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sequential while that was highly parallelized (it can be shown that the 
number of time units used by the previous algorithm is O(N log d )  
while that for this algorithm is O(Nd)).  Several variants of these 
algorithms can be easily constructed by noting that we have given 
algorithms at two extremes of the spectrum. 

Fault tolerance is an aspect we have not addressed here. Observe 
that it is not trivial to define the sorting problem when some sites 
could fail at any time. In fact, since the topology considered is a 
straight line, the network can get partitioned due to a single edge/site 
failure making it impossible to communicate a message from a site to 
all other sites. Our algorithms do not work in such cases. In fact, we 
know of no work on fault-tolerant sorting on any topology. 
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DPM: A Meaqurernent System for Distributed Programs 

BARTON P. MILLER 

Abstract-DPM is a system for monitoring the execution and perform- 
ance of distributed programs. An important characteristic of its design is 
the simplicity of each part of the design. This simplicity has resulted in a 
system of tools that has a wide range of applications and that was 
relatively easy to construct. We start with a simple framework for 
distributed computation based on message interactions. We use this 
framework to develop a structure for a measurement tool for distributed 
programs, implemented for both the DEMOWMP and Berkeley UNIX 
operating systems. 

DPM can measure communication statistics, dynamic program struc- 
ture, and parallelism. It can be used for post mortem analysis of a 
program’s performance, real-time performance monitoring, and geoerat- 
ing data to be used by the operating system for such things as a scheduler 
for load balancing. 

Index Terns-DEMOS, distributed program, monitor, performance 
evaluation. 

Manuscript received October 15, 1985. This work was supported by 
National Science Foundation, Grant MCS-8010686, the State of California 
MICRO program, and the Defense Advance Research Projects Agency (DoD) 
Arpa Order 4031 monitored by Naval Electronic System Command under 
Contract N00039-82-C-0235. 

The author is with the Department of Computer Sciences, University of 
Wisconsin-Madison, Madison, WI 53706. 

IEEE Log Number 8715440. 

243 

I. INTRODUCTION 
This paper presents a framework for measuring the performance of 

distributed programs. This framework includes a model of distributed 
programs, a description of the measurement principles and methods, 
and a guideline for implementing these ideas. We have constructed a 
measurement system (called the Distributed Programs Monitor, or 
DPM) based on these concepts. DPM has been implemented and used 
for measurement studies on two different operatings systems 
(DEMOS/MP [I], [2] and Berkeley UNIX [3]). 

Collecting data about a program’s performance is not enough; we 
must supply some form of interpretation or analysis of the data. We 
include, as part of DPM, several analysis techniques that can provide 
information about the structure, the amount of parallelism, and the 
communications patterns of a distributed program. DPM is more than 
a particular implementation of a measurement facility. It provides a 
framework for other activities that are based on the monitoring of a 
distributed program. Some of these activities include real-time 
monitoring and display of the activities of a program, and use of the 
measurement data for feedback scheduling activities such as load 
balancing. 

A .  Overview 
The driving principle in the design of DPM is simplicity. The 

model of distributed computation is simple in the sense that it is 
general enough to make it applicable to a wide range of systems. Our 
methods of measurement are simple to ensure easy implementation. 
The implementation of our tools is simply structured to provide 
confidence in their correctness. 

The goal of simplicity has produced a subordinate goal, transpar- 
ency. The goal of transparency enforces simplicity of use for the 
programmer. To measure a program we should not have to 
recompile, relink, or write in a special style or language. We should 
not have to supply special information to the measurement system to 
have it function correctly.’ Transparency also means that the 
performance of the program being monitored is not significantly 
disturbed. A monitor built in software will always have some affect 
on a program’s performance, but our design goal is to minimize this 
effect. This goal will influence both the design and the implementa- 
tion of the measurement system. 

Our measurements are done passively, as opposed to systems that 
interact with the computations-such as happens with interactive 
debuggers. By this, we mean that actions such as redirection of 
messages, breakpoints, and modifications of the message streams are 
not allowed. DPM is an observer of the computation, and not a 
participant. 

