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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 21441 “Adaptive
Resource Management for HPC Systems”. The seminar investigated the impact of adaptive
resource management of malleable applications on the management of the HPC system, the
programming of the applications, the tools for performance analysis and tuning, as well as the
efficient usage of the HPC systems. The discussions led to a joint summary presenting the
state-of-the-art, required techniques on the various levels of HPC systems, as well as the foreseen
advantages of adaptive resource management.
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Today’s supercomputers have very static resource management. Jobs are submitted via batch
scripts to the resource manager, then scheduled on the machine with a fixed set of nodes.
Other resources, such as power, network bandwidth and storage are not actively managed
and are provided only on a best-effort basis. This inflexible, node-focused and static resource
management will have to change in the future due to many reasons, some of them listed
below.

First, applications are becoming increasingly more dynamic. Techniques such as adaptive
mesh refinement, e.g., as used in Tsunami simulations, lead to scalability changes over
the application’s execution. Furthermore, only some application phases might profit from
specialized accelerators, and I/O phases might even run best with a limited number of
compute resources.
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Additionally, the execution environment of applications is also becoming dynamic. Modern
processors change the clock frequency according to the instruction mix as well as power and
thermal envelopes. Heavy use of the vector units can lead to a lower clock frequency to stay
in the thermal power budget, for example.

As an independent concern, due to the sheer number of components, failure rates are
expected to increase thus slowing down computation or even leading to an increased number
of node failures.

Finally, the upcoming machines will be power constrained, which means that the power
will have to be carefully distributed among all running applications. The resulting power
capping will impact the application’s performance due to adaptation of the clock frequency
and due to manufacturing variability. These challenges in HPC will only be solvable by using
a more adaptive resource management approach. For example, compute nodes need to be
redistributed among running applications to adapt to changes in the application’s resource
requirements either due to a varying number of grid points or interspersed algorithmic phases
that profit from certain accelerators; network and I/O bandwidth will have to be assigned to
applications to avoid interference caused by contention of concurrent communication and
I/O phases; power needs to be dynamically redistributed both within an application and
across applications to enable increased efficiency. Dynamic redistribution of resources will
also give more flexibility to the resource manager to schedule jobs on the available resources
and thus reduce idle times and efficiency lowering contention scenarios, e.g., in the situation
of big jobs waiting for execution.

This Dagstuhl Seminar investigated a holistic, layered approach for adaptive resource
management. It started with the resource management layer being responsible for scheduling
applications on the machine and dynamically allocating resources to the running applications.
At the programming level, applications need to be programmed in a resource-aware style such
that they can adapt to resource changes and can make most efficient usage of the resources.
On top of the programming interfaces, programming tools have to be available that allow
the application developers to analyze and tune the applications for the varying amount of
available resources. At the application level, applications have to be redesigned to enable
significant gains in efficiency and throughput, e.g., adaptive mesh refinement, approximate
computing, and power-aware algorithms are a few aspects to mention here.

The discussions led to a joint summary presenting the state-of-the-art, required techniques
on these layers of HPC systems, as well as the foreseen advantages of adaptive resource
management.
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3 Overview of Talks

3.1 Flux: Next-Generation Resource Management and Scheduling for
Scientific Workflow Enablement

Dong Ahn (LLNL – Livermore, US)

License Creative Commons BY 4.0 International license
© Dong Ahn

Many emerging scientific workflows that target high-end HPC systems require complex
interplay with the resource and job management software (RJMS). However, portable,
efficient and easy-to-use scheduling and execution of these workflows is still an unsolved
problem. In this talk, I will present Flux, a next-generation RJMS designed specifically to
address the key scheduling challenges of modern workflows in a scalable, easy-to-use, and
portable manner. At the heart of Flux lies its ability to be seamlessly nested within batch
allocations created by itself as well as other system schedulers (e.g., SLURM, MOAB, LSF,
etc), serving the target workflows as their “personalized RJMS instances”. In particular,
Flux’s consistent and rich set of well-defined APIs portably and efficiently support those
workflows that can often feature non-traditional execution patterns such as requirements for
complex co-scheduling, massive ensembles of small jobs and coordination among jobs in an
ensemble. As part of this talk, I will also discuss Flux’s graph-based resource data model,
Flux’s response to needing to schedule increasingly diverse resources, and how this model
is becoming the center of our industry co-design efforts: for example, multi-tiered storage
scheduling co-design with HPE and Cloud resource co-design with IBM T.J. Watson and
RedHat OpenShift.

