time, but only for those
sub-intervals that the user defined and searched. Consider
the sample time interval shown in Figure 5. The interval
starts at the point marked Start Interval, and continues until
we decide to start collecting data for this interval (Start
Collection). We have performance data from Start Collec-
tion until the point marked Current Time, but the interval
continues for an unknown length of time until the End
Interval.

Searching a time interval introduces four questions:
1.) How do we quickly and easily define the start of a

new interval so we can start collecting data as soon
as possible (i.e., where is Start Interval)?

2.) How long is the current time interval going to last
(where is End Interval)?

3.) How do we handle missed data due to selecting a
time interval after it has started (i.e., no data is avail-
able from Start Interval to Start Collection)?

4.) What if the user selects a time interval that has
already ended (Start Collection is after End Inter-
val)?

Start
Interval

Start
Collection Time

End
Interval

Unknown length

Current

Has not happened yet

Observation
Minimum

No Data Available for this interval
Data Available for this interval

Figure 5. Potential problems with changing
data collection during execution.

� ���������������������������

† This implies that a sub-interval might be contained in two dif-
ferent time intervals, and so the hierarchy is a DAG, not a tree.



-- --

- 5 -

The first question, defining the start of an interval, is
partially a user interface problem and partially a search
problem. A simple approach to this problem is to present
users with a time histogram (showing one or more metrics
and updated in real time), and let them select the start of
new time intervals along the histogram. This solution,
although simple, has the problem that the user must pay
close attention to the program’s execution. An alternative
is to permit the user to specify trigger predicates that start a
new time interval when they evaluate to true (or provide a
library of these predicates and let the user choose from
them). Examples of predicates are the first time a selected
procedure is called, or when the synchronization wait time
is above a selected threshold. This method requires less
direct involvement by the user. Existing correctness
debuggers (e.g., Spider[18], and TOPSYS[3]) use similar
predicates. A third approach is to have programmers anno-
tate their programs with calls to library routines to indicate
major parts of the computation. This approach can be quite
effective, but is not very elegant because it requires the
programmer to modify code. Our prototype implementa-
tion currently uses manual definition, but we will add
trigger predicates in the future.

The second question is how long does an interval
last. Our post-mortem model requires performance data
for an entire time interval to determine if a bottleneck
exists for that interval. During execution, we do not have
complete data for the interval until it is over. We would
like to be able to make refinements to sub-intervals without
having to re-execute the application, so it is necessary to
conclude if a hypothesis is true for a time interval before
the interval ends. We approximate the result of a test by
using the cumulative performance data for the current
interval from when it is selected until the current time. As
the interval continues, the data aggregation window grows
with it. We also require a minimum observation time
(shown as Minimum Observation in Figure 5) during an
interval before we conclude that the data is valid. This
prevents transient conditions at the start of an interval from
causing false conclusions. This approach permits evaluat-
ing multiple hypotheses before the interval ends, as well as
aggregating over a long enough interval to see meaningful
trends in the application’s performance.

There are two potential problems with using data for
part of an interval. First, the tests for a hypothesis could be
true based on averaging data over a short time at the start
of an interval, however they might not be true for the entire
interval. This effect can be mitigated by selecting a long
enough minimum observation time to permit the system to
enter steady state. Even if it happens (as long as the
minimum is reasonable), the interval where the hypothesis
is true is an indication of a potentially interesting sub-
interval. The second problem is that hypotheses, that are
true for a long interval of time, build up momentum (due to
the increasing window size) and might appear to be true
after they become false. However, we stop aggregation at
the end of a time interval and according to our definition of
post-mortem semantics, we aggregate over the entire time
interval. So momentum is not a problem because the win-
dow of aggregation is bounded by current time interval.