B. What is a Distributed Program? And Other Definitions 

O u r  model of distributed programs provides the guidelines for the 
design of DPM. It is not a formal model in that we do not use it as the 
basis for mathematical analysis; rather, the model can be considered 
as a reference point for the design and implementation of thp 
measurement system. 

We define a distributed program to be a collection of processes 
cooperating to perform some computation. The component processes 
are not constrained to run on the same machine. No assumptions are 
made about the locations of the processes. A distributed program 
(more simply called a computation) is made up of processes that are 
the basic building blocks of a computation. A process consists of an 
address space containing code and data, and an execution stream. 
Each process has access only to its own address space. Processes do 
two things: compute and communicate. Computing is the normal 
execution of instructions and does not affect the state of other 
processes. These instructions are referred to as internal events. 
Communication is the means by which a process will interact with 

Note that we say “have to.” The option is still available to augment the 
measurement system with, e.g., compiler supplied information. 
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other processes and the operating system. Interactions are referred to 
as external events. The complexities of the distributed environment 
become apparent when a process in a computation interacts with 
another part of the computation. 

Communication is based on messages. A message allows the 
copying of part of one process’s address space into that of another 
process. A message is an interaction involving exactly two processes: 
the process originating the data (the sender) and the process 
consuming the data (the receiver). We make no restrictions on the 
structure of the message delivery. The communications path may be 
unidirectional or bidirectional. The message passing operations may 
be synchronous or asynchronous. Message delivery may or may not 
be guaranteed or required to preserve message order. Message paths 
may be dynamically or statically created and destroyed, and the 
processes in the computation may be dynamically created and 
destroyed. We make no assumptions about the network or facility 
underlying the communications mechanism. Our model of computa- 
tion applies to a wide range of systems because of its simplicity. 

Our model of computation does not include systems that have 
processes with shared address spaces. Conceptually, a shared 
memory system can be modeled as a message-based system (and vice 
versa) [4]. In practice, the interactions in a message-based system are 
generally easier to detect than in a shared memory system, and 
therefore easier to monitor. 

Processes execute on machines that do not have direct access to 
each other’s memories. Each machine has a portion of the operating 
system running on it to support process execution, communications, 
memory management, and device management. The communication 
functions supplied by the operating system provide for interprocess 
communications both within and between machines. 

II. THE MEASUREMENT DESIGN 
Our measurement design follows the basic philosophy of ‘‘look, 

but don’t touch” with respect to the program being studied. The goal 
is minimal disturbance of the execution of the program. This means 
that the computation being measured should not execute more slowly 
or achieve different results because it is being measured. If the cost of 
measurement is high, then the act of measuring a computation could 
substantially change its execution behavior. These guidelines have 
determined the design of our measurement system. This section 
provides an overview of our design. 

Fig. 1 gives an overview of event detection and our measurement 
system. Internal events are not visible from outside a process and are 
therefore not detected. The detection of external events is referred to 
as metering. A trace is produced for each event that is detected. After 
the trace is produced, a decision is made whether or not to keep the 
trace. The selection decision is called filtering. If the trace is kept, it 
is stored until it is processed to provide results that may be used to 
understand the behavior of the process (and the overall computation). 
We call the processing of the traces analysis. 

The metering stage of measurement lies within the kernel of the 
operating system because of the desire not to change the program 
itself. The facility should be simple, to make the necessary 
modifications as simple as possible. Changes to an operating system 
kemal are typically much more difficult than those to parts of the 
system outside the kernel.* Alternatively, the event detection could 
be placed in the language run time library, compiler-generated code, 
or could be inserted directly by the programmer. While these 
methods may be simpler to implement, they provide for less 
generality and less transparency. For example, these alternatives 
might require the programmer to use a particular language or might 
allocate an available file descriptor. 

The filtering stage provides for a flexible set of rules to perform 

* In our experience, the effort necessary (including design, coding, and 
testing) to put a given function in the operating system kernel is about 10 times 
greater than implementing the same function outside the kernel (in a process). 
A similar statement can be made when moving kernel functions into 
microcode. 
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Fig. 1. Events and the measurement model. 

data reduction. This facility allows easy change to the selection 
criteria and easy adaptation to new or changed trace types. 