3.2 Ongoing Efforts on Co-scheduling and Holistic Power Management
Eishi Arima (TU München, DE)

License Creative Commons BY 4.0 International license
© Eishi Arima

This presentation covers our ongoing efforts related to co-scheduling, i.e., colocating multiple
jobs at the same time on a node, and also holistic power management for HPC systems.
More specifically, the talk will include: (1) open software architecture for sophisticated
resource management, in particular power stack, and integrating our software stack based
on the architecture; (2) a variety of co-scheduling studies for sophisticating them; and (3)
opportunities to co-ordinate with the malleability.

3.3 A Scalable RISC-V Power Controller Platform for HPC Processors
Andrea Bartolini (University of Bologna, IT)

License Creative Commons BY 4.0 International license
© Andrea Bartolini

Today’s high-performance computing (HPC) workloads crave data bandwidth, capacity and
floating-point performance. High-performance chips feature with many performance-capable
cores, vector units, DDRs and HBMs memory controllers’, high-bandwidth and low-latency
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coherent I/Os, as well as domain-specific accelerators with staggering (several hundreds of
Watts) peak power requirements.The peak power exceeds the TDP, and the package cost
constrains the maximum TDP and sustainable peak power. Motherboards’ form-factor,
layout, and cost constraint the power distribution design and demand effective and reliable
on-chip thermal management. Power, temperature, and energy are critical aspects that
must be controlled and optimized online with a low-latency feedback loop with the on-chip
power management IPs and sensors, Operating System, Security Subsystem, off-chip Board
Management Controller (BMC) and power converters. We propose ControlPULP, a fully-
digital and highly capable RISC-V based parallel microcontroller IP optimized for power
management of complex HPC processors. Its design supports a single-core manager core and
peripherals paired with a cluster of 8 processors to accelerate the Power Control Firmware
workload, Direct Memory Access (DMA) engine for accessing on-chip sensors, a uDMA engine
for off-chip AVSBUS/PMBUS peripheral support and BMC-based communication through
the Management Component Transport Protocol (MCTP). The controller implements basic
System Control and Management Interface (SCMI) doorbell-based protocol hosting up to
144 external interrupt lines. On the SW side, it relies on an open-source Real-time Operating
System (FreeRTOS) for agile scheduling of the underlying Control Policy.

3.4 The Malleability Problem Statement: Differences between
Supercomputing and the Cloud

Isaías A. Comprés Ureña (TU München, DE)

License Creative Commons BY 4.0 International license
© Isaías A. Comprés Ureña

Malleability can bring benefits to our distributed memory supercomputers that are not
possible with current static allocations. Malleability has already been achieved in cloud
computing systems. The reasons are related to the differences between the workloads that are
typical across these systems. The workloads of supercomputing pose additional challenges
that have caused delays in the deployment of malleability in this domain.

3.5 Towards Machine Learning Generation of Parallel Applications
Performance Models

Eduardo César (Autonomus University of Barcelona, ES), Anna Sikora (Autonomus Univer-
sity of Barcelona, ES)

License Creative Commons BY 4.0 International license
© Eduardo César and Anna Sikora

Joint work of Eduardo César, Jordi Alcaraz, Anna Sikora
Main reference Jordi Alcaraz, Steven Sleder, Ali Tehrani Jamsaz, Anna Sikora, Ali Jannesari, Joan Sorribes,

Eduardo César: “Building representative and balanced datasets of OpenMP parallel regions”, in
Proc. of the 29th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing, PDP 2021, Valladolid, Spain, March 10-12, 2021, pp. 67–74, IEEE, 2021.

URL http://dx.doi.org/10.1109/PDP52278.2021.00019

Malleable HPC computing will require, among other things, efficient methods for estimating
the amount of resources that an application needs to be executed efficiently. However, due
to the heterogeneity found in HPC systems, adequate analytical models for performance
improvement can be very difficult to generate. An alternative to traditional analytical models
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could be the use of machine learning algorithms, which may help to automatically create
performance models to predict the appropriate configuration for one or multiple application’s
parameters.

