DREGS: A DISTRIBUTED RUNTIME
ENVIRONMENT FOR GAME SUPPORT

by

Allan Bricker
Tad Lebeck
Barton P. Miller

Computer Sciences Technical Report #657

August 1986

DREGS: A Distributed Runtime Environment for Game Support

Allan Bricker
Tad Lebeck
Barton P. Miller

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

ABSTRACT

DREGS, a distributed environment for game support, simplifies the task of imple-
menting multi-player games. DREGS solves the problems of concurrency control, syn-
chronization, and communication as they apply to distributed games. DREGS provides
support for the update and control of replicated objects and uses a central arbitration
scheme to enforce a strict ordering of events. DREGS has been implemented to run
under any 4.3BSD Unix compatible system and operates across a network of heterogene-
ous architectures.

A game description language, GDL, provides a framework for programming
multi-player distributed games. GDL is a simple language that generates complex distri-
buted programs. It is an object-based language, where objects are defined in terms of
their input events and their corresponding actions. The programmer writes the game as if
it were a serial program, without concern for concurrent activities. GDL also frees the
programmer from the details of device and network interfaces.

The combination of the DREGS runtime and GDL frees a game designer from the
distributed aspects of multi-player games. This freedom allows designers to concentrate
their efforts on better, more interesting games. DREGS has been used to implement an

N-way talk program, a tank game, and a flying saucer space game.

1. Introduction

Powerful, low-priced personal workstations
with bit-mapped displays are becoming an
integral part of a modern computing environment.
This trend, combined with computer scientists’
natural appetency for computer games, results in
the need for more sophisticated game technology.
The goal of DREGS is to provide a distributed
runtime environment for game support that will
allow multi-player games to be easily imple-
mented for any 4.3BSD Unix system. DREGS is
not in itself a game; it provides a framework on
which to build multi-player games. This paper

describes the DREGS system and the manner in
which it simplifies a game designer’s task.

One may question the validity of devoting
resources to the development of a game writing
system. Game research, however, is important
for several reasons. First, games are a primary
tool for introducing people to the use of comput-
ers. Second, distributed games represent a
specific area within distributed computing sys-
tems. Finally, games are fun.

Historically, computer games have been
limited to single-player games; improvements to

Research supported in part by the National Science Foundation grant MCS-8105904 and a Digital Equipment Corporation

External Research Grant.

DISPLAY TECHNOLOGY

High Resolution
Text ASCII Graphics Graphics
1 Star Trek Star Trek Star Trek
Adventure Rogue Pit-Fall
P
N) VS Tennis
L
u
A 3
M
of Y
B 4 Gauntlet
E
E ~/ ~v
R N VoY
R °
S o
Unix Xerox
N Perquacky
MazeWar MazeWar

Figure 1: Game Space

these games generally concentrated on display
techniques. Early games depended primarily on
textual descriptions. Later games attempted to
provide a graphical interface on ASCII terminals,
representing various objects with normal charac-
ters. More recent games were designed to use
high resolution graphic displays, such as those
used for video arcade games or those attached to
personal workstations, to provide a more realistic
image of the objects. Adventure, Rogue, and the
arcade game Pit Fall, games in which players
seek treasures in a dangerous environment, exem-
plify the trend towards improving display tech-
niques. Many versions of Star Trek have also
been produced, culminating in a vector graphics
video arcade version of this classic computer
game.

A recent direction taken in the development
of computer games is to allow multiple players to
compete against one another. For example, Per-
quacky®, a word game from the company Lake-
side, has been implemented as a multi-player
game that uses a textual interface. MazeWar, a
game in which players hunt each other in a two-
dimensional maze, has been implemented for
several systems. A Unix implementation uses
ASCII characters to display the game board,

while implementations for various Xerox operat-
ing systems use bit-mapped displays. Multi-
player computer games, though generally very
popular, are notably scarce because they are more
difficult to implement than single-player games.

