
A Loop-aware Search Strategy for Automated

Performance Analysis

Eli D. Collins and Barton P. Miller

Computer Sciences Department
University of Wisconsin

Madison, WI 53706-1685, USA
{eli,bart}@cs.wisc.edu

Abstract. Automated online search is a powerful technique for perfor-
mance diagnosis. Such a search can change the types of experiments it
performs while the program is running, making decisions based on live
performance data. Previous research has addressed search speed and scal-
ing searches to large codes and many nodes. This paper explores using a
finer granularity for the bottlenecks that we locate in an automated on-
line search, i.e., refining the search to bottlenecks localized to loops. The
ability to insert and remove instrumentation on-the-fly means an online
search can utilize fine-grain program structure in ways that are infeasible
using other performance diagnosis techniques. We automatically detect
loops in a program’s binary control flow graph and use this information
to efficiently instrument loops. We implemented our new strategy in an
existing automated online performance tool, Paradyn. Results for sev-
eral sequential and parallel applications show that a loop-aware search
strategy can increase bottleneck precision without compromising search
time or cost.

1 Introduction

Performance analysis tools aid in the understanding of application behavior. Au-
tomating the search for performance problems enables non-experts to use these
tools and provides a fast diagnostic for experienced performance analysts [9, 4,
17, 7]. A performance tool that uses dynamic instrumentation [10] can search
for and identify performance problems in an unmodified program while the pro-
gram runs. Our previous research in online automated search has addressed
scaling with large codes, lowering instrumentation cost, and locating bottlenecks
quickly [2, 19, 11].

This paper describes an online automated search strategy that increases the
precision (granularity at which bottlenecks are identified) of an automated per-
formance search. To demonstrate the efficacy of our strategy, we have imple-
mented it in an existing automated performance tool, the Paradyn Parallel Per-
formance tool [15].

An online search strategy manages its search space by focusing on functions
that are currently being executed or functions that are about to be executed.
To this end the Paradyn performance tool’s automated search component, the
Performance Consultant, uses a program’s callgraph to locate bottlenecks [2].

c©2005 Spring-Verlag 1 LNCS #3726

This topdown search of program behavior matches the process an experi-
enced programmer might use. This helps limit the amount of instrumentation
inserted into a program, which improves search scalability (the ability to operate
efficiently on programs with large code sizes). Searching a program’s call graph
identifies performance problems at function granularity.

While identifying bottlenecks at function granularity is useful in practice, the
user of a performance tool would often like to know where inside the function
the bottleneck is located. A large function may contain multiple distinct bot-
tlenecks. A small function may be a bottleneck because it is called repeatedly
in a loop. To better localize a bottleneck, an automated search strategy must
search inside a function. This requires introducing a new level in the callgraph
that improves search precision. This level must not inhibit search scalability; just
adding new levels to the callgraph increases the size of the search space. The
level should represent a program structure that logically decomposes a func-
tion for the user, more precisely locates bottlenecks, and partitions functions for
searching. Augmenting a program’s callgraph with nested loops meets these re-
quirements. When searching code, after functions, loops are the the next natural
program decomposition. Loops increase precision in several ways: (1) they may
be bottlenecks themselves, especially in long running programs and scientific
applications, (2) they help identify which callsites in a function are bottlenecks,
and (3) they logically decompose a function for a user.

Applications often contain loops that execute for many iterations, and loops
are natural sources of parallelism that both compilers and hardware exploit. For
example, the OpenMP parallel do directive [22] allows a compiler to automat-
ically parallelize a loop. Loop-level performance data provides valuable feedback
for these optimizations.

Even if a loop is not a bottleneck, it can help to more precisely locate a
bottleneck. Suppose function A contains multiple calls to bottleneck function B.
If the calls to B occur at different levels in A’s loop hierarchy then we might
infer which calls to B within A are responsible for the bottleneck from the
performance data collected for A’s loops. Figure 1 depicts the callgraph for these
functions with and without loop information. Without loops, we can determine if
A contains a bottleneck and if that bottleneck is B. With loops, we can determine
if the bottleneck in A is due to a particular loop, or a particular call to B.