Incorporating machine learning for automatic performance analysis and tuning is a
promising path, but it introduces the need for generating balanced and representative
datasets of parallel applications’ executions.

First, to be able to build performance models, measurements are needed to calculate or
select the proper values for one or multiple parameters which can impact performance. The
selection of the right measurements is important as information can be redundant or, in the
worst case, insufficient to correctly describe the relationship between them and performance
parameters.

Second, these measurements should be used for bulding datasets of representative parallel
code regions patterns. Thus, a methodology is needed for determining whether a given region
covers a unique part of the input space not yet covered by the patterns already included in
the dataset.

Finally, when such a dataset is used for performance tuning, an imbalance problem
appears as the targets are now performance parameters instead of representative code regions.
This imbalance appears because some performance parameters’ values generally provide
better performance than others for most cases. Consequently, machine learning algorithms
may under-perform due to underrepresented cases, making the use of techniques to counter
this natural imbalance necessary.

3.6 Invasive Computing in HPC
Michael Gerndt (TU München, DE)

License Creative Commons BY 4.0 International license
© Michael Gerndt

TUM started the research on malleable HPC application as part of the Transregional Research
Center TRR89 “Invasive Computing”. This is a collaboration between the FAU Erlangen, KIT
Karlsruhe, and Technische Universität München. The major focus is to develop concepts for
resource-aware programming of embedded application for highly parallel chip multiprocessors.

TUM is investigating the extension of this concept for HPC applications. The resource
management of HPC systems is static. The system is partitioned for system services,
interactive access, and batch jobs. Nodes are assigned to applications for the applications
whole lifetime. The concept of dynamic resource management for HPC systems allows to
distribute resources dynamically to system services and running applications, and thus allows
for a more efficient sharing of the resources.

TUM developed extensions of OMP and MPI, known as iMPI, for writing malleable
MPI applications. Furthermore, a scalable in-memory application-level checkpointing system
iCheck is under development. The benefits demonstrated in the TRR are better system
utilization, more efficient resource usage, and a dynamic power corridor management. The
work of invasive computing is continued in the European HPC project Deep-Sea.
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3.7 Towards Dynamic Node Resource Management in Next-Generation
HPC Environments

Balazs Gerofi (RIKEN – Kobe, JP)

License Creative Commons BY 4.0 International license
© Balazs Gerofi

Workload diversity in high-performance computing (HPC) environments has experienced an
explosion in recent years. The increasing prevalence of Big Data processing, in-situ analytics,
artificial intelligence (AI) and machine learning (ML) workloads, as well as multi-component
workflows is pushing the limits of supercomputing systems that have been primarily designed
to serve parallel simulations. In addition, with the growing complexity of the hardware there
is also a growing interest for multi-tenancy and for a more dynamic, cloud-like execution
environment. All these trends bring together a large variety of runtime components that
do not cooperate well with each other, which in turn can lead to suboptimal performance.
This talk will enumerate a number of representative workloads that stress the limitations of
the traditional HPC center. We then highlight some of the underlying forces which shape
requirements of next generation systems and propose a cross-stack coordination layer that
aims to resolve these conflicts. Finally, through some of our previous efforts in this space we
demonstrate the benefits of the overall approach.

3.8 Challenges of Resource Management on the “Data Platform”: mdx
Toshihiro Hanawa (University of Tokyo, JP)

License Creative Commons BY 4.0 International license
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mdx is the infrastructure for leveraging data all over Japan that enables (1) a rapid PoC
environment for R&D data leveraging activities including industry-academia-government
collaboration projects (2) wide-area virtual private infrastructure with high performance
computing and storage resources (3) realtime data processing with security.

mdx introduces a virtualization technology like multi-tenant cloud. On the other hand
due to the resource limitation, we have to efficiently manage the resource and consider to
offload heavy-load, large-capacity processing to Supercomputer.