The Game Space concept can be used
when classifying computer games. Game Space
is defined as a two-dimensional coordinate sys-
tem with display technology as one axis and the
number of players allowed as the other. Figure 1
lists several existing games and shows their posi-
tions in Game Space. The list of single-player
games is hardly exhaustive; the list of multi-
player games, however, is fairly comprehensive.

DREGS provides a framework that frees
the multi-player game designer from the details of
implementing a distributed system. This freedom
is available because DREGS provides the neces-
sary communication and synchronization
mechanisms, allowing game designers to concen-
trate their efforts on creating a wide variety of
interesting multi-player games. The use of
DREGS in conjunction with high resolution
graphic display techniques allows games to be
created that effectively span Game Space.

The remainder of this paper discusses the
problems involved with distributed games and our

Display Output
9 Display P
Native
Player #1 Events Clone
Player #1
Game Site #1
Other Player Events
Other Game Sites

Figure 2: Abstract Distributed Game Model

solutions to these problems. Section 2 briefly
presents some problems in distributed program-
ming and indicates how they affect distributed
games. Section 3 develops an abstraction for
describing games, and uses this abstraction to
present the DREGS model of a game. The sec-
tion then discusses how this model solves the
problems presented in section 2. Section 4
describes the Game Description Language
(GDL), and shows how using the language sim-
plifies the task of the game designer. Section 5
presents some performance considerations and
explains certain limitations of DREGS. Finally,
section 6 presents the current state of DREGS
and GDL, and discusses our experiences using
them.

2. Problems

A common belief is that writing distributed
programs is more difficult than writing sequential
programs. The difficulties arise because the pro-
grammer has to contend with concurrency, syn-
chronization, communication protocols, and fault
tolerance (e.g., see [1]): issues not encountered
when writing sequential programs. A distributed
game has the added complexity of requiring the
capability of updating replicated data structures
concurrently, Tight timing constraints result
because the game must be responsive to player
input. DREGS addresses the issues of con-
currency, synchronization, and communication
protocols while attempting to provide real time
response. Currently, DREGS makes no attempt
to provide fault tolerance. '

3. The Game Model

We first present an abstract model to
describe a distributed game. We then present the
DREGS model of a game using this abstraction.
We go on to discuss how the DREGS model
solves the problems associated with concurrency,
synchronization, communication protocols, con-
current updates, and timing constraints.

3.1. The Abstract Model

A distributed game consists of a collection
of game sites, one for each player. Within each
game site is an input facility, a display facility,
and a set of game objects for each player (see
Figure 2). Each object represents a distinct thread
of control at the game site. There are two types
of objects: those created at the local site and those
created at remote sites. Objects created locally
are termed natives while objects created
remotely, and replicated locally, are termed
clones. All objects, native or clone, accept events
as input and perform corresponding actions. As
events are generated by a user, they are delivered
to the local native objects and to its remote
clones. These events are delivered to each object
at the same time, and in the same order, to ensure
that the corresponding actions are performed
simultaneously at each site.

3.2. The DREGS Model

In the DREGS model, each game site
includes an Input Manager, a Game Manager,
and an Qutput Manager. In addition to the col-
lection of game sites, a DREGS game includes

Player {1 Inputs

Output
Mantgger

Display Output

Native

Game Manager

Input Clone
Manager
Player #1 .
Game Site #1 E
— .
* ARBITER All Players Events
Player #1 Events

Figure 3: DREGS Model, with Communication Paths

one central Arbiter (see Figure 3). The following
subsections discuss the functions of the Input,
Game, and Output Managers, and the function of
the Arbiter. Subsection 3.2.3 describes the com-
munication paths of a DREGS game.

3.2.1. Input, Game, and Output Managers

The Input Manager takes input from the
player and translates it into an event. This event
will eventually be delivered to all Game
Managers.

The Game Manager receives all events
generated by each Input Manager, and dispatches
them to the appropriate objects. The objects then
perform the cormesponding actions. Next, the
native objects are queried about interactions with
other objects, clone or native, possibly producing
new events. These new events are delivered to all
Game Managers, including the Game Manager
that produced the new events, as though they had
come from the Input Manager. Only the native
objects are queried to avoid concurrent updates
and to reduce the amount of work to be done at
each site. Finally, the display output is sent to the
Output Manager.