The analysis of the data provides a summary of execution of the 
computation. It is at the analysis stage that useful information is 
provided about the computation. The goal of the measurements 
dictate the type of analysis being performed and the overall structure 
of the measurement system (see Section IV). 

III. THE MEASUREMENT FACILITY 
The measurement facility is described by the events that we 

measure and the structure of the measurement tools. The measure- 
ment tools consist of the previously mentioned components (meter, 
filter, analysis) and user interface. We describe the events, meter, 
filter, and user interface in this section. The analyses are described in 
Section IV. 
A.  Events and Trace Records 

There is a set of meter events that reflect the basic operations as 
seen by the programmer of a distributed computation. The structure 
of the metering stage is very simple due to the small set of meter 
events (currently 10). These event types are, for the most part, the 
same across the different operating systems supporting the measure- 
ment facility. These events consist primarily of activities (such as the 
sending and receiving of a message) that reflect interactions between 
processes. Other events related to communications are also-recorded. 
This group of events consists of actions that effect the creation, 
modification, and destruction of communications paths. The last 
group of recorded events pertains to the state of the processes in the 
computation. The basic events are the creation of a process, the 
starting and stopping of its execution, and the destruction (termina- 
tion) of the process. Depending on the system from which the 
measurements are being extracted, there may be slight variations in 
the details of the data collected with each event type. 

METRIC [5] allowed the users to specify their own event trace 
types. It would be easy to add such a mechanism to DPM. Only the 
meter would need to be changed and these changes would be minor. 
We chose to not provide this facility for reasons of transparency. 
Userdefined traces would require explicit use of the trace facility 
within the processes being measured. 

Included with each event trace is a standard header describing the 
trace. The header of an event trace contains the following fields: 
MACHINEID (machine from which the trace came), PROCTIME 
(amount of CPU time used by this process up to the time this trace 
was generated), TIME (wall clock time as known by this machine), 
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TRACETYPE (type of event described by this trace), PC (program 
counter indicating the location in the process causing the event), and 
LOADAVERAGE (current number of runable processes on this 
machine). 

The event trace types are: SEND, RECEIVECALL, RECEIVE, 
MESSAGEQUEUED, CREATEPATH, DESTROYPATH, 
CREATEPROCESS, STARTPROCESS, STOPPROCESS, and 
DESTROYPROCESS. 

The meter traces do not include the contents of the messages sent 
by the users. The meter traces record only the occurrence of an event 
and information about which processes were involved. This results in 
less trace data to communicate and store. 

Even though we do not include the message contents in the traces, 
we can still derive information about specific activities within the 
processes that are being measured. By using the PC information in 
the trace header we can identify the specific procedure within the 
process that caused the event. These are the same techniques used by 
high-level language debugger to allow symbolic reference to program 
procedures and variables. 

B. Metering 
Metering is the activity that takes place within the operating system 

kernel to extract the events of interest. This portion of the 
measurement facility is the only change required to the supporting 
operating system. 

The point in the operating system kernel where the necessary 
information is available must be located to meter the specified events. 
At these points, we insert meter probes into the code of the kernel. 
These probes are procedure calls to a software module (meter 
module) that is responsible for passing the traces to the filter. The 
parameters for the specific trace being generated are passed to the 
meter module with the procedure call. These values, along with the 
standard format header, are passed to the filter. A communications 
path, called the meter path, is used by the metering routines for 
sending traces to the filter stage. 

We try to minimize the performance overhead of generating the 
trace messages. Two mechanisms help in this effort. The first is the 
buffering of the trace messages. The major cost in generating the 
traces is that of sending the message over the meter connection. We 
typically buffer up to 50 traces (for a given process) before sending a 
trace message. The second mechanism that contributes to the 
performance is that the meter module can access the communications 
routines with substantially less overhead than could a process. 

