Incremental Call-Path Profiling*

Abstract

Profiling is a key technique for achieving high performance. Call-path profiling is a refinement of this technique
that classifies a function’s behavior based on the path taken to reach the function. This information is particularly
useful when optimizing programs that use libraries, such as those for communication (MPI or PVM), linear algebra
(ScaLAPACK), or threading. The behavior of functions in these libraries often varies widely depending on the caller,
or the path taken to reach the caller. Unlike standard profiling techniques, call-path profiling is able to accurately
characterize this call-path dependent behavior.

We present a new method for call-path profiling, called increlook-upmental call-path profiling. Previous call-
path profilers have relied on global pre-instrumentation of the application; the overhead of this instrumentation limits
these techniques to providing simple metrics, such as function call counts. In contrast, we instrument the application
on the fly, allowing targeted analysis of particular functions. Our method can be applied at run-time, without previous
program modification, and allows for the use of complex metrics such as synchronization waiting time, /O blocking
time, memory stall time, and CPU usage. As a result, call-path profiling can be applied to a wider variety of perfor-
mance problems.

We describe iPath, a prototype incremental call-path profiler, and demonstrate the application of our technique
to two real-world applications. iPath was used to analyze both the distributed MILC su3_rmd QCD simulation and
the Paradyn instrumentation daemon. In the su3_rmd simulation, iPath detected a communications bottleneck in par-
ticular calls to the MPI library. We were able to interleave communication with other operations, achieving a 45%
decrease in the running time of the simulation. In the Paradyn daemon, we discovered an incorrectly optimized utility
function. By optimizing this function for the most frequent caller, we were able to achieve a 98% decrease in running
time, from 296 seconds to 6.4 seconds.

1. Introduction

Profiling is a key component of the optimization process, and is vital to achieving high levels of performance.
Function-level profiling, however, is limited in that it only gathers information about the aggregate behavior of func-
tions in a program. This information is not sufficient to completely characterize a function whose behavior varies
between calls; for example, a function that performs well with one type of input and poorly with a second. Call-path
profiling, an extension to function-level profiling, is a mechanism by which the information gathered by the profiler is
attributed to paths through the call graph instead of being aggregated together. This more complete profiling informa-
tion is particularly useful when optimizing programs that use libraries, such as those for communication (MPI or
PVM), linear algebra (ScaLAPACK), or threading.

Call-path profiling allows a user to identify and characterize performance problems that depend améea

function is called, rather than on the function itself. A function may complete quickly for most invocations, but
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require excessive time when executed along a particular call-chain. For example, a communication function may
block waiting for input in particular cases, or a utility function may perform poorly for a particular input. Call-path
profiling also clarifies performance problems caused by inefficient calling behavior, such as when a function is called
an excessive number of times. For example, a math function may be called multiple times with identical input. Func-
tion-level profiling would mis-identify the math function as a bottleneck, but call-path profiling would identify the
calling behavior as the problem.

Previous instrumentating call-path profilers have traced all functions in the program [1,2,5,10,11,12,13]. These
tools have tracked the call-path at all times by instrumenting all function entries and exits. While this complete infor-
mation can be useful in some cases, it generates substantial overhead and can slow the program by up to 700% [12].
Other profilers [7,8,16] have used sampling instead of instrumentation to lessen the overhead involved in profiling,
but cannot generate precise results. Our work is motivated by the insight that users often do not desire information for
every function in the program, focusing instead on a particular set of functions for which they need more exact infor-
mation about their behavior. In this case, the information offered by a whole-program profiler is both unnecessarily
broad and too expensive. By focusing instead on particular functions, a profiler may reduce the overhead involved in
call-path profiling. However, previous call-path profiling algorithms are not amenable to this partial profiling
approach, as they require whole-program instrumentation to track the call-path. We have developed a partial profiling
method that does not require whole-program instrumentation to generate accurate call-path profiling results. Our
technique complements other profiling tools and approaches, and provides an efficient method for profiling the call
path of particular functions.

In this paper, we describe a technique that we call incremental call-path profiling. Incremental call-path profiling
allows a user to profile particular functions rather than the entire program. The profile data may be examined while
the program is running, and the user may refine both the selected functions and the metrics gathered while the pro-
gram is still running. By profiling particular functions, we provide the benefits of call-path profiling while signifi-
cantly reducing the overhead incurred.