The Output Manager displays the output
produced by the objects. No Output Manager is
provided by DREGS, but X [2], Andrew [3], and

Curses [4] are examples of available Output
Managers.

3.2.2. Arbiter

The Arbiter accepts events from all Input
Managers and distributes them to all Game
Managers. In this way, the Arbiter simplifies the
communication machinery of the Input Manager
and Game Manager by allowing them to perform
their respective input and output of events on a
single data stream. The alternative is to have
each Input Manager connected to each Game
Manager, forcing them to manage a data stream
for every active player. The simplified process
interconnect structure also drastically reduces the
number of messages transmitted.

By quantizing time, the Arbiter guarantees
a temporally consistent execution of all actions.
The Arbiter buffers all events it receives during a
given time-quantum. At the end of each time-
quantum the Arbiter sends the events as one mes-
sage to each Game Manager. Sending a message
at the end of each time-quantum also serves to
synchronize the Game Managers.

Key
. GDL |
; N GDL ... User Supplied
| Program | Compiler O GDL Generated
Device Input DREGS User
: Dependent ! to Event . i Supplied !
; put Mapping Runtime i Routines
Input o Game
Arbiter
Manager Manager

Figure 4: Game Generation From a GDL File

3.2.3. Dregs Communication

The Input Manager has one data path to the
Arbiter on which it sends events. The Game
Manager has two data paths: one on which it
receives events from the Arbiter, and the other on
which it sends events to the Arbiter. The Game
Manager needs this second path to generate new
events as a result of an object’s action. Figure 3
shows the communication paths between the
Input Manager, Arbiter, Game Manager, and Out-
put Manager. To support heterogeneous architec-
tures, messages sent between the Input Manager,
Arbiter, and Game Manager are encoded using
XDR, Sun Microsystems®, Inc.’s external data
representation protocol [5].

4. GDL

We have created GDL, a game description
language, to facilitate automatic generation of
DREGS games. A game is specified by defining
all objects within the game. An object consists of

state information and input events for that object.

‘Event types fall into four categories: generic

object events generated by DREGS, user-defined
events generated by the Input Manager, events
generated by a Game Manager calling a repli-
cated procedure, and events which occur due to
an interval timer expiring. For each specified
input event, the game designer defines the
corresponding action routine. Given a game
defined in GDL, a GDL compiler will automati-
cally generate the appropriate Input and Game
Managers, as well as an Arbiter. Figure 4 shows
what a GDL. compiler generates based on game
designer’s GDL program. An example of a GDL
program to implement a simple game is given in
the Appendix. The following subsections
describe the four event types.

4.1. Generic Object Events

There are several generic events defined for
all objects. These events deal with object crea-
tion, destruction, update, and display. The game
designer can optionally specify code for any of
the following generic events:

STARTUP This event will cause code to be
executed once when the Game
Manager is initially invoked. This
code is used to initialize the
game-specific state as well as an
Output Manager.

This event will cause code to be
executed after an object is created.
For each object, a procedure
object_ Create is automatically
generated. This procedure creates
an instance of the object.

This event will cause code to be
executed before the DREGS run-
time removes an object after a
player quits.

This event will cause code to be
executed once per time-quantum
even if the object has not received
new input events. This code typi-
cally will be used to update the
positions of movable objects.

This event will cause code to be
executed on native objects to allow
them to check for intersections
with other objects.

This event will cause code to be
executed once per time-quantum to
give an object the opportunity to
display itself.

INITIALIZE

TERMINATE

UPDATE

CONTACT

DISPLAY

4.2. Input Manager Events

The game designer defines Input Manager
events by specifying the mapping of user inputs,
such as mouse or keyboard input, to object-
specific events. The game designer is also
responsible for specifying the corresponding code
to be executed when an event occurs.