A

B

A

B

B

loop 2.1

loop 2loop 1

B

Fig. 1. A callgraph, and the same callgraph augmented with nested loops.

2

Loops naturally decompose functions for a user. A search that specifies bot-
tlenecks at loop precision is appropriate because the user can easily examine
and change the loop structure of a program. Loops also naturally decompose
functions for searching. A loop may contain multiple nested loops and callsites.
If a search uses an inclusive performance metric and determines that a loop is
not a bottleneck then it does not have to instrument the loop’s nested loops and
callsites. Improving bottleneck precision can lower instrumentation cost, as we
show in our experiments.

The contributions of this paper are (1) an automated search strategy that
increases precision, (2) the definition of points in a function’s control flow graph
that correspond to loop execution, and (3) new dynamic instrumentation tech-
niques that enable the efficient instrumentation of these points.

2 Related Work

Traditional profilers report performance data at function or statement granu-
larity using sampling. The prof and gprof [6] profilers record flat function and
callgraph profiles, respectively. Intel’s VTuneTMPerformance Analyzer [21] pro-
vides callgraph, statement, and instruction level profiles. Sampling enables data
collection at a fine granularity, but only provides CPU time. For example, it is
difficult to collect inclusive CPU time, elapsed time, and synchronization or I/O
blocking time using sampling [19].

Some tools automate the search through a problem space similar to Paradyn’s
Performance Consultant. For example, Helm et al [7] use heuristic classification
to control an automated search for performance problems. Finesse [17] diagnoses
performance problems using search refinement across multiple runs.

Several performance tools report performance data at loop granularity. Sv-
Pablo [18] allows users to instrument source code and browse runtime perfor-
mance data. SvPablo correlates performance data with program source code
at the level of statements, loops, and functions. Unlike Paradyn, which instru-
ments a program’s binary, SvPablo inserts instrumentation into the program
source code using a preprocessor that can instrument functions and loops. In-
strumenting the program’s source reflects the code as the programmer wrote it,
but may not fully reflect the code that was generated by the compiler.

MTOOL [5] is a tool for isolating memory performance bottlenecks. It uses
a program’s basic block count profile to identify frequently executed blocks to
instrument. MTOOL instruments basic blocks with explicit timer calls, and ag-
gregates basic block data to report loop, function, and whole program overheads.

HPCView [14] is a toolkit for combining multiple sets of profile data, and
correlating this data with program source code. Aggregate performance data and
derived metrics are presented at both function and loop levels. HPCView uses
binary analysis to correlate performance data from program structures resulting
from compiler transformations like loop fusion and distribution. Unlike Paradyn,
which performs online automated performance analysis, HPCView is a post-
mortem tool that combines the results of several program runs.

3

The DPOMP tool [3] uses dynamic instrumentation to collect performance
data for OpenMP constructs, including parallel do loops. The compiler trans-
forms OpenMP directives into function calls, which DPOMP instruments. Due
to compiler optimizations, they can not always collect performance data for loop
begin and end iteration events. Dynamic binary loop instrumentation enables the
collection of these events by identifying loops through control flow rather than
function calls inserted by the compiler.

The bursty tracing profiler [8] statically instruments a program to capture
temporal profiles. To limit the overhead of their instrumentation they use counter-
based sampling to switch between instrumented and un-instrumented copies of
the binary. They can eliminate many checks (to switch between copies of the
binary) by analyzing the program’s callgraph and binary. They further limit
overhead by not instrumenting “k-boring” loops (loops with no calls and at most
k profiling events of interest). The bursty tracing profiler collects performance
data online; performance analysis is handled offline. Our approach performs auto-
mated online performance analysis: we insert and remove instrumentation at run
time based on the current performance data. We limit the overhead of fine-grain
instrumentation by activating it only when necessary and using performance
data to decide which parts of the program to instrument.