This method is distinguished by five key capabilities:

» Targeted: Our technique is able to profile particular functions, and only these functions are instrumented;

» Dynamic: Profiling instrumentation can be inserted and removed at run-time, without prior program preparation;
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* Run-Time Results: Up-to-date profiling results are available as the program runs, without requiring a post-

processing phase;

* Cost-effective Overhead is incurred only when the profiled functions are executed, allowing the use of more

complex metrics;

» Complete The entire call-path is captured, including dynamic calls through function pointers.

This paper presents our method for incremental call-path profiling. We begin by discussing existing work in the
area of call-path profiling. We then discuss our key technique, the use of a lightweight stack walk to determine the
complete call-path. This method allows us to determine the complete call-chain without requiring whole-program
instrumentation. We also describe the implementation and application of iPath, a prototype incremental call-path pro-
filer. This tool is capable of gathering a wide variety of performance metrics for the call-path while instrumenting
only the functions of interest to the user. iPath supports both counter and timer-based performance metrics and is
capable of calculating metrics based on both hardware counters.

As a test of our technique, we apply iPath to two real systems, the su3_rmd distributed quantum chromodynamics
simulation built on the MILC framework [3], and the instrumentation daemon of the Paradyn dynamic profiler [14].

In both applications, we found and removed significant call-path specific bottlenecks. Our modifications resulted in a

45% decrease in running time of su3_rmd, and an almost 98% decrease in Paradyn instrumentation time.

2. Related Work

Call-path profiling is a well-known approach for gathering detailed information about the behavior of a program.
Several projects have investigated methods of offering call-path profiling with minimal overhead. These approaches
can be divided into three categories based on their mechanism for generating the call-path and their method of data
collection. The first category of profilers maintain a snapshot of the current call-path through the entire execution of
the program, and update this snapshot at function call boundaries via instrumentation. The second category consists
of profilers that use sampling, through a third-party debugging interface, to identify call-paths and gather perfor-
mance data. The third category consists of profilers that approximate call-paths and provide only partial path informa-
tion.

The first category consists of call-graph profilers that track the current call-path throughout the execution of the

program. The first of these, PP, is an intraprocedural path profiler developed by Ball and Larus [2]. PP instruments
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transitions between basic blocks to track the execution path within individual functions. PP was extended [1] to use
the calling context of a function to approximate the call-path. This approximation uses a construct €dlidaga

Context TregCCT) that represents the call-tree of a program in a more compact form. This approach presents call-
path profiling information about the entire program. However, the CCT cannot track recursive calls, collapsing all
recursive calls to a particular function to a single node in the CCT. PP is capable of accessing the hardware counters
on the SPARC platform, but only uses non-virtualized timers. This can lead to inaccuracies due to context switches.

Melski and Reps extended PP with a technique that could directly track interprocedural paths without approxima-
tion [12]. Their approach assigned a unique identifier to every possible path through a program and used the identifier
to label collected performance data. Their technique adds instrumentation to all function entries, exits, and call sites.
The instrumentation generates a unique identifier for call-pafmentsThese segments do not include recursive
calls or calls through function pointers; instead, these segments are used to reconstruct the complete call-path in a
post-processing phase.

Larus also developed a method, Whole-Program Paths (WPP) [10], to record a block-by-block trace of a pro-
gram’s execution and represent it with a compact grammar. He used PP to determine and record the paths taken
within a function, and from this information pieced together a representation of the whole program’s execution.
While this representation included all call-paths taken by the program, they were not associated with any performance
information other than function call counts.

The TAU performance tools [11] also provide call-path specific profiling data. The TAU system traces function
entries and exits via instrumentation code inserted in the program and uses this information to generate a stack of cur-
rently executing functions. Since TAU tracks function entries and exits directly, dynamic calls and recursive calls are
both represented in this stack. The TAU measurement code uses this stack of active functions as a representation of
the current call-path. This technique shares many of the advantages of our approach, including partial data availability
and a complete representation of the call path. However, their approach uses whole-program instrumentation,
whereas we derive the current call-path from walking the program stack.