The third question is what to do when we start col-
lecting data and testing hypotheses for a time interval after
the interval has begun. Since our post-mortem model aver-
ages performance over the entire interval and we know
when the interval started, we can calculate how much time
we missed. We use this information as a second constraint
on the minimum observation time by requiring data be col-
lected for a minimum percentage of the time interval. This
limits the impact of the missed data on our cumulative
average. If the time interval ends before we have seen
enough additional data, we consider it to be a time interval
that has been missed (i.e., the fourth question), and the user
has to re-run their application to try hypotheses for this
interval.

2.4. Automated Guidance
The axes of the W3 Search Model help to direct the

user to find performance bottlenecks; however at each step
there are several choices of possible refinements to con-
sider. To provide guidance in selecting good refinements,
our search model includes hints. Hints are suggestions
about future refinements that are generated as a side effect
of testing earlier refinements. For example, a ‘‘why’’ axis
hypothesis for a synchronization bottleneck might return a
hint to refine along the ‘‘where’’ axis based on synchroni-
zation objects. Hints have two important characteristics.
First, they are only hints and exist to order refinements, not
alter what refinements are possible. Second, hints violate
the orthogonality of the three axes because a hint associ-
ated with one axis can refer to refinements along other
axes.

Hints are helpful for narrowing down the choices
that the user has to make, but they still require the user to
select a refinement to consider. A key component of the
W3 Search Model is its ability to automatically search for
performance bottlenecks. This is accomplished by making
refinements across the ‘‘where’’, ‘‘when’’, and ‘‘why’’
axes without requiring the user to be involved. Automated
refinement is exactly like manual (user directed) searching,
and hybrid combinations of manual and automated search-
ing are possible.

Selecting a refinement is a three step process: deter-
mining all possible refinements, ordering the refinements,
and finally selecting one to try. The possible refinements
are the children of the current nodes along each axis. We
use hints to order the list of possible refinements. Finally
we select one or more refinements to try from our ordered
list. If the first one tried is not true, we consider the next
item from the ordered refinement list.

An important question about automated refinement is
how long to evaluate a hypothesis before concluding the
test criteria are not met. This is an interesting problem
because we are searching during the application’s execu-
tion, and we want to be able to try several refinements
before the current time interval ends. We define a
sufficient observation time (typically several times the
minimum observation time), and if we have not concluded
a hypothesis is true after waiting this time interval, we con-
sider other hypotheses. Discontinuing testing a hypothesis
is different than concluding it is false. To conclude a
refinement is false we need to see data for a sufficiently



-- --

- 6 -

large fraction of the time interval to conclude that no
matter what happens in the remainder of the interval, the
result will be the same.

3. Prototype Implementation
Because many of the techniques used by the W3

Search Model are new, we implemented a prototype of the
system to study the ability of our search model to identify
performance bottlenecks using dynamic on-the-fly data
selection. We also wanted to compare the amount of per-
formance data generated by our method to existing trace
based and sampling approaches. To validate the guidance
supplied by the Performance Consultant, we also studied
the application programs using the IPS-2[14] performance
tools and compared results. We used our prototype to
study three applications: two are from the Splash[17]
benchmark suite and one is a database application.

3.1. Experimental Method
Our test implementation includes 15 hypotheses

(shown in Figure 6) dealing with CPU, I/O, synchroniza-
tion, and virtual memory bottlenecks. In a full implemen-
tation of our system, we plan to permit users to create and
modify hypotheses and tests during program execution.
However, to simplify our prototype implementation, we
wrote hypotheses and tests as C++ functions compiled into
the system. We also created 3 resource classes (code, pro-
cess, and synchronization object). This means that gen-
erally we can select one of 5 to 10 possible refinements (1
to 5 hypotheses, and several ‘‘where’’ axis refinements).
In some cases, for example at the procedure level, we had
over 50 possible refinements. We have also implemented a
manual version of the ‘‘when’’ axis.

Figure 6. A Display showing the ‘‘why’’ and ‘‘where’’ axes.