3.9 InvasiC HPC Programming: iMPI and EPOP
Jophin John (TU München, DE) and Santiago Narvaez Rivas (TU München, DE)

License Creative Commons BY 4.0 International license
© Jophin John and Santiago Narvaez Rivas

As more and more emphasis is given to the malleable resources and adaptive resource
management, it is necessary to facilitate programming models that enable the application
programmers to exploit this dynamism. Our talk focussed on programming models for
malleable application development, specifically the malleable MPI API (iMPI) provided by
the invasive infrastructure developed as part of the InvasIC project (TCRC 89 “Invasive
Computing”). A tsunami simulation code (eSamoa) was adapted using such extension,
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showing that, albeit the runtime of malleable applications might increase with respect
to static ones, the resources are used more efficiently. During the development of the
eSamoa, several challenges were discovered. In particular, both the redistribution of data
after an adaptation occur, as well as keeping the logical flow of the application consistent,
proved to be relevant. To tackle the latter, we proposed a new phase-oriented programming
extension, namely the Elastic Phase Oriented Programming (EPOP) model on top of iMPI,
that facilitates easier malleable application development. We also discussed a scenario of
system-level power management using the EPOP based malleable model.

Along with application malleability, our discussion also extended to dynamic fault-tolerant
systems for malleable and non-malleable distributed-memory applications. We talked about
iCheck, an invasive checkpointing system that could dynamically increase and decrease the
resources for checkpointing. Additionally, using such a system for data redistribution among
malleable applications will benefit malleable application development. We showed results
that emphasize dynamism and provides better and faster checkpointing abilities.

3.10 From GEOPM to the OIEP Reference Model: Embedding Energy
and Power Runtime Systems into the Big Picture of HPC

Matthias Maiterth (TU München, DE)

License Creative Commons BY 4.0 International license
© Matthias Maiterth

The talk briefly introduces GEOPM, PowerStack and the OIEP Reference Model, and shows
their connection.

The presentations initially gives an overview of the GEOPM runtime and shows the
software infrastructure provided by the GEOPM framework.

Since tools do not exist in isolation, a sound setup of tools (such as GEOPM) have to
exist in a software echo system. The definition of a software stack for energy and power was
addressed by the PowerStack effort with still an open outcome.

The later part of the presentation shows the presenters Dissertation work, where the
OIEP reference model is presented, giving vocabulary and a method for representing and
arranging energy and power management setups in HPC. This is a missing foundation for
efforts such as the PowerStack and other tools, which so far often only consider specialized
setups or even lack integration in a holistic energy and power management setup.

3.11 Converged Computing: Combining the Best of HPC and the Cloud
Daniel John Milroy (LLNL – Livermore, US)

License Creative Commons BY 4.0 International license
© Daniel John Milroy

Since the early 2000s, computing has relied on increasing levels of parallelism together with
Moore’s law to drive performance improvement. As Moore’s law now begins to taper, demand
for increasing performance and new capabilities is spurring development of heterogeneous
and dynamic systems and new software environments. Large-scale scientific applications are
adapting to use the new tools and technologies and pushing computing boundaries through
multi-component workflows.
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This talk describes work on facilitating cutting-edge current and next-generation scientific
workflows through integration of cloud computing with Flux, a novel graph-based Resource
and Job Management Software (RJMS) developed at LLNL. The integration is aimed to
advance converged computing, an environment that offers the best features of HPC (perform-
ance, efficiency, sophisticated scheduling) and the cloud (resiliency, elasticity, portability, and
automation) to next-generation high-performance workflows. The talk will also detail work
to build industry collaborations to make lasting, sustainable contributions to the broader
computing community.

3.12 Overview of State-of-the-Art Parallel Performance Measurement
and Analysis Tools for heterogeneous systems

Bernd Mohr (Jülich Supercomputing Centre, DE)

License Creative Commons BY 4.0 International license
© Bernd Mohr

Current HPC systems consist of complex configurations of potentially heterogeneous com-
ponents. In addition, the hard- and software configuration can change dynamically due
to fault recovering processes or power saving efforts. Deep hierarchies of large, complex
software components are needed to operate them. Developing efficient and high performance
application software for these systems is challenging. Therefore, sophisticated performance
measurement and analysis capabilities are required. The talk will present an overview of
state-of-the-art parallel performance measurement and analysis tools, high-lightening the
scalability of the tools and their support for current heterogeneous node architectures.