DeRose and Wolf developed CATCH [5], a tool that associates hardware metrics with call-path information for
MPI and OpenMP applications. Like iPath, CATCH is built on the Dyninst instrumentation library [4]. CATCH ana-

lyzes the call-graph of the program and uses call-site instrumentation to maintain a representation of the current call-
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path. The user can select subtrees of the call-graph to profile rather than tracking the entire execution of the program.
This allows CATCH to reduce the amount of instrumentation inserted in the program. CATCH statically predicts call-
paths within the selected subtrees and cannot handle call-paths through dynamic calls. Like CATCH, we only insert
instrumentation in selected functions. However, CATCH instrumentation is inserted throughout a subtree of the call
graph, whereas we insert instrumentation only in profiled functions.

The second category consists of call-path profilers that use a third-party debugging interface to track the program
as it executes. Hall developed a profiler, CPPROF [8], that periodically pauses and samples the profiled application
through the Solaris debug interfadesr oc. Each sample taken by CPPROF includes the current application stack
and elapsed CPU time since the previous sample. The elapsed CPU time is accumulated to the call-path represented
by the stack. CPPROF allows the user to tune the frequency of sampling. More frequent samples generate larger over-
head, as the process is paused during sampling, but contain smaller approximations in the resulting profile. The pro-
file generated by CPPROF is available at run-time. Both CPPROF and iPath use a stack walk to determine the current
call path. However, the third-party sampling approach used by CPPROF differs greatly from our first-party instru-
mentation approach. Our technique operates both within the address space of the program and operates only at func-
tion boundaries; as a result can handle cases that CPPROF’s technique cannot. Finally, CPPROF cannot provide
precise information about particular functions.

The tools gprof [7] and sprof [16] are both examples of the third category. These profilers use instrumentation to
accurately count function entries and exits, and use sampling to approximate CPU usage. From this information par-
tial call-paths of length two (the profiled function and its immediate caller) are approximated. This technique pro-
vides partial call-path profiling with low overhead, but may introduce errors based on the approximated data. Neither

profiler supports the use of hardware performance metrics, limiting the variety of information available to the user.

3. Design

Incremental call-path profiling has five key characteristics. First, only the functions of interest to the user are
instrumented. Second, profiling may be started and stopped at run-time, without relying on prior program modifica-

tion. Third, the profiling data can be examined and analyzed while the program is running. Fourth, overhead is

Page 5



incurred only when profiled functions are executed. Fifth, the entire call-path is captured, including dynamic calls
through function pointers. In this section, we describe our approach and how it provides these characteristics.

Our technique uses a technique callisthamic instrumentatiof,9] to gather both the call-path and performance
metrics. Dynamic instrumentation operates by inserting new code into a program as it is running, without prior mod-
ification. This new instrumentation code may access program state, such as program registers and hardware perfor-
mance counters. By using dynamic instrumentation, we are able to profile running programs without requiring prior
binary modification. In addition, we can insert and remove instrumentation while the program is running.

We instrument the entry and exit points of each profiled function. This instrumentation performs three actions.
First, it performs an inexpensive stack walk to determine the current call-path. Second, the instrumentation calculates
the user-defined performance metric by sampling the desired performance counters. Third, we use the stack walk and
performance data to update the current call-path profile of the function. In this section, we describe these three
actions.

The core of our design is based around walking the stack to determine the current call-path. Since we are walking
the actual process stack, we detect recursion (as multiple frames on the stack) and calls through function pointers,
without requiring modification of any other location in the program. In addition, we can distinguish individual call-
sites in a function, since their return addresses will be different on the stack. Stack walking is one of our fundamental
mechanisms, so it is important that it be as efficient as possible. Conceptually, all that is required is to follow the
frame pointer down the stack until the entry function’s frame is reached. In practice, several program optimizations
complicate walking the stack; we discuss these optimizations and our techniques for handling them in Section 4.3.

Once the current call-path has been obtained, our instrumentation calculates the desired performance metric. We
distinguish two types of performance metrics, counters and timers. Counters, such as the number of times a function
is executed on a particular call-path or the size of a function’s input, require only a single point of instrumentation.
Once the call-path is determined, the counter associated with that path is incremented at function entry; no exit point
instrumentation is required. The other category of metrics, timers, measure the change in a metric over the execution
of a function and require two points of instrumentation. For timers, we record the value of the metric at the entry of
the function and use it to calculate the difference when the function exits. Timers may calculate a variety of metrics,

including memory stall time, synchronization blocking time, 1/0 wait time, and elapsed CPU usage.
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Figure 1: Representation of call-path profiles
The profile data is stored as a collection of call-path data structures. These structures associate performance data

with a particular call-path, and have three requirements. First, it must be possible to add a new call-path on-the-fly to
represent a newly discovered path (e.g., a new dynamic call). Second, finding the correct structure from a given call-
path must be efficient to lower profiling overhead. Third, the structures must allow presentation of partial results
while the program is running, without requiring post-processing. We represent call-paths simply as a vector of
addresses where each entry is the corresponding call site address. Each vector is associated with the performance data
collected for the particular call path, as shown in Figure 1. This performance data may be stored in the form of
counters, timers, or a user-defined data structure.