Since no available system provided the necessary
infrastructure for dynamic control of the instrumentation,
we used trace data generated by the IPS-2 performance tool
and simulated dynamic data selection. A benefit of this
approach is that it permitted us to compare the quality of
guidance supplied using dynamic selection to that of full
tracing. In addition, IPS-2 runs on a variety of platforms,
making a large set of sample data available for our tests.
IPS-2 records event traces during a program’s execution.
Each event (e.g., procedure call or synchronization opera-
tion) contains both wall-clock and process time-stamps in
addition to some event-specific data. In addition to normal
IPS-2 instrumentation, we ran the programs with two
External Data Collectors[11]. External Data Collectors are
dedicated sampling processes that collect additional infor-
mation not available via tracing. One collector gathered
information about the behavior of the operating system
(e.g., page faults, context switch rate). The other collected
data about the hardware (e.g., cache miss rates and bus util-
ization).

We pre-processed the trace files into uniform time
histograms and used these time histograms to simulate a
real-time execution. Each histogram bucket corresponds to
a sample being delivered to our system. We simulated an
execution-time tool by evaluating tests only when new per-
formance data was "delivered" to our system. Dynamic
instrumentation was approximated by "enabling" and "disa-
bling" data collection as we refined along the axes of the
W3 Search Model. For example, when we started our
simulation, the only data being collected was to evaluate
the top level hypotheses for the entire application. When a
new hypothesis was considered, or a refinement made
along the where axis (e.g., looking at data for a specific
procedure), we "enabled" the collection of the necessary



-- --

- 7 -

data. When evaluating tests, we only looked at perfor-
mance data for the time interval from when the data for
that test was "enabled" until the current time. We also
simulated the minimum observation time by not evaluating
tests until the performance data for that test had been
"enabled" for a sufficient time. This technique gave us a
good approximation of dynamic instrumentation.

Our instrumentation model is based on periodically
sampling performance counters from a running program.
A counter records an event in the program at a specific
focus (e.g., a procedure call counter exists for each pro-
cedure in the program). However the focus of a counter
can be quite specific. For example a program that uses spin
locks not only has a counter for each lock but also one for
each lock in each procedure that used the lock. Since we
simulated enabling and disabling data collection, we can
calculate the number of samples that would be collected for
each counter by multiplying how long the counter was
enabled by the sampling frequency. We compare the total
number of samples our approach needed to full sampling
which requires data for every counter at every sample time.
We also compare our results to the full procedure and syn-
chronization tracing done by IPS-2.

A simple explanation option was also included in the
prototype. We associate an explanation function with each
hypothesis. When a hypothesis evaluates to true, the user
can request an explanation, which causes the explanation
function to be called. The simplest explanations consist of
print statements that describe the type of bottleneck for the
hypothesis. More sophisticated explanations report addi-
tional information about the program. For example, the
explanation for a CPU bottleneck prints a Gprof[9] style
profile table for the current focus along the ‘‘Where’’ axis.

Our prototype implementation has an X interface that
allows users to navigate the three search axes. We also
provide a command line interface to the explanations of the
bottlenecks found. A screen dump from the interface
appears in Figure 6. In the future we plan to expand our
interface to incorporate realtime profile tables and visuali-
zations of the performance data. The prototype implemen-
tation consists of 6,000 lines of C++.

Finally, a note about how we configured the Perfor-
mance Consultant for our study. Since we were primarly
interested in the ability of the tool to automatically find
bottlenecks, we ran the system in a mode in which the tool
searches for and refines bottlenecks without any user
interaction. We somewhat arbitrarily set the minimum
observation time to 5 samples (0.1 to 0.5 seconds depend-
ing on the sample rate). Likewise the sufficient observa-
tion time was set to 10 samples (0.2 to 1.0 seconds). We
plan to explore the impact of these parameters in the future.

3.2. Water
Water is one of the Splash benchmark programs. It

is an N-body molecular dynamics application that simu-
lates both the intra- and intermolecular potentials of water
molecules in the liquid state. The program primarly uses
spin locks for synchronization. We ran this program on a
Sequent Symmetry using both 4 processors and 16 proces-
sors to see if the performance was different. We also tried
small and large input files.