3.13 Dynamism in HPC Resource Control
Frank Mueller (North Carolina State University – Raleigh, US)

License Creative Commons BY 4.0 International license
© Frank Mueller

This talk provides an overview of our recent work on dynamic resource control in HPC
environments. First, power controls are discussed for phase-changing applications. Second,
performance and power for application execution over hybrid DRAM/non-volatile memory is
characterized and used to provide guided allocation within both memory spaces to reduce
energy while maintaining performance. Third, a method for co-scheduling of jobs on multiple
heterogeneous accelerators is developed. Fourth, HPC resilience is extended to workflows
and jobs are scheduled on heterogeneous nodes according to their resource needs to trade off
response time, utilization, and cost for HPC and cloud allocations. Overall, HPC resource
control is becoming increasingly dynamic. Future work needs to coordinate different control
mechanisms to achieve higher-level objectives in terms of workload and center objectives.
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3.14 Dynamic Tuning of HPC Applications – ESPRESO FEM Library
Lubomir Riha (VSB-Technical University of Ostrava, CZ)

License Creative Commons BY 4.0 International license
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This talk introduces the ESPRESO FEM library developed at IT4Innovations. The library
was described from computer science point of view, and we highlighted its potential for
dynamic resource management. The key component of ESPRESO that enables its elasticity
is the I/O module which is capable of checkpoint / restart simulation on various number of
MPI ranks. Finally, we have proposed changes needed in this module to fully support iMPI.

3.15 Invasive Computing – A Systems Programming Perspective
Wolfgang Schröder-Preikschat (Universität Erlangen-Nürnberg, DE)

License Creative Commons BY 4.0 International license
© Wolfgang Schröder-Preikschat

Invasive Computing is a research program that aims at developing a new paradigm to address
the hardware- and software challenges of managing and using massively-parallel MPSoCs of
the years 2020 and beyond. The program follows the idea of a corresponding Transregional
Collaborative Research Center funded by the DFG in its third four-year period (2018-2022).
It currently comprises seventeen projects from the areas of computer architecture, system
software, programming systems, algorithm engineering and applications. Basic concept is to
let applications manage the available computing resources on a local scope and to provide
means for a dynamic and fine-grained expansion and contraction of parallelism. This talk
provides a brief overview of the program and presents thoughts and intermediate results on
system software support for it.

3.16 From COMM_WORLD to Sessions and Bubbles: How new MPI
Features Need to Interact with Resource Managers

Martin Schulz (TU München, DE)

License Creative Commons BY 4.0 International license
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MPI 4.0 introduced the new concept of MPI Sessions, which enables a new way of MPI
initialization and resource management. While currently still defined as an interface for
static resources, it provides the needed base mechanisms to develop a more dynamic view.
In this talk I will introduce the MPI Sessions API and its implications, and will then discuss
options for extensions, which could provide a truly dynamic and malleable MPI.
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3.17 Dynamic Tuning of HPC Applications – MERIC
Ondrej Vysocky (VSB-Technical University of Ostrava, CZ)
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This talk presents the MERIC tool for dynamic tuning of HPC hardware or runtime systems
while running parallel application. The goal is to minimize the energy to solution with
user-defined impact on application performance. Additionally, we also discuss the potential
of tuning the hardware under power-cap which not only opens opportunity for energy savings
but also for performance improvements. As the tool is continuously used to evaluate potential
of energy savings for different applications under H2020 and EuroHPC projects it is being
extended with new features. This includes support for new hardware, such as GPUs or new
CPU architectures as presented. As the approach we use can perform dynamic tuning at
relatively high rate, it is suitable for dynamic resource management.

3.18 The Price Performance of Performance Models
Felix Wolf (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
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To understand the scaling behavior of HPC applications, developers often use performance
models. A performance model is a formula that expresses a key performance metric, such as
runtime, as a function of one or more execution parameters, such as core count and input
size. Performance models offer quick insights on a very high level of abstraction, including
predictions of future behavior. In view of the complexity of today’s applications, which often
combine several sophisticated algorithms, creating performance models manually is extremely
laborious. Empirical performance modeling, the process of learning such models from
performance data, offers a convenient alternative, but comes with its own set of challenges.
The two most prominent ones are noise and the cost of the experiments needed to generate
the underlying data. In this talk, we will review the state of the art in empirical performance
modeling and investigate how we can employ machine learning and other strategies to improve
the quality and lower the cost of the resulting models.