Previous profilers have developed sophisticated techniques to represent call-paths, such as labelling each path
with a unique integer identifier [13] or using a tree rooted at the entry function and annotated with profiling data [8].
The unique identifier technique allows constant time look-up speed, since the identifier can be used as an index into
an array of performance information. However, this technique also requires static determination of all possible call
paths. If dynamic calls are included, the number of possible paths can be unbounded. The tree technique represents
call-paths as paths from the root of the tree to an edge node, and can compactly represent multiple call-paths with
overlapping sections. The tree used by CPPROF is rooted at the entry of the program, and can describe arbitrary call-
paths. We investigated the use of an inverted tree that was rooted at the profiled function. However, the improvement
in look-up speed was minor for our application. This was due to two reasons. First, the time required for a stack walk
and call-path look-up is small compared to the time required to calculate performance metrics such as synchroniza-

tion time, and so optimizing the look-up did not result in a significant decrease in profiling overhead. Second, iPath
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uses heuristics to check the most likely call-paths first, and these heuristics significantly reduce our look-up time. We
discuss these heuristics and our look-up techniques in Section 4.2.

One key characteristic of our method is that profiling data is available while the program runs. Since the profiling
data is updated when a profiled function exits, it is possible for the user to examine the data at any time. This contin-
uous update technique, combined with dynamic instrumentation, allows a user to continually refine which functions
are profiled, and what metrics are gathered, based on preliminary results during a single run of the program. This
capability is especially useful for long-running programs, as it allows a user to examine results of profiling without

waiting for the program to complete.

4. Implementation

We implemented our call-path profiling method in a tool called iPath, which uses the DyninstAPI library to pro-
vide a dynamic instrumentation capability. iPath is implemented on both the 1A-32/Linux and POWER/AIX plat-
forms and is capable of using a variety of hardware and software performance metrics.

iPath consists of two parts: (1) a control process that instruments and monitors the profiled application and (2) a
library containing our stack walk and profiling logic. The control process, calleditatorin Dyninst terminology,
monitors the application and generates instrumentation requests. The library is injected into the application by the
control process and used to instrument profiled functions. The gathered profile data is stored in a shared memory seg-

ment that is attached to both the control process and profiled application.

4.1. Control Process

iPath supports both starting the profiled application or attaching to a currently running application. Once we have
created or attached to the application, we inject our run-time library into the program’s address space. Since we inject
this library at run-time, we do not require any previous program modification. Once the library has been injected, the
control process triggers an initialization phase. This phase creates a shared memory segment between the application
and control process where profile data is later stored. The control process can access this data at run-time without

pausing the process.
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Once initialization is complete, the control process inserts calls to our library at the entry and exit of all profiled
functions. These calls perform the stack walk and collect performance data. If a single requested function name
matches multiple functions within the program, each of these functions is instrumented and the performance informa-
tion is kept separate. Multiple versions of a function may be caused by C++ function overloading or by local func-
tions whose names are not visible outside of a module.

Once the instrumentation has been inserted, the program is run with no further manipulation by the control pro-
cess. Since a shared memory segment is used to store the profile data, it is possible to access preliminary results from
the control process without pausing the program. The control process periodically prints out a summary of the profile
data while the program runs and displays a final version when the program completes. iPath also calculates the per-
centage of the entire execution each call-path takes, which is useful to determine call-path specific bottlenecks. We

provide an example of this output in the MILC results section (Figure 2).