When the program was run on four processors, it ran
for 13.8 seconds. The Performance Consultant identified a
CPU time bottleneck because 80% of the attempted paral-
lelism was spent in productive CPU utilization. The Per-
formance Consultant found this bottleneck 4.0 seconds into
the computation. We were unable to refine this hypothesis
to either a specific process, or procedure because no single
process or procedure was responsible for most of the CPU
time. However, the explanation associated with the CPU
bottleneck hypothesis supplied a CPU time profile listing
the procedures in the program and the percent time spent in
each one. This provided a list of likely procedures to try to
improve. To validate this hypothesis, we used the IPS-2
tools and found that the program was indeed CPU bound.

We also ran the program on a larger input file using
16 processors and it ran for 35 seconds. In this case, the
Performance Consultant found the program was now syn-
chronization bound (this was also confirmed using IPS-2).
The Performance Consultant was able to identify a specific
lock variable that was responsible for 43% of the synchron-
ization waiting time and 24% of the total execution time of
all of the processes. This was the most specific advice the
Performance Consultant gave in our case study. Since the
major bottleneck changed when we used more processors
and a larger data set, this example showed that it is impor-
tant to study the performance of parallel programs on real
datasets on the desired number of processors.

An important question about our prototype is the
volume of performance data needed to find these
bottlenecks. Figure 7 shows a summary of the perfor-
mance data collected by our system compared to full sam-
pling. The column for "Total Counters" shows the number
of counters required for all of the possible event types and
focuses that our search model had at its disposal.
"Counters Used" indicates how many of the total possible
counters were used to find the program’s bottlenecks.
"Total Samples" shows the number of samples required if
all of the counters are sampled every 100 msec. "Samples
Used" is the number of samples collected for the counters
used while they were enabled.

���������������������������������������������������������������������������������������������
Total Counters Total SamplesCPUs Counters Used Samples Used���������������������������������������������������������������������������������������������

4 2,022 22 (1.1%) 279,036 1,390 (0.5%)
16 7,783 328 (4.2%) 2,762,965 28,692 (1.0%)���������������������������������������������������������������������������������������������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Figure 7. Comparison of Full Sampling vs.
Dynamic Instrumentation for the Water application.

Figure 8 compares the volume of sample data gen-
erated by our approach to the full tracing done by IPS-2.
"Samples" is the number of samples used that also
appeared in Figure 7. To compare dynamic instrumenta-
tion to IPS-2 tracing we needed to figure out how big a sin-
gle sample from dynamic instrumentation would be. We
feel that 12 bytes is a reasonable size (4 byes for a counter
identifier, 4 bytes for a time stamp, and 4 bytes for the
value). This value is shown in the column "Size". "Trace
Size" is the actual size of the trace file created using the
IPS-2 performance tools. "Ratio" shows the ratio of the
IPS-2 trace size to the "Size" column.



-- --

- 8 -

� ���������������������������������������������������������������������������
Dynamic Inst. TraceCPUs Samples Size† Size Ratio

� ���������������������������������������������������������������������������
4 1,390 0.02 1.2 73
16 28,692 0.34 13 38� ���������������������������������������������������������������������������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Figure 8. Comparison of Dynamic Instrumentation
vs. Tracing for Water (Size is in megabytes).

Our dynamic approach to instrumentation reduced
the volume of performance data collected for this program
by a factor ranging from 38 to 200 times compared to tradi-
tional methods. An interesting aspect of our technique
appears in the 16 processors case (shown in Figure 7).
Dynamic instrumentation looks at over 4% of the counters,
but less than 1% of the total samples. This is because the
Performance Consultant was isolating a performance prob-
lem to a specific lock variable and needed to measure the
lock waiting time for each lock. However, since the Per-
formance Consultant discarded most of the locks after
waiting the sufficient observation time, we did not need to
collect the data for each lock for the entire execution.