3 The Performance Consultant

The Performance Consultant is Paradyn’s automated bottleneck detection com-
ponent. It searches for application bottlenecks by performing experiments that
measure application performance and try to locate where performance prob-
lems occur. Initially, the experiments measure the performance of the entire
application. If the Performance Consultant discovers bottlenecks it refines the
experiments to be more precise about the type and location of each bottleneck.

The experiments test hypotheses about why an application may suffer from
performance problems. For example, one hypothesis tested by the Performance
Consultant is whether the application is spending an excessive amount of time
blocking on I/O operations. To activate an experiment the Performance Con-
sultant inserts instrumentation code into the application to collect performance
data. Instances when the measured value exceeds a predefined threshold for the
experiment are termed bottlenecks.

Paradyn represents programs as collections of discrete resources. Resources
include program code (modules, functions, and loops), processes, threads, ma-
chines, and synchronization objects. Paradyn organizes these program resources
into trees called resource hierarchies. The root of each resource hierarchy is la-
beled with the hierarchy’s name. As we move down from the root node, each
level of the hierarchy represents a finer-grained description of the program. To
form a resource name we concatenate the labels along the unique path from the
root to the node representing the resource. For example, the resource name for
function fact in module math.C is 〈Code/math.C/fact〉.

We may wish to constrain measurements to particular parts of a program.
For example, we may want to measure CPU time for the entire execution of the

4

program or for a single function or loop. An experiment’s focus determines where
the instrumentation code is inserted. Selecting a node in the resource hierarchy
narrows the view to include only those nodes that descend from the selected node.
For example, the focus 〈/Code/math.C/fact, /Machine/toaster7.cs.wisc.edu,
/SyncObject〉 denotes function fact from module math.C executing on host
toaster7.cs.wisc.edu. This focus specifies the top level SyncObject resource
so it does not constrain the resources it names to any particular synchronization
object or type of synchronization object.

The performance consultant refines its search for bottlenecks from a true
experiment (an experiment whose hypothesis is true at its focus) by generating
more experiments that have a more specific focus. To refine a focus, the Perfor-
mance Consultant generates new foci. For example, the focus
〈/Code/math.C/fact/loop 1, /Machine/toaster7.cs.wisc.edu, /SyncObject〉 is re-
fined to a particular loop in fact and the focus 〈/Code/math.C/fact, /Ma-
chine/toaster7.cs.wisc.edu/8791, /SyncObject〉 is refined to a particular process
(with ID 8791) on host toaster7.cs.wisc.edu.

The search history graph records the cumulative refinements of a search. Each
node represents a 〈hypothesis, focus〉 pair. Paradyn provides a visual represen-
tation of this graph that is dynamically updated as the Performance Consultant
refines its search. This display provides both a visual history of the search and
information about individual experiments such as its hypothesis, focus, whether
it is active, its current measured value, and whether the experiment’s hypothesis
has yet to test true or false.

The cost of the instrumentation enabled by the Performance Consultant is
continually monitored and limited to a user-selected threshold. New experiments
generate new instrumentation requests and, when existing hypotheses test false,
their instrumentation is removed.

4 Binary Instrumentation of Loops

To collect performance data at loop granularity, Paradyn must be able to in-
strument individual loops in a program binary. In this section we describe our
implementation of loop instrumentation.

When Paradyn parses application binaries, it builds a flow graph for each
function. Dominator information is calculated using the Lengauer-Tarjan algo-
rithm [13] and is used to identify natural loops. We use standard definitions for
basic blocks, dominators, back edges, and natural loops [1]. A basic block is a
maximal sequence of instructions that can be entered only at the first instruction
and exited only from the last instruction. A basic block M dominates block N,
if every possible execution path in the flow graph from entry to N includes M.
A back edge in a flow graph is an edge whose target dominates its source. The
natural loop of a back edge M → N is the subgraph consisting of the set of nodes
containing N and all the blocks from which M can be reached without passing
through N. Block N is the loop header.

The decision to use natural loops (as opposed to any cycle in the flow graph)
is reasonable given that irreducible loops are rare–you cannot create them in

5

a structured language without using gotos. Certain compiler code replication
techniques may transform reducible loops in the program’s source code into ir-
reducible loops in the program’s binary, though this case is rare in our experience.
The type of loop identified is not an issue of correctness; irreducible loops in a
program binary are ignored, and do not hinder the instrumentation of natural
loops.