4.3. Replicated Procedure Events

Replicated procedures are used by DREGS
for performing remote procedure calls at multiple
sites. They are not used to ensure reliability as in
Circus [6]. When a replicated procedure is
called, an event is generated by the Game
Manager and sent to the Arbiter in the same way

that the Input Manager sends an event to the
Arbiter, Thus the event will be distributed to all
Game Managers during the following time-
quantum and the body of the replicated procedure
will be executed at all game sites.

4.4. Interval Timer Events

The game designer may specify an arbi-
trary number of interval timer events. An interval
timer is specified by giving a time-quantum, Q,
and action code to execute every Q ticks. The
timer is automatically reset to O after expiring.

5. Performance Considerations and Con-
straints

One of the performance considerations of
DREGS is to allow a game designer to provide
real-time animation. Animation in television or
in movies is obtained by displaying a sequence of
still images quickly enough so that the eye will
blend them into smooth motion. The number of
frames shown per second ranges from 30 frames
per second for television, to 24 frames per second
for a 32 millimeter film, to 18 frames per second
for an 8 millimeter film. The goal for the current
version of DREGS is to allow a minimum of 10
screen updates per second.

Smooth animation in DREGS is limited by
several factors: the inter-machine message delay,
the number of players, the desired time-quantum
between updates, and the screen update time. We
have derived a simple relationship that holds
among the first three factors. Since DREGS does
not provide an Output Manager, the screen update
time was not taken into consideration.

We have observed the inter-machine mes-
sage delay, D, to be about 10ms for our imple-
mentation, which uses XDR Record Streams [5]
over a 10Mb Ethernet between DEC Vaxstation
IIs running 4.3BSD Unix. The number of
players, N, and the time-quantum, Q, are bound
by the relationship:

NxD<Q.

Intuitively this means that the delay for sending
messages to all players (NxD) must be less than
the time-quantum between updates. By fixing the
smallest acceptable time-quantum, @, you can
derive the maximum number of players, N. For
example, in our current configuration D is 10ms
and we have set Q to 1/10th of a second (100ms),
limiting the number of players to 10.

6. Concluding Remarks

We have implemented several games using
DREGS. From our experiences, we have found
that the DREGS game model is appropriate,
workable, and easy to use. The central Arbiter
plays a crucial role in this model by simplifying
the operation of the Input and Game Managers
and by providing synchronization. Further, by
using XDR to encode messages, we are able to
operate in a heterogeneous environment with little
overhead.

Although we have not yet completed a
GDL compiler, hand-compiling several GDL. pro-
grams has shown us that such a compiler is feasi-
ble. Qur experiences have shown that imple-
menting a game using GDL is straightforward.
Currently, the most time consuming part of
implementing a DREGS game is hand-compiling
the GDL program. Once the GDL compiler has
been completed, the task of implementing a
DREGS game will be greatly simplified.

To date, we have written three programs
using DREGS and GDL. PLine, an N-way talk
program, was the first. We wrote PLine because
it is simple and does not require an extensive
graphical interface. The program demonstrated
the workability of DREGS and showed that ade-
quate performance could be obtained.

To further test DREGS and GDL., we wrote
Tank, a game in which the player manipulates a
two-dimensional tank, Tank is a more compli-
cated game, consisting of two types of graphical
objects (tanks and missiles) which can move vert-
ically or horizontally. Implementing Tank
showed us that GDL is a versatile, and therefore
powerful, tool for specifying games.

We modified and improved Tank to create
our most recent game, SpaceWar. The premise
of SpaceWar is the same as that of Tank; how-
ever, in SpaceWar the tanks have been replaced
by flying saucers that can move at arbitrary
angles. Again, DREGS and GDL made this oth-
erwise challenging task relatively simple and
straightforward. ‘

Finally, from the experiences of imple-
menting PLine, Tank, and SpaceWar we learned
that games really are fun!

7. Acknowledgements

We would like to thank our wives, Sharon
and Sue, for their patience while we slaved over
the design and implementation of this project.

Their careful reading and editing eliminated
numerous errors and greatly improved the reada-
bility of this paper. The work that Robert Hagens
has done on the GDL compiler will undoubtedly
make future game generation much easier.