3.3. LocusRoute
LocusRoute is also one of the Splash benchmark pro-

grams. It is a VLSI tool for doing routing between stan-
dard cells, and it computes the area of the resulting layout.

We ran this program on four processors. Much to
our dismay the Performance Consultant gave us no infor-
mation about this program. We decided to run IPS-2 on the
program to see what was happening. After looking at all of
the IPS-2 metrics we were unable to explain the perfor-
mance of the program either. Finally, we looked at the
volume of performance data the IPS-2 system was creating.
We discovered that the program makes a lot of procedure
calls, and that the instrumentation overhead due to pro-
cedure calls was the problem. We confirmed this problem
in two ways. First we wrote a test program to see how
much overhead tracing a procedure call in IPS-2 involved.
Next we used a feature of IPS-2 that permits us to turn off
procedure level tracing, and re-ran the program. The Per-
formance Consultant then found a CPU time bottleneck in
the resulting program.

We can also use our search model to verify that the
observed instrumentation overhead of our system was
acceptable. We added an additional hypothesis to identify
instrumentation bottlenecks. We defined spending at least
15% of the time in instrumentation as a significant over-
head. Using this additional hypothesis we were able to
identify procedure call instrumentation overhead as the
problem with this program. This early success with this
idea of using our search model to test if our instrumentation
significantly alters the performance was encouraging. We
plan to expand this functionality in our full implementation.

Figures 9 and 10 show the amount of performance
data collected for LocusRoute both with and without the
hypothesis about instrumentation overhead. In the initial
version, no bottleneck was found and no refinements were
made. Each of the 6 counters required to test the initial
hypothesis for the root of the ‘‘where’’ axis are collected at
each time interval during the program’s execution. Since

we collect more data only when a refinement is made, this
shows the minimum amount of data that will be gathered
using our approach. In the second case, since we identified
an instrumentation bottleneck, more counters were exam-
ined as the Performance Consultant tried to isolate the
bottleneck to a single procedure. However, even in this
case, dynamic instrumentation reduces the volume of per-
formance data collected by a factor of 191 compared to full
tracing.

� �������������������������������������������������������������������������������������������
Total Counters Total SamplesVersion Counters Used Samples Used� �������������������������������������������������������������������������������������������

initial 1,928 6 (0.3%) 337,400 1,050 (0.3%)

collection
hypothesis 1,928 44 (2.2%) 337,400 4,226 (1.2%)
� �������������������������������������������������������������������������������������������
��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

Figure 9. Comparison of Full Sampling vs.
Dynamic Instrumentation for LocusRoute.

� ���������������������������������������������������������������������������������
Dynamic Inst. TraceVersion Samples Size Size Ratio

� ���������������������������������������������������������������������������������
initial 1,050 0.01 9.7 770

collection
hypothesis 4,226 0.05 9.7 191

� ���������������������������������������������������������������������������������
��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

Figure 10. Comparison of Dynamic Instruementation
vs. Tracing for LocusRoute.

3.4. Shared Memory Join
The shared memory join application is an implemen-

tation of the join function for a relational database. It
implements a hash-join algorithm[7] using shared memory
for inter-process communication. The program was written
to study shared-memory and shared-nothing join algo-
rithms. We ran the program on a dedicated four processor
Sequent Symmetry.

Our test case ran for 93 seconds. The Performance
Consultant identified one bottleneck in the program due to
excessive page faults. Since the page fault data is collected
via an external sampler process, and is not collected on a
per process or per procedure basis, the system could not
directly isolate the bottleneck to a specific procedure.
However, we could identify the time during the program’s
execution in which the page fault bottleneck occurred.
This shows how even when our search model is not able to
precisely isolate a performance problem along one axis
(‘‘where’’ in this case), we are able to use another axis
(‘‘when’’) to help isolate the problem. This flexible
approach to finding bottlenecks is an important feature of
our work. To validate this result, we again used the IPS-2
performance tools. Since we had previously studied this
program[11], we recognized the page fault problem as one
of the problems in this program. The problem was due to
the creation of new user data in the program. A few small
changes to the program reduced this page fault behavior
and improved the execution time by 10%.