C. Filtering 
Filtering is the data selection and reduction stage in the measure- 

ment system. It reduces both the size and number of traces as they are 
produced. Data are received from the metering stage, filtered, and 
then passed on to the analysis stage or stored for later analysis. The 
scheme currently used in the measurement system is based on a 
general, one-level, pattern matching algorithm. More sophisticated 
schemes (such as presented in [6]) may be used in subsequent 
versions of DPM. This filter also allows for the specification of trace 
record formats, so that the filter can process traces coming from 
different systems. A complete description of the current filter design 
is presented in [7]. 

Typically, the processes forming a computation send traces to a 
single filter, which selects and stores the data for later analysis. We 
would expect this structure to be useful to a programmer evaluating a 
new program. Different configurations provide for the ability to 
apply the measurement system to different problems. For example, 
we could have a filter collect data on all communications acti+ities 
within a single machine. This type of configuration allows the 
measurement of message quantity and frequency, queue lengths, and 
process scheduling. DPM can perform the tasks that would have 
traditionally required specialized tools to be built. It takes no extra 
work to extend this type of measurement to a collection of machines, 
or to the entire system. If network (communication) load is critical, 
then we can have a filter on each machine and merge the trace records 

when the computation has terminated. If CPU load is critical, then the 
filter process(es) can be placed on its (their) own machine@). 

D. User Interface 
The user interface to DPM is a command interpreter that allows the 

programmer to specify the 1) program (processes) to run, 2) events to 
monitor, 3) name of the filter (with descriptions and templates, if the 
standard filter is used), and 4) the analyses to be run on the trace data 
after they are collected. A complete description of the command 
language and structure of the user interface is given in [8] and [7]. 

IV. ANALYSIS TECHNIQUES 
A collection of data needs some form of interpretation to have 

some meaning. A basic tenet of this paper is that the measurement 
model and techniques, and the associated tools, can provide useful 
data. To demonstrate this, we describe several approaches for the 
analysis of the trace data generated by our measurement system. 
These analyses are implemented and working in DPM. 

A. Basic Communications Statistics 
We have defined a computation to be a collection of cooperating 

processes. The processes cooperate, and the cooperation is based on 
some communications mechanism. It is reasonable then to want to 
know the nature of the communications between processes. Several 
basic questions come to mind. Who is talking to whom? (Which 
processes are talking to which other processes?) What is the volume 
(total message traffic) of the communications? How frequent (time 
density) are the communications? How large are messages? 

In addition to these basic questions, a few more interesting queries 
come to mind. Given information about the arrival and consumption 
of messages, we can derive information about the message queues. It 
is possible to gather statistics such as the maximum and average 
queue lengths for each process. With the same information we can 
obtain the minimum, maximum, and average time that a message 
waits in the incoming message queue before it is consumed by the 
process. We can also record the distribution of the various measure- 
ments. 
B. Detecting Paths of Causality 

When we write a computation consisting of several processes, we 
specify the order and frequency of the communications in the 
Computation. We specify this information for each interaction 
between processes. We establish rules and protocols to provide for 
the correct execution of the program. But when the entire computa- 
tion is executing, the overall interactions are more complex than 
suggested by this static picture of the computation. The increased 
complexity comes from parallel execution within the computation and 
from the fact that several partially completed activities maybe be 
simultaneously active within the computation. 

The model of computation in which we are interested for this 
analysis is that of a server. A server is a computation that receives a 
request from processes outside the computation, computes a result 
(involving one or more of the processes within the computation), and 
then returns the result to the requesting process. There are several 
questions to be answered about the behavior of a server. One 
question is: given a request message received by the server, what 
message paths within the server are most commonly traveled? This 
question can be translated to: what sequences of interprocess 
communications occur most frequently? For sequences of length two, 
we can derive this information from the basic message statistics (see 
Section IV-A). The message statistics cannot provide information 
about longer sequences of interactions. Related to the longer 
sequences of interactions is a second question: given a process that 
has just received a message, where will that process next send a 
message? This question can also be viewed as determining a 
branching probability, given a specific input to a process. 