We would also like to thank Andy, Beau,
Brian, David, Derek, Dick, Joel, Julie, Kishore,
Nancy, Prasun, Scott, Toby, and all the others that
helped us "debug" our games.

8. References

1. R. Finkel and U. Manber, ‘‘DIB - A Distri-
buted Implementation of Backtracking,”
Proceedings of the 5th International
Conference on Distributed Computing Sys-

tems, pp. 446-452 (May 1985).

2. 1. Gettys, R. Newman, and T. D. Fera,
“Xlib - C Language X Interface,”” X
Reference Manual (November 1985).

3. J. Morris, M. Satyanarayanan, M. Conner,
J. Howard, D. Rosenthal, and F. Smith,
“‘Andrew: A Distributeéd Personal Comput-
ing Environment,”’ Communications of the
ACM 29(3), pp. 184-201 (March 1986).

4. K. Amold, ‘‘Screen Updating and Cursor
Movement Optimization: A Library Pack-
age,”” in UNIX Programmer’s Manual.

5. B. Lyon, ‘““Sun External Data Representa-

tion Protocol Specification,”” Sun
Microsystems, Inc. Technical Report (April
1985).

6. Eric C. Cooper, “‘Replicated Distributed
Programs,’’ Proceedings of the 10th Sym-
posium on Operating Systems Principles,
pp. 63-78 (December 1985).

9. Appendix

This Appendix contains an example of a GDL program for a simple game in which balls move on the
screen. When a ball collides with another, it explodes and a new ball is created. The player can control the
speed at which the ball moves by inputing a single digit ranging from O (stopped) through 9 (very fast).

STARTUP BEGIN * Define initialization code *!
struct Ball b;
InitOutputManager(); /* Initialize the Output Manager */
InitGame(); [* Initialize the Game State */
InitBall(&Db); /* Fill in initial values for b */
Ball_Create(&b); 1* object_Create routines take pointers to objects */
END
OBJECT Ball /* Define an object called ’Ball’ */
BEGIN
STATE BEGIN * Define Ball state information */
int b _x,b_y; /* X and Y coordinates of the ball */
int b_dir; /* Direction of travel */
int b_speed; /* Speed at which the ball is moving */
END
/*

*% For each object the following variables are
** gutomatically defined and set by the runtime environment:

Hok object_Ptr a pointer to the object
Hok object _Input a structure containing the input
that caused the event.
*/
CONTACT BEGIN 1* Define code to check for collisions */
if(HitBall(Ball_Ptr)) { /* HitBall is externally defined */
Ball Explode(Ball Ptr); * Ball_Explode is defined below */
1 else if(HitWall(Ball Ptr)) { /* HitWall is externally defined */
Ball Bounce(Ball_Ptr); * Ball_Bounce is defined below */
}
END
UPDATE BEGIN [* Define code to update a ball's position */
%
** Xincrement and Yincrement are externally defined
*/

Ball_Ptr->b_x += Xincrement{Ball Ptr->b_dir] * Ball_Ptr->b_speed;
Ball Ptr->b_y += Yincrement[Ball Ptr->b_dir] * Ball Ptr->b_speed;
END

DISPLAY BEGIN 1* Define code to display a ball */
DisplayBall(Ball Pir);
END

.9-

REPLICATED Ball Explode /* Define a replicated procedure Ball Explode */
BEGIN
struct Ball b;
Explode(Ball_Ptr); /* Call a local procedure to explode the ball */
InitBall(&b); [* Initialize another ball */
Ball_Create(&b); /* Create the new ball */
END
REPLICATED Ball_Bounce 1* Define a replicated procedure Ball Bounce */
BEGIN
Ball Pu->b_dir = Reflect(Ball Ptr); * Calculate new direction */
END
INPUT "0-9° /* Define an input event */
BEGIN
J*
** Ball Input.i_char will be set to the input character
*/
Ball Ptr->b_speed = (int) (Ball_Input.i_char - ’0’);
END
END [* Object Ball */
TIMER 60 SECONDS I* Define code to be executed every 60 seconds */
BEGIN
CheckForMail();

END