If two natural loops share a header we cannot distinguish their nesting rela-
tionship, or if they are derived from a single loop in the source. In this case we
combine the two loops into a single natural loop as is common in compilers [16].

To instrument loops in a flow graph, we define four instrumentation points

in the flow graph that correspond to loop execution semantics:

1. Loop entry instrumentation executes when control enters a loop. We instru-
ment the set of edges M → N such that N is the loop header and M is not a
member of the loop. If M is the loop’s preheader then one such edge exists
and we may instrument M.

2. Loop exit instrumentation executes when control exits a loop. We instrument
the set of edges M → N such that M is a member of the loop and N is not.

3. Loop begin iteration instrumentation executes at the beginning of each loop
iteration. We instrument the loop header.

4. Loop end iteration instrumentation executes at the end of each loop iteration.
We instrument the loop’s back edge and loop exit instrumentation points.

Figure 2 (a) illustrates the location of these points for a simple loop. Loop
entry and exit points are balanced. For example, when instrumenting loop entry
with a start timer operation and loop exit with a stop timer operation, execution
of the start timer will always be eventually followed by the execution of the stop
timer. Loop begin and end iteration points are balanced as well.

Previous versions of our dynamic instrumentation [10] could instrument func-
tions, basic blocks, and instructions. In this work, we add edge instrumentation.
Edge instrumentation is not new, having been used in static binary editors, such
as OM [20] and EEL [12]. Edges created by unconditional jumps can be instru-
mented simply by instrumenting the last instruction of the edge’s source block.
We do not instrument edges created by indirect jumps because they are not used
for control transfer that create loops (they are typically used for jump tables and
dynamic call sites). To instrument edges created by conditional jumps we create
edge trampolines.

Figure 2 (b) illustrates how we instrument conditional jumps using edge
trampolines. An edge trampoline is a code fragment that contains two new basic
blocks, one that corresponds to execution of the fall-through edge and one for the
taken edge (the shaded regions). We can instrument either edge by instrumenting
its new basic block using our existing technique for creating instrumentation
points. The conditional jump is overwritten with an unconditional jump to the
edge trampoline. The conditional jump is relocated to the trampoline but is given
a new target address. This simulates the execution of the original conditional
jump but with our two new blocks as targets. These new blocks end with jumps
to the original conditional jump targets.

6

end

enter

iteration
begin

iteration

exit

exit, end
iteration

(a) (b)

Fig. 2. Loop instrumentation points in a flow graph, indicated with circles, in (a).
Instrumenting the conditional jump that creates the loop’s back edge is shown in (b).
An edge trampoline is used to create two new basic blocks (shaded) that correspond
to the execution of the taken and fall-through edges of the conditional jump.

We use an absolute jump instruction to ensure that the edge trampoline can
be reached from the application code we are instrumenting. On CISC archi-
tectures, such as the IA32, an absolute jump instruction may be larger than a
PC relative jump instruction. This means the absolute jump we use to transfer
control to the edge trampoline may be larger than the conditional jump that
it replaces. In this case, we relocate enough instructions before the conditional
jump to the head of the edge trampoline to make room. We may safely relocate
all instructions in the basic block terminated by the conditional jump.

Though rare, the size of the entire basic block may be smaller than the size of
the unconditional jump instruction. To handle this case, we can use a short trap
instruction. The trap is caught by a handler that sets the application’s PC to
be the start address of the edge trampoline. The disadvantage of this approach
is that performance suffers due to the cost of handling the trap.

A better strategy uses function relocation. When the Performance Consultant
determines that the basic blocks relevant to loop instrumentation in a function
are not large enough to be efficiently instrumented, it rewrites the function in
a new location in the application’s address space. When rewriting the function,
nop instructions are inserted along with the original code to ensure that the
relevant basic blocks are large enough. The Performance Consultant overwrites
the beginning of the original function with a jump to the newly created copy.