The basic strategy for causality analysis is to identify each request 
to the server, and follow the sequence of interactions within the 
server caused by that request. To do this, we first collect SEND and 
RECEIVE traces and construct a program history graph of the events 
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in the processes, with arcs in the graph between each corresponding 
send and receive (see Fig. 2). A SEND trace is associated with its 
corresponding RECEIVE trace by using two pieces of information. 
First, we can identify the connection or link over which a message 
was sent. Second, messages sent over a given connection contain 
sequence numbers, and the SEND and RECEIVE traces record these 
sequence numbers. The program history graph represents the 
complete collection of interactions between processes during the life 
of the computation. 

To reduce the complexity of analyzing such a large quantity of 
data, we convert the problem to one of manipulating character 
strings. Each process in the computation is assigned a single letter 
designator. The two events corresponding to a message being sent 
and received are designated by the letter for the sending process, 
followed by the letter for the receiving process. For example, the first 
send and receive pair in Fig. 2 would be the string 

AB. 

We create a list of strings, where each string represents one request to 
the server and the subsequent activity within the server. These strings 
are called causality strings. 

There are three types of processes that are visible during a 
causality analysis. The first type of process is the server process. This 
process is contained within the computation that is providing service. 
The second type of process is the requestor process. Requestor 
processes are the customers of the server. They make requests and 
receive results. The last type of process is the system process. System 
processes are those processes to which the server makes requests. 
The system processes may be other servers, or perhaps a host kernel. 
Messages received from a requestor indicate a request for service 
from the server computation. Messages to system processes from the 

server are ignored (as are the responses), as we are interested in 
tracing the flow of control through the server, and not through 
external processes. 

The algorithm for building the causality strings traverses the entire 
computation graph. The list of causality strings is built by 

1) searching for each message receive event from a requestor 
process; 

2) for each such receive, the message sends immediately following 
the receive are identified; 

3) the message receives corresponding to sends in 2) are identified 
(i.e., the message arcs are followed), and steps 2) and 3) are repeated 
for each receive. 

A causality string is initially a single character, which is the 
process performing a message receive that was detected in step 1). 
Each time a send is followed (i.e., a message arc is traversed) to its 
corresponding receive [step 2)], an additional letter (identifying the 
receiving process) is added to the causality string. Events associated 
with system processes are ignored in this algorithm. For example, the 
causality strings for Fig. 2 are 

ABA 

ABCBA. 

Once we have the causality strings, there are several results that we 
can obtain from them. The first result is identifying the most 
commonly traveled paths through the server. We store these strings in 
lexicographical order with a value indicating the number of times that 
the string has occurred in the computation. This list of strings 
identifies the most commonly occurring message sequences. 

Given three processes, A,  B, and C, we use the causality strings to 
compute the probability that process A ,  having just received a 
message from process B, will next send a message to process C. This 
information is obtained by generating all of the substrings of length 
three, and then tabulating them. The probabilities cannot be 
calculated from the simple message statistics since these statistics do 
not correlate message receives with the corresponding message 
sends. 

This analysis technique was used in a study of the DEMOS/MP file 
system [9], [2]. The DEMOS/MP file system consists of four 
processes (request interpreter, directory manager, buffer manager, 
and disk interface) which function together to provide a file service to 
user processes. 

The file system was run under heavy loads (many user processes) 
and its execution was monitored by DPM. User processes were 
distributed among most of the machines. The trace data that were 
collected were used to build the graphs and strings described 
previously. Substrings of length three were used to compute the 
probability of messages flowing between the file system processes 
and these probabilities were used to construct the diagrwin Fig. 3. 
This figure shows the flow of data and control within the file system. 

The interesting result is that by using a general performance tool, 
such as DPM, and knowing nothing about the internal structure of the 
file system, we can obtain valuable information about its internal 
operations. 

For example, from Fig. 3, we can conclude the following. 
1) Messages from users go to the directory manager only 4 percent 

of the time (corresponding to file opens). This provides us with the 
ratio of file opens to readdwrites. 

2) The request interpreter asks the buffer manager for data, and 73 
percent of the time a result is immediately returned. 27 percent of the 
time the buffer manager must ask the disk interface for the data. This 
represents the buffer hit rate (cache efficiency). 