4 Outlook: Techniques for Malleability-Enabled Machines

This section is the outcome of a joint effort of the seminar participants to provide a summary
of the results of the fruitful discussions during the seminar. The section covers all the aspects
of introducing dynamic resource management for malleable applications on HPC systems.

4.1 Resource Management
The dynamic behavior of malleable applications introduces new requirements to the Resource
Management (RM) infrastructure. Current RM implementations are static, as a consequence
of our traditional workloads being static themselves. This aspect of our workloads has been
changing over the years. The amount of dynamism varies, and malleability support has
become important for a subset of current highly dynamic workloads.
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Many of these workloads are developed with MPI, with an increasing number of them
using emerging programming models. Because of this, RM malleability support should be
programming model agnostic. This can be achieved by the use of PMIx for RM, runtime
system, tools and application interactions.

New features are more likely to be accepted by emerging RM infrastructures. Well
established workload managers, such as Slurm, are static in design, and large scope changes
to it may be undesirable; therefore, we expect malleability features to be more easily embraced
by emerging workload managers, such as Flux.

Job and application level malleability specifications are necessary. For example, instead
of specific resource specifications, valid ranges should be specified. These can be more than
just compute resources, and can include, for example, memory and energy requirements.

The dynamic behavior of these workloads, together with the increasing parallelism of
nodes (e.g., provided by GPUs), lowers the likelihood that hardware resources will be
properly utilized by a single application. Co-scheduling is a way to improve node-local
resource utilization, by allowing applications from multiple jobs to share nodes.

These changes will likely require updates to accounting mechanisms. The resources used
by users need to be tracked in time, instead of being trivially determined on job starts. Instead
of node-hours, if co-scheduling is enabled, slices of nodes will need to be tracked. Furthermore,
since there may be detrimental effects of co-scheduling and malleability, accounting incentives
need to be provided. Finally, node-slice counts will vary in time, if malleability is enabled.

Our systems will need to have configuration options that enable the definition of new
system policies. For example, a system should be able to prioritize new job starts over
resource allocation expansions via malleability, and vice versa. It should also be possible to
prioritize based on a new job taxonomy that includes types of jobs that are malleable.

4.2 Programming Models: MPI and Beyond
To support malleability, applications themselves need to become malleable and for that need
matching mechanisms in the parallel programming systems and APIs. This discussion can
be split into four main categories: cross-node support based on MPI, on-node support based
on shared memory models, coarse-grain support for workflows and models for heterogeneous
systems. Additionally, combinations of these aspects will have to be considered and will add
additional complexity and dependencies in the design of complete system-wide programming
abstractions.

4.2.1 Support for on-node malleability and the benefits of tasking

Intra-node programming models require less effort to support malleability as there is no
need for data redistribution in the event of a compute resources change. For example, the
OpenMP language constructs and runtime system already allows the use of different numbers
of threads for different (executions of) parallel regions. The same is true for shared-memory
applications using a task-based approach (like OmpSS, StarPU, OpenMP tasks) where the
computation is described as a set of tasks and the dependencies between them. The actual
execution is then left to the runtime system. Enabling malleability can be supported for all
applications (without the need to change them) by extending the runtime system to work
together with the resource manager. However, this is only useful for HPC systems which
would allow more than one application to use the same node (co-scheduling). This is rare on
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today’s HPC production systems, which are optimized for high performance, due to the fear
of too much interference between the different applications on the same node resulting in
overall bad performance.

4.2.2 Support for coarse-grained malleability in Workflows

Aside from malleability of single applications, the malleability in workflows is a major topic.
In this case, it may be sufficient for applications (in the sense of workflow components) to be
simply moldable, but it must be possible to shift resources dynamically between different
elements of the workflow. For this to be successful, though, it is critical for the resource
manager to understand the workflow and its control flow and to be able to take this (in its
entirety) into account when scheduling individual elements of the workflow. For this, the
needed interfaces need to be designed and possibly standardized, across different workflow
and management systems. These interfaces could then be made available via system resource
managers like SLURM and Flux.