Figures 11 and 12 show the volume of performance
data generated for the shared memory join application. For
this program we investigated how changing the simulated
sampling interval would change the amount of performance



-- --

- 9 -

data collected. We sampled at intervals of both 100 msec
and 10 msec. At 100 msec, we reduced the volume of per-
formance data collected compared to IPS-2 by a factor of
41, and at 20 msec we reduced it by a factor of 13. The
ratio of data collected for full sampling to dynamic instru-
mentation, a factor of 220, did not change significantly
when we changed the sampling interval.

� �������������������������������������������������������������������������������������������
Sample Total Counters Total Samples
Interval Counters Used Samples Used� �������������������������������������������������������������������������������������������
100 ms. 1,978 9 (0.5%) 1,845,474 8,379 (0.5%)
20 ms. 1,978 9 (0.5%) 9,227,370 41,958 (0.5%)� �������������������������������������������������������������������������������������������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Figure 11. Comparison of Full Sampling vs.
Dynamic Instrumentation for Shmjoin.

� �������������������������������������������������������������������������������
Sample Dynamic Inst. Trace
Interval Samples Size Size Raio

� �������������������������������������������������������������������������������
100 msec. 8,379 0.10 4.1 41
20 msec. 41,958 0.51 6.3 13� �������������������������������������������������������������������������������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Figure 12. Comparison of Dynamic Instrumentation
vs. Tracing for Shmjoin.

3.5. Lessons Learned
Our prototype implementation has helped us to better

understand the interactions between the different com-
ponents in our system. First, we realized that some
hypotheses from the ‘‘why’’ axis were better represented
as refinements along the ‘‘where’’ axis. For example, we
wrote a hypothesis to look for hot (highly contested) spin
locks, but realized we could trivially re-write it to look for
hot synchronization objects. This meant it could be used
for other types of synchronization too.

We also used the system to do manual searching for
bottlenecks and recorded the search path used by the pro-
grammer. Based on an informal analysis of these logs, we
were able to better define automated searching. For exam-
ple, we discovered that refining along the ‘‘why’’ axis,
then searching the ‘‘where’’ axis and finally the ‘‘when’’
axis helps to reduce the number of options at each step, and
is easier to understand than if refinements are made in a
random order. On the other hand, if the system returned a
hint, we found it was better to consider it first. We plan to
continue to study how people use manual refinement to
improve automated refinement.

We also confirmed our intuition that we need to be
able to find more than one bottleneck in a single program.
For example, most of the programs we tried have a rela-
tively uninteresting I/O bottleneck at the start of their exe-
cution. We need to be able to report this fact, and continue
our search for the rest of the execution.

We demonstrated the importance of running pro-
grams on full sized input sets rather than toy files. The
type of bottleneck found in the Water application changed
when we ran it on a larger dataset. This showed the impor-
tance of building performance tools that scale up to real
applications on large scale parallel machines.

Finally, we gained confidence in our approach and
are proceeding with a full implementation. We showed
that it is possible to identify and isolate performance prob-

lems by using dynamic instrumentation and searching
based on partial performance data. In addition, the reduc-
tion in the amount of performance data collected (typically
a factor of 50 to 100) means that our approach will scale
well to large machines. In fact, we feel that when we try it
on larger machines, longer running programs, and with
instrumentation down to the loop level, these ratios will be
even larger because less and less of the available perfor-
mance data will be useful at any given time.

4. Related Work
Prior work in managing the complexity and volume

of performance data has concentrated in three areas: per-
formance metrics, visualization and data collection.