5 A Loop-aware Search Strategy

Loops form a natural extension to our callgraph-based search (see Figure 1).
As such, conceptually the Performance Consultant can treat them as additional
steps in its refinement. We have also defined loop instrumentation points similar
to those for functions (Section 4). As a result, loops are not just conceptual steps
but actual steps in the Performance Consultant’s search.

7

The Performance Consultant performs a breadth-first search of the appli-
cation’s callgraph. Function entry and exit points are instrumented to collect
inclusive time-based metrics. If a function is not a bottleneck then it is pruned
from the search space. Otherwise, the search continues by instrumenting the
functions that it calls. If a function is a bottleneck, then the search continues by
instrumenting the functions that it calls that are not nested under any loops, as
well as the function’s outermost loops. If a loop is a bottleneck then we instru-
ment its children: the functions that are called directly within this loop, and the
loop’s directly nested loops. If a loop is not a bottleneck then the loop, and its
descendants are pruned from the search.

The addition of loops suggests that more experiments will be run. However,
pruning a loop in the callgraph means its descendants are also pruned. Instru-
menting a non-bottleneck loop which contains multiple function calls reduces
the number of experiments run because the called functions do not have to be
instrumented. Depending on the structure of the program’s code, adding loops
to the callgraph can cause more or fewer experiments to be run.

We found our top-down approach successful in practice, though other ap-
proaches may work as well. A search strategy can decide whether or not to
instrument a function’s loops based on static information like the function’s
depth in the call graph or the structure of the function’s flow graph. Dynamic
information like the function’s current performance data can also be used to
influence the decision. Unlike techniques that statically instrument a binary,
dynamic instrumentation allows the search to use fine-grained instrumentation
only when necessary, and to make the decision of which loops to instrument
at run time. This enables our loop search strategy to compliment other strate-
gies, such as Deep Start [19], that are able to quickly locate functions that are
performing poorly. Once the problematic functions are found, loop instrumen-
tation can be used to more precisely locate bottlenecks within these functions.
A search strategy that dynamically evaluates the tradeoff between the low over-
head of function-level instrumentation and the increased precision of loop-level
instrumentation can reap the benefits of both techniques.

6 Experimental Results

To evaluate our loop-aware search strategy, we compared it to the Performance
Consultant’s current search strategy. We performed experiments on two sequen-
tial and two parallel (MPI and OpenMP) scientific applications (see Table 1).
Table 2 lists more detailed application characteristics, including loop informa-
tion. We used MPICH version 1.2.5 for our MPI implementation, version 5.2
of the Portland Group Compilers for the Fortran and C applications, and gcc
version 3.3.3 for the C++ application.

For all experiments, we used 3GHz Pentium 4 PCs with Hyperthreading
enabled, 2 GB RAM, running Tao Linux (a repackaged version of Red Hat

8

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

B
ot

tle
ne

ck
s

F
ou

nd

Time (seconds)

PC
Loop PC (functions)

Loop PC

(a) ALARA

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

B
ot

tle
ne

ck
s

F
ou

nd

Time (seconds)

PC
Loop PC (functions)

Loop PC

(b) DRACO

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

B
ot

tle
ne

ck
s

F
ou

nd

Time (seconds)

PC
Loop PC (functions)

Loop PC

(c) OM3

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35 40

B
ot

tle
ne

ck
s

F
ou

nd

Time (seconds)

PC
Loop PC (functions)

Loop PC

(d) SPhot

Fig. 3. Search profiles for the sequential (ALARA and DRACO) and parallel (OM3 and
SPhot) applications. “PC” indicates the default Performance Consultant search, “Loop
PC” indicates our loop-aware search strategy. “Loop PC (functions)” indicates that our
loop-aware search strategy was used but only functions were counted as bottlenecks.

9

Enterprise Linux 3), connected using 100 Mb Ethernet. Both MPI applications
were run on identically configured PCs. The Paradyn front-end process was run
on a different machine than the applications. We performed multiple runs of
each application. During each run, we began the Performance Consultant search
once the application reached steady-state behavior.