4.2. Run-Time Library

The iPath run-time library is responsible for three things: determining the current call path, gathering appropriate
performance information (e.g., hardware counter values), and calculating the call-path profile for each function. The
run-time library consists of three major segments: the data structures that store profiling data, the stack walk logic,
and the instrumentation executed at function entry and exit.

iPath stores detected call-paths and their associated profiling information as a collectdirpath entriesn the
shared memory segment. Each call path entry consists of a vector of addresses of call sites in the call path and associ-
ated data for the desired performance metric. The format used for the call path is equivalent to the format returned by
the stack walking code, so comparing a stack walk to a call path consists of first comparing the size of each vector,
and then iteratively comparing the contents. The efficiency of this approach depends heavily on comparing the most
likely call-path entry to the stack walk result first. We use two heuristics for guessing the most likely path, one for our
entry instrumentation and one for exit instrumentation. The entry heuristic compares the most recently used call-path
to the stack walk first. If a function is repeatedly called with the same call-path (e.g., from a loop in the caller), then
the call path will not have changed. The exit heuristic matches the stack walk for function entries and exits through a

mechanism we call thactive stack
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The active stack takes advantage of the fact that the call-path rarely changes between the entry and exit of a func-
tion. If the call-path has not been changed (e.g., by a tail call optimization or a longjmp), the call-path determined by
the entry instrumentation can be re-used by the exit instrumentation. We take advantage of this behavior by maintain-
ing a stack of call-paths for use by our exit instrumentation. When a function is entered, the current call-path is
pushed onto the stack. The top call-path on the stack is then checked first when the function is exited. We use a stack
instead of a single element to handle recursive entry of the instrumented function, which will result in multiple active
paths. If the profiled function is never entered recursively, this stack will have a maximum depth of one.

Our entry instrumentation performs three actions. First, we walk the stack and determine the current call-path as
described above. It is possible that no call-path structure matches the stack walk; in this case, we create a new call-
path structure. This technique allows us to avoid static analysis of program call paths. Second, we gather the desired
performance metrics. Timers, such as memory stall time, are started by storing the current timer value as a starting
value. Counters, such as function call counts, are simply incremented. Third, the current call-path is added to the
active stack. Once the instrumentation completes, control is returned to the profiled application.

The exit instrumentation is responsible for stopping any active timers. If the user has not requested any timer-
based metrics, exit instrumentation is unnecessary and none is inserted. First, as with entry instrumentation, we deter-
mine the active call-path with a stack walk and a table look-up. Unlike entry instrumentation, if no matching entry is
found the instrumentation immediately exits. Once the active call-path has been determined, timers are stopped by
again sampling the current timer value, subtracting the starting value, and accumulating the difference. Finally, the

top of the active stack (corresponding to this exit) is removed.

4.3. Stack Walk Optimizations

While a stack walk is conceptually simple, several optimizations can make the process more difficult. We identify
three categories of optimizations that affect stack walks: functions that do not create stack frames, functions that mod-
ify their stack frame during execution, and functions that do not record a pointer to the previous stack frame when
creating a new frame. We avoid the complexities of walking partially constructed stack frames by only walking the

stack at the entry and exit of a function.
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The first category of optimizations consists of functions that do not create stack frames. This type of optimization
will cause a function to not appear in a stack walk and therefore the call-path derived from the stack walk. There are
two common examples of frameless functions, leaf functions without stack frames and inlined functions. A leaf func-
tion will never occur in the middle of a stack walk, as it cannot make calls. Since we walk the stack at function bound-
aries, we only have to handle optimizations in the callers of the profiled function. As a result, any leaf optimizations
in the profiled function will not impede our stack walking. Inlined functions are another matter. We do not distinguish
inlined functions in our stack walks, relying on other information (such as the symbol table) to reconstruct the origi-
nal form of the function. Currently iPath presents the call-path without the inlined function.

The second group of optimizations consists of functions that modify their stack frame during execution. We have
seen this optimization in several functions in the AlX math library. These functions normally execute without a stack
frame. If an error is detected they create a stack frame before handling the error. We can take accurate stack walks
even in the presence of this type of optimization as long as the maodifications to the stack frame are completed by the
time a call is made. This is true for every case of this optimization of which we are aware.

Our final category consists of optimizations that create stack frames that do not contain a pointer to the previous
frame. This makes it impossible to identify the previous stack frame without knowing, through some other mecha-
nism, the size of the current stack frame. We have seen this optimization on 1A-32. This architecture uses two regis-
ters, the stack pointer and the frame pointer, to track the stack. The stack pointer moves throughout the execution of
each function, while the frame pointer is static and contains the pointer to the previous frame. It is possible to omit the
frame pointer so the register can be reused, making it impossible to find the previous frame. We detect this case and
abort the stack walk. We are investigating how often it is feasible to determine the size of the stack through code anal-

ysis rather than relying on the frame pointer.