4.2.3 Malleability in heterogeneous systems

Heterogeneous systems (e.g., integrated systems with homogeneous nodes, but a range of
accelerators in each, or modular systems with heterogeneous nodes, each hosting a different
accelerator) pose additional challenges, but also offer additional opportunities for applying
the concept of malleability. On one side, they add additional resource components and
turn scheduling into a multi-objective problem, but on the other side this provides new
flexibilities, especially when combined with more fine-grained workload and task descriptions
that can be mapped to resources in a flexible manner. As also already discussed wrt. on-node
malleability, it will likely lead to the need to support co-scheduling on nodes in order to
allow the resource manager to tap the individual resource types on a node independently.
Further, aspects like granularity, resource availability, contention and location have to be
taken into account. A special aspect is added to the problem when also considering power
and energy limitations, especially if power is limited to the point that not all accelerators (or
more general, all resources) on a node can be powered at the same time and tradeoffs have
to made to shift computational power between heterogeneous resources.

4.3 Unified Monitoring
Malleable and adaptive systems need to collect a variety of performance data to allow
allocation and scheduling decisions to be made during runtime. Our premise is that this
information could also be used by application performance and visualization tools to provide
useful information to programmers as to what changes in their program might result in more
efficient uses of these adaptive systems.

We see a research agenda that could proceed in the following steps:
1. Identify what application and system performance information is currently being collected

by adaptive systems and runtimes to enable malleability.
2. Design an interface so that tools can access and monitor this information.
3. Develop abstractions and mechanisms to deliver this information in forms used by current

performance tools, including tracing, sampling, statistical summarization.
4. Study how to combine this adaptive system performance data with data provided by

traditional performance tools.
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5. Study how the techniques used by performance tools for more static applications need to
be extended or changed to provide an understanding of programs running on an adaptive
system.

6. Study the security and privacy issues associated with this new source of performance
information and develop strategies for avoiding information leakage.

4.4 Turning Applications into Malleable Applications
There might be more or less suitable applications for converting them into malleable. If
we want to identify applications which can be in “reasonable” time and effort converted
into malleable we should identify whether following capabilities are already implemented:
(1) checkpoint and restart and (2) load balancing (in the best case the dynamic one). In
particular, if an application is able to checkpoint at N MPI ranks and restart at M ranks it
means that it already contains the functionality related to redistribution of its data structures.
In the simplest scenario this can be supported through a shared filesystem that is used to
store the checkpointed data.

An example of this simple scenario is shown in the figure below on an ESPRESO FEM
application developed at IT4Innovations NSC in Czech Republic (http://espreso.it4i.cz).
This application is based on a domain decomposition method and uses several variations of
parallel FETI linear solvers.

The simple scenario then can be converted into a more advanced one which does not
rely on a shared filesystem. This step contains extra work that must be done during the
conversion into a malleable application. In case of the ESPRESO the I/O module creates
the representation of a checkpoint file which contains the current state of a simulation in a
distributed memory before it is saved. This file then can be directly redistributed using MPI
communication.

The load balancing is then performed by calling the ParMETIS which repartition the
mesh into a new number of domains. After that the mesh is redistributed and transferred into
new MPI ranks. Based on mesh redistribution the results data are redistributed, accordingly.

There is also an overhead associated with mesh redistribution as all the FEM related
objects generated for particular decomposition have to be rebuilt, i.e. all the FEM matrices
have to be assembled again. This in general has to be considered for all applications.
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4.5 Incentives to Help in Dynamic Resource Management
Dynamic resource management can be improved using application knowledge. Applications
can, non-intrusively, provide information in their jobscript specifications. Moldable applica-
tions would specify a set of operation points and not ask for a single specific configuration.
Malleable applications would specify their properties like “can shrink”, “can grow”, probably
including limits and costs. In return applications that provide such information can get
higher priorities in the scheduling queues (because they help to utilize the machine) and a
chance to finish earlier.

Annotations about processing phases are a more intrusive way to help the resource
manager. The knowledge about job phases can be used to learn and predict resource usage
and provide just the right amount of resources to execute the current phase. The benefit for
the application appears when the accounting excludes the unused resources, regardless of
whether or not the resources are used elsewhere. With co-scheduling the phase annotations
can be used to improve utilization of heterogeneous resources, e.g. to hand over the otherwise
unused GPUs to a different application.