Name Version Type Nodes Language Domain

ALARA 2.7.1 Sequential 1 C++ Induced radioactivity analysis

DRACO 6.0 Sequential 1 Fortran 90 Hydrodynamic simulation

OM3 1.5 MPI 8 C Global ocean circulation

SPhot 1.0 MPI/OpenMP 8 Fortran 90 Monte Carlo transport code

Table 1. Application characteristics.

% Loops at nesting
Name Lines KB Funcs Loops Loops/Func

1 2 3 4 5 6

ALARA 21,099 6,382 718 598 0.8 76 20 3 0.8 0.5 0.1

DRACO 72,305 2,516 898 5,477 6.1 47 32 16 4 1 0.1

OM3 2,673 88 28 202 7.2 40 32 21 7 0 0

SPhot 2,932 895 31 106 3.4 53 22 5 18 2 0

Table 2. Application characteristics, including the number of loops, as a percent of
the total number of loops, for 6 nesting levels.

Total Bottlenecks Leaf Bottlenecks Experiments/second
Name Function Loop Function Loop PC Loop PC

ALARA 11 8 4 3 0.9 1.0

DRACO 6 8 2 3 0.4 1.5

OM3 3 10 1 4 1.6 1.7

SPhot 8 10 3 5 2.9 1.9

Table 3. Types of bottlenecks and rate of experimentation. “PC” is the default Per-
formance Consultant search, “Loop PC” is our loop-aware search strategy.

Our experiments indicated that loops were frequently bottlenecks (Table 3),
which was expected since we examined scientific applications. In total, the appli-
cations contained 10 function bottlenecks that were leaf nodes in the callgraph.
Of these 10, 7 contained loop bottlenecks. Loops significantly increase bottleneck
precision. For example, OM3 contains a single function bottleneck, time step,
that is a leaf node in the callgraph and consumes 85% of the application’s CPU
time. While this information is useful, time step is a large function that contains
90 loops. The Performance Consultant reports that 8 of these loops are bottle-
necks, and that 4 of these bottleneck loops are leaf nodes in the augmented
callgraph. Loop-level data indicates that a third of the time spent in time step

can be attributed to loop 12.

10

Figure 3 compares the rate at which bottlenecks are found using the Perfor-
mance Consultant’s default search strategy and our loop-aware strategy. Results
are shown both considering and ignoring loop bottlenecks. Both search strate-
gies find bottlenecks at similar rates. The loop-aware strategy finds more total
bottlenecks (due to loops) but takes longer to identify function bottlenecks (due
to the increased height of the augmented callgraph).

We did not observe significant differences in the rate of experimentation
required to search loops (Table 3). For two of the applications the rate of ex-
perimentation was almost the same for both search strategies. The loop-aware
Performance Consultant required a faster rate of experimentation for one ap-
plication and a slower rate for the other. In general, we observed more precise
results without a major change in search time or the rate of experimentation.
Since we use an automated online search strategy that only instruments the
loops of the functions currently in question, we only pay the cost of fine-grain
instrumentation when necessary.

7 Conclusion

Searching loops proved to be a natural extension of the Performance Consultant’s
callgraph-based online automated search strategy. Since loops are frequently bot-
tlenecks our strategy often provides a more precise performance diagnosis. Loops
partition functions for searching without dramatically increasing the number of
necessary experiments. We have defined points in a flow graph that correspond
to loop execution, and presented a technique for the efficient instrumentation of
these points. This mechanism enables our loop-aware search strategy to more
precisely locate bottlenecks without large changes in search time or cost.

References

1. Aho, A., Sethi, R., Ullman, J., Compilers: Principles, Techniques and Tools,
Addison-Wesley, 1985.

2. Cain, H. W., Miller, B. P., Wylie, B. J.N.: A Callgraph-Based Search Strategy
for Automated Performance Diagnosis. Concurrency and Computation: Practice
& Experience 14, 3, 203-217 March 2002. Also appears as Euro-Par 2000, Munich,
Germany, August 2000.