5. Results

We applied our profiler to two different applications in the HPC domain, the MILC su3_rmd QCD simulation
code and the Paradyn parallel performance instrumentation daemon. In both cases we were able to use call-path pro-
file data to make substantial improvements in the running time of the programs. The gathered call-path profiles

allowed us to distinguish particular call-paths correlated with poor profiled function performance. By focusing on
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these particular call-paths, we were able to make significant performance improvements that would have not been

possible with a traditional profiler.

5.1. MILC

We used iPath to investigate su3_rmd, a distributed quantum chromodynamics simulation built on the MILC
framework [3]. Our aim was to investigate synchronization bottlenecks within the program. We had previously inves-
tigated this program with gprof, a function-level profiler, and identified bottlenecks in two MPI functions,
MPI _Al | reduce andMPI _Wai t . However, the function-level profiler provided insufficient information to determine
the cause of these bottlenecks. Both MPI functions were called through MILC wrappers, which caused gprof to iden-
tify a single call-path to each MPI function. In addition, there were several calls to each MPI function from a variety
of points in the program, and we were unable to determine which calls caused the poor performance. When we
applied iPath to the application, we were able to identify the particular call-paths that were responsible for the bottle-
necks. With this information, we were able to restructure the program to eliminatePthé\ai t and reduce the
MPI _Al | r educe bottlenecks.

The MILC project provides a framework for performing QCD simulations. The framework defines a lattice of
data and mechanisms for accessing individual points in the lattice. Applications written with the framework use these
mechanisms, which allow the applications to run on single machines or clusters without code modifications. The
mechanism we are interested in is MPIl-based and uses message passing to update lattice nodes. The framework also
provides several different mechanisms for determining how the lattice is distributed if the application is run on a clus-
ter.

One of the simulations distributed with the MILC framework is su3_rmd, an implementation of the R algorithm
for QCD simulation [6]. The majority of the execution time of su3_rmd is contained within a single function,
ks_congr ad. This function consists of a loop that executes until a result value is less than a given threshold parame-
ter. Each iteration through the loop consists of an interleaved set of three types of operations: gather information
about lattice points from neighboring nodes, perform vector operations on the lattice, and sum the results across all

computing nodes.
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Version Time (seconds) Change
1. Original 3001
2a. Gather operation optimization 1843 -38.6%
2b. MPI_Allreduce optimization 2810 -6.4%
3. Both optimizations 165p -45.0%

Table 1: su3_rmd Running Time
Time spent in ks_congrad and synchronization bottlenecks before and after optimizations were made.

We ran the su3_rmd simulation on four nodes of an IBM SP, using iPath to profileRhewai t and
MPI _Al | r educe functions previously identified as bottlenecks. We examined the resulting call-path profile, focusing
on the paths that passed through congr ad. The use of paths allowed us to unwind the communication abstraction
used by the MILC framework. We discovered four specific synchronization bottlenegks tongr ad, two gather
operations that made several callsv®d _Wai t and two indirect calls ta/PI _Al | r educe through the MILC frame-
work. In total, the simulation executed for 3001 seconds, as shown in line 1 of Table 1.

We began by investigating the bottlenecksvini _Wai t . Our profiling showed that 50% of the execution time of
ks_congr ad was spent in calls tvPI _Wai t , making it a prime candidate for optimization. The blocking time was
caused by lattice update operations. Each iteration through the lé@p éongr ad executes four gather operations.
The MILC framework implements a gather as a series of messages finalized with ¢#&lis t@i t . The two gathers
executed irks_congr ad resulted in sixteen distinct call-paths el _Wai t . Figure 2 visualizes data from iPath’s
output, showing a section of the complek®l Wit call-path profile. MPI _Vait is called twice in the
wai t _gat her function, with the first call (the left branch) taking substantially longer to complete. Furthermore, the
first call to thewai t _gat her function fromdsl| ash_speci al takes substantially longer to complete than the other
three. For readability, we have collapsed the callgsticash_speci al fromks_congr ad, as they behaved in a sim-
ilar fashion.

By using this call-path profile, we were able to trace the cause of this difference in blocking time back to the ini-
tial send and receive operations. The bottleneck was due to the use of a synchronous send dgratiesend).