Performance metrics address the user side of the per-
formance problem by reducing large volumes of perfor-
mance data into single values or tables of values. Many
metrics have been proposed for parallel programs: Critical
Path[21], NPT[1], MTOOL[8], Gprof[9]. Each of these
metrics can provide useful information; however in an ear-
lier paper[12] we compared several of these metrics (and a
few variations) and concluded that no single metric was
optimal for all programs. However, we did discover
several factors that can be used to help select appropriate
metrics. For example, whether an application is well bal-
anced (e.g., all processes do a similar amount of work) or
does a large amount of synchronization influences which
metrics are useful. The W3 Search Model can be used to
identify these characteristics in a program and help the user
select an appropriate metric to use. We view our approach
as a complement and an enhancement of performance
metrics, not a replacement for them.

Another technique to manage the amount of perfor-
mance data available to the user is visualization. Visuali-
zation presents large amounts of performance data in a
graphical or aural way. The problem with most visualiza-
tions is that they are only useful for finding a specific type
of bottleneck and so most tools provide a rich library of
different visualizations. For example Paragraph[10] pro-
vides over twenty different visualizations and many of
these displays can be configured to plot values for different
resources (e.g., CPU and disk utilization). Unfortunately
the user is left with the formidable task of selecting
appropriate visualizations and resources to display. Our
system improves this situation by being able to associate
visualizations (and resources) with specific types of perfor-
mance problems, and so we help the user to select useful
visualizations to explain the performance problem.

Several approaches have been proposed to address
the problem of how to efficiently collect performance data.
One approach is to define a set of predicates that describe
the interesting events in a program, and only collect data
for those events that satisfy the predicate. EDL[2],
ISSOS[16], and BEE[4] use this approach. The first two
use a static set of predicates for an entire program’s execu-
tion and lack the fine granularity of control of our
approach. BEE permits dynamic control of the predicates,
however, it does not provide any guidance of what predi-
cates to select. Another approach is to build special
hardware to collect performance data. The Sequent Sym-
metry[19], and the Cray Y-MP[5] provide a set of pro-



-- --

- 10 -

gramable counters to collect performance data. However,
since the systems can collect more data than they have
counters, the user is left to select what to collect. In addi-
tion, not all interesting events are visible to hardware data
collectors. Another approach used in MultiKron[15],
TMP[20] and HYPERMON[13] is to build hardware that
generates trace data and sends it to a data reduction node
(or file). Hardware-assisted trace generation eliminates
most of the perturbation of the CPU and inter-connection
network. However, it makes it easy to generate so much
data that it swamps any file system or data analysis station.

One system that tries to provide high level decision
support about the performance of parallel programs is
Atexpert[6] from Cray Research. It uses rules to recognize
performance problems in Fortran programs. This tool
solves a special case of the problem we address: Fortran
programs that have been automatically parallelized by the
compiler. In addition, it is a post-mortem tool that does not
address how to reduce the volume of data collected.

5. Conclusions
We have presented a new approach, called the W3

Search Model, for the design of performance tools that
addresses the problems of how to efficiently collect perfor-
mance data and how to provide users with useful guidance
to find bottlenecks. We described a prototype implementa-
tion of the system, and presented a case study based on the
prototype. These preliminary studies showed that our new
technique can reduce the volume of performance data that
needs to be collected by 1 to 2 orders of magnitude.

Based on the results of the prototype implementation,
we have started to build a full scale implementation on the
Thinking Machines CM-5, and plan to develop a version
for the Intel Paragon in the near future. We are also creat-
ing the necessary infrastructure for dynamic instrumenta-
tion on these machines. In addition, we plan to enhance the
graphical interface of the Performance Consultant.

References
1. T. E. Anderson and E. D. Lazowska, "Quartz: A Tool for

Tuning Parallel Program Performance", Proc. of the
1990 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Boston, May 1990, pp.
115-125.

2. P. C. Bates and J. C. Wileden, "EDL: A Basis For
Distributed System Debugging Tools", 15th Hawaii
International Conference on System Sciences, January
1982, pp. 86-93.