3) The buffer manager will ask the disk interface for additional 
blocks of data 17 percent of the time, representing the frequency of 
following indirect references on the disk. 

The above results give important structural information when 
provided to the programmer/analyst of the file system. These results 
were provided without the need for specialized measurement tools. 
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Fig. 3. File system skte diagram. 

C. Measuring Parallelism in a Computation 
One motivation for writing a distributing computation is to achieve 

an increase in its speed of execution. This performance increase is 
obtained by means of parallel execution of the processes within the 
computation. Once we construct a distributed program, the problem 
becomes: how do we measure the degree of parallelism in the 
execution of our program? In addition, it is useful to be able to project 
the amount of parallelism that can be achieved as we vary the location 
of processes among machines. 

The algorithm for the analysis of parallelism uses traces obtained 
from the execution of a program and constructs a program history 
graph similar to the one used in the causality analysis (see Fig. 2). An 
arc between two event nodes in the same process is labeled with the 
amount of CPU time consumed by that process between those two 
events (calculated from the PROCTIME field of the event traces). An 
arc between a SEND event and its corresponding RECEIVE event is 
labeled with the delivery time (or an estimate of the delivery time) for 
the message. Once the graph is labeled, we calculate the length of the 
longest path through the graph, t-. We also calculate the total 
amount of CPU time used by all processes in the program for this 
execution, T.  The parallelism (or speedup) is equal to T/ tm.  

This method of measuring parallelism can be used even on systems 
that are currently running other users (since it is based on process 
time, and not on real time). The techniques used for this analysis are 
described in detail in [ 101 and a study using this analysis is described 
in [ll]. 

v. VARIATIONS ON A THEME 
A. Real- Time Monitoring and Display 

In Section IV we assumed that the data analyses were performed 
after the program had completed. The structure of DPM provides the 
flexibility to use analysis routines that process trace data as they are 
generated. The trace log files can become large (we have had 
examples of 10-50 Mbyte files). and real-time monitoring does not 
require the traces to be stored. We can store the results of the analysis 
or these results as the basis for graphic displays. The graphic displays 
could also be driven from stored trace logs. 

The analysis of communication statistics presented in Section IV-A 
is easily adapted to execute in real time. The more complex causality 
and parallelism analyses would be much more difficult to perform in 
real time. 

We are currently using several types of graphic displays for the 
real-time communication statistics analysis. These are the “hot 
spots,” matrix, and history displays. The hot spots display represents 
a distributed program as a collection of nodes (processes) connected 
by directed arcs (message channels). Communication traffic levels 

are displayed by coloring the arcs between process nodes. As traffic 
levels increased, the color of an arc progresses from violet to red, 
thus identifying the active communications paths in the program. The 
numeric values associated with the traffic level are used to label each 
arc. The metrics that can be displayed on the message arcs are 
messageshecond, bytes/second, (cumulative) message counts, (cu- 
mulative) byte counts, average message sizes, and input message 
queue lengths. The processes are also colored-representing the 
mount (percentage). The hot spots display allows a programmer to 
quickly identify the program’s execution patterns of time that the 
processes execute. 

In addition to the basic display of metrics, the hot spots display can 
show the first derivative of the metrics. The derivative values provide 
information about the changes (phase behavior) in a program’s 
execution. 

The hot spot display is useful for small to medium size pkograms. 
When the number of processes increases to more thdn 10 or 15, the 
display becomes difficult to comprehend. We use the matrix display 
for larger programs. The matrix dit+lay represents a distributed 
program as a square matrix with each process labeling the same row 
and column. The values in the matrix element [ i ,  j ]  represent the 
message traffic from process P, to process P,. The matrix elements 
are colored to indicate the traffic levels as was done in,the hot spots 
display. The labels of the matrix (process names) are colored as were 
the nodes in the hot spots display. The order of the processes in the 
matrix can be changed to group together the most active processes or 
communication paths. 

The history graphs display a single value from either the hot spots 
or matrix display. This value is displayed over a time peri6d 
extending from the present time backwards. The history graph is used 
to provide a reference for the hot spot or matrix displays (which only 
present current data). 