We modified the send operation to be asynchronous (to/Risel send) and reordered the calls kI _\ai t to hide
the transfer latency. These changes resulted in a 75% reduction in time consuivi@d i t in gather operations

and a decrease of 38.6% in the overall running time, as shown in line 2a of Table 1.
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Figure 2: Call-path Profile of MPI_Wait
Partial display of 142 detected call-paths to MPI1_Wait. Omitted paths contribute the remaining percentage of calls and
synchronization blocking time, measured in CPU cycles.

We then investigated th&Pl _Al | r educe bottlenecks. This function is used by su3_rmd to sum a single floating
point value across all nodes executing the simulation. Our call-path profile showed that this operation was not effi-
cient, with 22% of the total execution time k$§_congr ad spent in calls tawPl _Al | r educe. We replaced the calls
to MPI _Al | r educe with non-blocking equivalents that we overlapped with the other loop operations. Unfortunately,
data dependencies in the loop prevented us from hiding all of the communication latency. This replacement resulted
in a 30% decrease in time spent blocked/im _Al | r educe, and a 6.4% decrease in total running time, as shown in
line 2b of Table 1.

Finally, we ran the original simulation without profiling inserted to calculate the overhead due to our call-path
profiling. The worst-case overhead, caused by profiliig_\ai t , was 12% of the total running time of the program.

In summary, we used call-path analysis to discover four synchronization bottlenecks in the su3_rmd simulation.
This call-path profiling information allowed us to focus on particular calls that were bottlenecks instead of the seeing
only the aggregate behavior of the profiled function. Incremental use of paths allowed us to precisely target our profil-
ing, which kept the overhead to a minimum. In all cases, we were able to replace blocking or synchronous calls with

asynchronous equivalents and reorder operations to hide the message passing latency. These optimizations combined
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Unoptimized Optimized Change
(seconds) (seconds)
Single-threaded 115 0.1 -93.3%
5 threads 485 1)2 -97.5%
10 threads 126/9 30 -97.6%
20 threads 296)1 6|4 -97.8%

Table 2: Instrumentation Time
Time spent by the daemon performing instrumentation during the Performance Consultant analysis.

reduced the running time of su3_rmd from 3001 seconds to 1652 seconds, a 45% decrease, as shown in line 3 of

Table 1.

5.2. Paradyn Daemon

We also used iPath to identify and remove a major bottleneck in the Paradyn instrumentation daemon [14]. Para-
dyn is a profiling tool that is capable of performing an automated analysis of distributed programs. A frequently
called utility function had previously been incorrectly optimized, leading to poor performance. Using iPath we were
able to isolate the particular call-path to this utility function responsible for the bottleneck. We then used this call-path
information to re-optimize the utility function, resulting in a significant reduction in instrumentation overhead. This
reduction in instrumentation time also resulted in a visible user-level performance improvement.

We began by noting that Paradyn’s automated analysis of a multi-threaded program was significantly slower than
the analysis of a similar single-threaded program. This slowdown increased as the number of threads in the target pro-
gram increased. We investigated this behavior and determined that the slowdown was due to the instrumentation sec-
tion of the Paradyn daemon. Requests for instrumentation were taking significantly longer to satisfy for a multi-
threaded program than they were for a single-threaded program, as shown in Table 2.

As with su3_rmd, we began by investigating this problem with a traditional profiler. We identified a utility func-
tion, fi ndFuncByAddr, that consumed the majority of the extra time spent in instrumentation. This function per-
formed a look-up mapping an input address to the function in the target application that contained the address.
Comments in the source code indicated that this function was a known bottleneck and had previously been optimized.
We investigated further and determined that the majority of callef$ efiFuncByAddr would take advantage of the

optimization. However, this function was still performing poorly. Sifi¢cendFuncByAddr had a large number of
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callers from many different places within the Paradyn daemon, we believed it would be a good target for call-path
profiling.

We applied iPath to the problem function to determine if the call-path taken had a large effect on the performance
of the function. Although we expected this was the case, we were surprised at the results. The perfoririarnte of
FuncByAddr varied widely depending on the current call-path, from a few thousand CPU cycles per call to over a
million cycles per call. Unsurprisingly, the calls that took advantage of the existing optimizations required only a
short time to complete. The majority of calls to this utility function came from a single call-path that did not take
advantage of any of the existing optimizations. This insight became obvious with the use of the call-path profiling
data generated by iPath.