3. T. Bemmerl, A. Bode, P. Braum, O. Hansen, T. Tremi
and R. Wismuller, The Design and Implementation of
TOPSYS, TUM-INFO-07-71-440, Technische
Universitat Munchen, July 1991.

4. B. Bruegge, "A Portable Platform for Distributed Event
Environments", Proc. of the 1991 ACM/ONR Workshop
on Parallel and Distributed Debugging, Santa Cruz, CA,
May 20-21, 1991, pp. 184-193. appears as SIGPLAN
Notices, December 1991.

5. UNICOS File Formats and Special Files Reference
Manual, SR-2014 5.0, Cray Research Inc.

6. UNICOS Performance Utilities References Manual, SR-
2040 6.0, Cray Research Inc.

7. D. DeWitt and R. Gerber, "Multiprocessor Hash-Based
Join Algorithms", Proc. of the 1985 VLDB Conference,
Stockholm, Sweden, August 1985, pp. 151-164.

8. A. J. Goldberg and J. L. Hennessy, "Performance
Debugging Shared Memory Multiprocessor Programs
with MTOOL", Proc. of Supercomputing’91 ,
Albuquerque, NM, Nov. 18-22, 1991, pp. 481-490.

9. S. L. Graham, P. B. Kessler and M. K. McKusick,
"gprof: a Call Graph Execution Profiler", SIGPLAN ’82
Symposium on Compiler Construction, Boston, June
1982, pp. 120-126.

10. M. T. Heath and J. A. Etheridge, "Visualizing the
Performance of Parallel Programs", IEEE Software 8, 5
(September 1991), pp. 29-39.

11. J. K. Hollingsworth, R. B. Irvin and B. P. Miller, "The
Integration of Application and System Based Metrics in
A Parallel Program Performance Tool", Proc. of the
1991 ACM SIGPLAN Symposium on Principals and
Practice of Parallel Programming , Williamsburg, VA,
April 21-24 1991, pp. 189-200. appears as SIGPLAN
Notices, July 1991.

12. J. K. Hollingsworth and B. P. Miller, "Parallel Program
Performance Metrics: A Comparison and Validation",
Supercomputing 1992, Minneapolis, MN, November
1992, pp. 4-13.

13. A. D. Malony and D. A. Reed, "A Hardware-Based
Performance Monitor for the Intel iPSC/2 Hypercube",
1990 International Conference on Supercomputing,
Amsterdam, June 11-15, 1990, pp. 213-226.

14. B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.
Lim and T. Torzewski, "IPS-2: The Second Generation
of a Parallel Program Measurement System", IEEE
Transactions on Parallel and Distributed Systems 1, 2
(April 1990), pp. 206-217.

15. A. Mink, R. Carpenter, G. Nacht and J. Roberts,
"Multiprocessor Performance Measurement
Instrumentation", IEEE Computer 23, 9 (September
1990), pp. 63-75.

16. K. Schwan, R. Ramnath, S. Vasudevan and D. M. Ogle,
"A language and system for parallel programming",
IEEE Transactions on Software Engineering, April 1988,
pp. 455-471.

17. J. P. Singh, W. Weber and A. Gupta, "SPLASH:
Stanford Parallel Applications for Shared-Memory",
Computer Architecture News 20, 1 (March 1992), pp. 5-
44.

18. E. T. Smith, Debugging Techniques for Communicating,
Loosely-Coupled Processes, PhD Thesis, University of
Rochester, December 1981.

19. S. S. Thakkar, Personal Communication.
20. D. Wybranietz and D. Haban, "Monitoring and

Performance Measuring Distributed Systems during
Operation", SIGMETRICS, Santa Fe, New Mexico, May
1988, pp. 197-206.

21. C. Yang and B. P. Miller, "Critical Path Analysis for the
Execution of Parallel and Distributed Programs", 8th
Int’l Conf. on Distributed Computing Systems, San Jose,
Calif., June 1988, pp. 366-375.

-- --