B. Feedback Scheduling ( toad  Balancing and Other Uses) 
The analyses discussed thus far are intended to provide the 

programmer or system manager with information. This information 
may cause the programmer to restructure the program being studied 
or cause the manager to change the environment in which the 
program executes. In both cases, a human being is part of the 
feedback loop. 

It is possible to return the results of some of the data analyses 
directly to the host system. After the meter traces have been analyzed 
and reduced to some reasonable statistic, this information can be 
passed directly to the host system to be used in scheduling decisions. 
The trace data become direct feedback to the host operating system. 

We can use this structure to collect communications load data for 
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process load balancing and file migration decisions. CPU load 
information can be gathered in most operating systems, but communi- 
cations load data are more difficult. The difficulty increases if we are 
interested in data about a specific process, rather than the system as a 
whole. DPM allows us to measure communication levels between any 
two processes. 

The data collection for feedback scheduling is similar to that 
described in the previous section on system communications mea- 
surements. The same type of organization for metering and filtering 
could be used. The filters would not store the selected data. After 
filtering, the selected data would be passed on to the host system to 
provide data for scheduling. This is illustrated in Fig. 4. 

The type of resource scheduling *at can make use of the meter 
data is limited by the frequency with which the data need to be 
collected. It is reasonable to measure activities that occur with about 
the same frequency as interprwess communications, or with lower 
frequencies, since the meter traces themselves are messages. At- 
tempting to measure activities more frequent than these would overly 
degrade system performance. The measurement system can provide 
information that is gathered from other sources. These other 
sources could be more traditional performance tools gathering data 
on machine loading, memory usage, or paging activity. The meter 
message would be the medium that would carry periodic summaries 
of these other activities. 

VI. CONCLUSION 
DPM is a simple tool. Each piece was constructed to provide the 

needed functions by the most straightforward means. This simplicity 
provided for its ease of construction (in two operating systems) and 
for the flexibility of its design. Transparency to the programmer 
extended the range of applications. We can measure any program 
(including existing system services) and programs written in any 
language. We minimized the restrictions on the use of the tool. 

Two design decisions were made in DPM that have inspired some 
controversy. The first is the lack of user-defined event trace types. 
While it would be easy to add this to DPM, we have resisted the 
temptation so as to maintain transparency. The second decision was 
the lack of message contents in the meter traces. An argument for the 
inclusion of message contents comes from monitoring the synchroni- 
zation protocols in a distributed database system. For example, the 
last traces we obtained may have come during a commit/abort 
decision followed immediately by a system crash or deadlock. We 
would like to be able to know whether a commit or abort was 
occurring and this might be difficult without knowing the contents of 
the synchronization. However, the inclusion of the PC field in the 
traces provides us with information on which procedure generated the 
trace events and this could provide the additional information needed 
to discriminate between the commit and abort in our example. 

DPM is a running system. It was originally developed on the 
DEMOS/MP operating system and is now running under the 
Berkeley UNIX 4.3BSD operating system. Research on DPM 
continues. The current analyses (communication statistics, paths of 
causality, parallelism) have provided useful tools for program 
development. Work is ongoing in the areas of real-time monitoring 
facilities, feedback scheduling, and graphic display techniques. 
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On Self-Fault Diagnosis of  the Distributed Systems 

S .  H. HOSSEINI, J. G. KUHL, AND S. M. REDDY 

Abstract-The problem of achieving fault-diagnosis in a network of 
interconnected processing elements called nodes, in which there is no 
central facility to control, coordinate, or mediate among the irocessing 
elements, is considered. Every node can eventually determine the status of 
nodes and communication paths between them. A diagnostic algorithm 
for homogeneous systems (systems with only testing nodes) is given. The 
self-fault-diagmosis of nonhomogeneous systems (systems with nodes of 
varying degrees of testing capability) is studied and diagnostic algorithms 
are proposed. 

Index Terms-Distributed fault-diagnosis, homogeneous and nonho- 
mogeneous systems 
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