We then investigated why this particular function had such poor performance along a single call-path. We were
able to characterize the inputs to the function and discover the root cause of the performance problem: the data struc-
tures used to maintain the address to function mapping. The mapping was stored in a hash table keyed on the entry
address of the function. This method of storage made looking up a function based on the entry address extremely fast,
but any other operation (such as a look-up based on an address within the function) caused a linear search through the
hash table. The poorly performing calls, without exception, required this linear search.

We reimplementedi ndFuncByAddr, using a balanced tree instead of a hash table. This tree structure improved
the performance of look-ups within the body of a function at the expense of slower entry point look-ups. In addition,
we cached recent results instead of repeating look-ups. The results were impressive. When we re-ran our benchmark,
instrumentation time was reduced to 1.2 seconds, a 98% performance improvement. We timed the old version against
the new, with the results in Tables 2 and 3.

We were also interested in determining the overhead imposed by the use of iPath to gather call-path profiles. We
were unable to detect any changes in the running time of the Paradyn daemon due to iPath. This is due to the behavior
of the function we were profiling. The execution time per function invocation was large enough that the overhead
imposed by iPath was completely hidden.

In summary, we were able to use iPath to localize a severe performance problem. We had previously used a funci-
ton-level profiler and discovered that a utility functiém,ndFuncByAddr , was performing poorly. However, both the

profile data and our investigation of the code failed to localize the reason for the performance problem. Using iPath,
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Unoptimized | Optimized | Change
(min:sec) (min:sec)
Single-threadef 4:30 3:50 -14.8%
5 threads 4:30 3:55 -13.0%
10 threads 5:45 4:10 -27.5%
20 threads 8:00 4:25 -46.9%

Table 3: Performance Consultant Analysis
Time required to complete a full automated analysis of the tested programs. The same program was used for all three
multi-threaded tests.

we were able to determine a particular call-path that was the cause of the bottleneck. Finally, iPath allowed us to pro-
file only the function that was the bottleneck and not all functions in the Paradyn daemon. Selectivity allowed us to

efficiently profilef i ndFuncByAddr without excessive overhead.

6. Summary

Call-path profiling is a valuable tool for performance analysis. We have presented a method of gathering call-path
profile data for particular functions. This approach avoids the overhead incurred by whole-program call-path profilers
by instrumenting only the functions of interest instead of all function entries, exits, and call sites within a program.
We allow the use of more expensive metrics while reducing the total overhead.

We implemented this method in a tool, iPath, built on the Dyninst instrumentation library. This tool allows a user
to target call-path profiling to particular functions, and can take advantage of both hardware and software perfor-
mance metrics. Our current implementation runs on both 1A-32/Linux and POWER/AIX, and can analyze distributed
programs as well as sequential programs.

We used iPath to isolate and correct bottlenecks in two programs. iPath located and characterized synchronization
bottlenecks in the MILC su3_rmd simulation. Through the use of call-path profile data, we were able to identify par-
ticular calls to MPI functions that caused poor performance. Since iPath collects a complete call-path, we were able
to unwind through the MILC abstraction layer. We replaced several blocking and synchronous MPI calls with asyn-
chronous equivalents, and reordered the calls to hide the message passing latency. These changes resulted in a 45%
decrease in running time of the su3_rmd simulation. We believe call-path profiling can be used to reduce synchroni-
zation blocking time in a wide range of distributed programs make use of library functions for communication by

identifying the particular call chains that are bottlenecks.
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iPath also identified a bottleneck in a sequential program, the instrumentation daemon component of the distrib-
uted Paradyn parallel performance tool. We discovered and repaired a single utility function that had been incorrectly
optimized based on the results of function-level profiling and examination of the source code. The majority of callers
to the function presented similar behavior, and the programmer had optimized the utility function based on that
assumption. Through the use of call-path profiling, we determined that a single call was overwhelmingly responsible
for the time spent in the utility function, and that this call did not take advantage of the previous optimizations. By
reoptimizing the function, we were able to reduce Paradyn instrumentation time by 98%. By using call-path profiling,
we were able to accurately characterize the behavior of the utility function based on run-time information rather than
analysis of the source code. This situation is an example of how call-path profiling can be used to improve programs

that make use of utility functions, especially when source-level analysis is misleading or impossible.
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