3. DeRose, L., Mohr, B., Seelam, S.: Profiling and Tracing OpenMP Applications
With POMP Based Monitoring Libraries. Euro-Par, Pisa, Italy, August 2004, pp.
39-46

4. Gerndt, H.M., Krumme, A.: A Rule-Based Approach for Automatic Bottleneck De-
tection in Programs on Shared Virtual Memory Systems. 2nd Intl. Workshop on
High-Level Programming Models and Supportive Environments, Geneva, Switzer-
land, April 1997.

5. Goldberg, A.J., Hennessy, J.: MTOOL: A Method for Isolating Memory Bottle-
necks in Shared Memory Multiprocessor Programs. International Conference on
Parallel Processing, Augsust 1991, pp. 251-257.

6. Graham, S., Kessler, P., McKusick, M.: An Execution Profiler for Modular Pro-
grams. Software Practice & Experience 13 No. 8, August 1983, pp. 671-686.

11

7. Helm, B.R., Malony, A.D., Fickas, S.F.: Capturing and Automating Performance
Diagnosis: the Poirot Approach. Intl. Parallel Processing Symposium, Santa Bar-
bara, California, April 1995.

8. Hirzel, M., Chilimbi, T.: Bursty tracing: A framework for low-overhead temporal
profiling. 4th ACM Workshop on Feedback-Directed and Dynamic Optimization,
Austin, Texas, December 2001.

9. Hollingsworth, J.K., Miller, B.P.: Dynamic Control of Performance Monitoring on
Large Scale Parallel Systems. International Conference on Supercomputing, Tokyo,
July 1993.

10. Hollingsworth, J.K., Miller, B.P., Cargille, J.: Dynamic Program Instrumentation
for Scalable Performance Tools. Scalable High Performance Computing, Knoxville,
Tennessee, May 1994.

11. Karavanic, K.L., Miller, B.P.: Improving Online Performance Diagnosis by the Use
of Historical Performance Data. SC99, Portland, Oregon, November 1999.

12. Larus, J.R., Schnarr, E.: EEL: Machine-Independent Executable Editing. Program-
ming Language Design and Implementation (1995), pp. 291-300.

13. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems (TOPLAS) 1, 1, July
1979, pp. 121-141.

14. Mellor-Crummey, J., Fowler, R., Marin, G.: HPCView: A tool for top-down anal-
ysis of node performance. Los Alamos Computer Science Institute Second Annual
Symposium, Santa Fe, NM, October 2001.

15. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Kar-
avanic, K.L., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Performance
Measurement Tools, IEEE Computer 28, 11, November 1995.

16. Muchnick, S., Advanced Compiler Design and Implementation, Morgan
Kaufmann, 1997

17. Mukerjee, N., Riley, G.D., Gurd, J.R.: FINESSE: A Prototype Feedback-Guided
Performance Enhancement System. 8th Euromicro Workshop on Parallel and Dis-
tributed Processing, Rhodos, Greece, January 2000.

18. Reed, D. A., Aydt, R. A., Noe, R. J., Roth, P.C., Shields, K.A., Schwartz, B.,
Tavera, L.F.: Scalable Performance Analysis: The Pablo Performance Analysis En-
vironment. Anthony Skjellum(ed). Scalable Parallel Libraries Conference, October
1993, pp. 104-113.

19. Roth, P.C., Miller, B.P.: Deep Start: A Hybrid Strategy for Automated Perfor-
mance Problem Searches. Concurrency and Computation: Practice and Experience
15 11-12, September 2003, John Wiley & Sons, pp. 1027-1046. Also appeared in
shorter form in Euro-Par 2002, Paderborn, Germany, August 2002, LNCS 2400,
Springer Verlag.

20. Srivastava, A., Eustace, A.: ATOM: A system for building customized program
analysis tools. Programming Language Design and Implementation 11, June 1994,
pp. 196-205.

21. Intel R©VTuneTMPerformance Analyzer.
http://www.intel.com/software/products/vtune/

22. Official OpenMP Fortran Version 2.0 Specification.
http://www.openmp.org/drupal/mp-documents/fspec20.pdf

12