Malleable Applications are doing some internal resource management and might know
about phases when less or more resources are best to achieve good efficiency. Those
applications want to return some of their resources to the resource manager and also want to
have a guarantee to get the resources back at a later point in time. This can be achieved by
leasing the resources for a certain amount of time. If the resource manager agrees to take
the resources, then it would guarantee their availability after the deadline has expired and
would not charge the application for the leased resources. Such a mechanism can be used
to establish a spot market where the central resource manager as well as the applications
negotiate resource access and its costs.

4.6 What is the Potential of Malleable Applications?
The malleability support will obviously improve the total system throughput, however it
is still not clear how much we can ideally gain. Assessing the potential improvement or
the theoretical upper limit will motivate supercomputing centers, HPC research community,
as well as the industry toward the malleability support. Throughout the discussion in the
meeting, as a community, we concluded that we should quantify the potential gain for an
idealistic scenario, by using a real system job trace collected at a supercomputing center,
such as LRZ.
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First, to conduct this estimation, we need a metric like scale-time product – here we
define it as the integral of the number of nodes over time. For instance, if we can reduce the
scale-time product by one Xth for all the jobs by supporting malleability, we can potentially
gain X times system throughput improvement (of course, this is an ideal case, i.e., only if
the job scheduler can fully utilize the extra resources brought by the malleability support).

As a next step, we should know how much we can potentially reduce the scale-time product
for each application in the job trace, and then we can quantify the potential system-level
throughput improvement by just integrating them (again, this is an ideal case). However, as
it is extremely difficult to estimate it for all the jobs, we should introduce some assumptions,
conditions, and so forth.

One option for this is focusing on few large-scale and time-consuming jobs, investigating
the malleability opportunities for them, and estimating the potential throughput improvement
at system level by the simple calculation stated above. Another option for this is a rather
statistical approach, e.g., assuming a distribution function that describes the relationship
between the scale-time product and the reduction rate of it by the malleability support, and
calculates the potential gain based on it.

Then, the next step should be more realistic, such as estimating the gain for some different
scheduling algorithms, which is going to be simulation-based experiments. In this evaluation,
we will need the number of nodes as a function of time for each job. In the end, this can be
extended to cover other sophisticated resource managements such as co-scheduling or power
management.

4.7 Converged Computing
Malleability would enable the integration of interactive workloads with typical HPC jobs
on the system. The different characteristics of interactive workloads have to be taken into
account, i.e., they come in bursts, they have to be executed immediately, and the length and
resource requirements are not specified in the form of a batch script.

The opportunities for the HPC center are that the interactive workloads are excellent
candidates for increasing the overall system utilization. Furthermore, new application domains
become available for the centers, while these domains would profit from computation on
powerful HPC systems.

Three use cases were introduced in the seminar. Argonne is working on integrating
HPC into the continuum of resources for edge based IoT applications. Another is to bring
entire scientific workflows that combine microservice based components with HPC jobs.
At LLNL the combination of Kubernetes resource management and Flux is investigated.
TUM is researching automatic distribution of function invocations in serverless computing
to the heterogeneous computing continuum of HPC, Cloud, Edge, and IoT devices. Due
to the limitations on production HPC systems, the use of webassembly for isolation and
optimization for heterogeneous nodes of an HPC system is investigated at TUM.

The malleability of HPC jobs and the dynamic resource management can be used to
provide resources even on an HPC system on demand for the interactive tasks, without
overprovisioning in low demand periods. The approach taken by different groups is to
integrate the resource management of a Spark cluster or Kubernetes with the resource
management on the machine, providing additional resources to the interactive cluster if
required. These resources can be idle nodes or be taken from malleable applications. In case
the interactive cluster shrinks, the nodes are given back to the HPC applications.
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Malleability would also be beneficial in case the HPC system would be connected to HPC
in the Cloud for overflow computation. Application scaling is a major advantage of Cloud
systems, e.g., auto-scaling is used to adapt cloud based services to a changing workload. If
malleable HPC applications are provided already on the HPC system these could significantly
benefit from the practically unlimited resources in the cloud. On-demand allocation of
resources depending on the status of the application matches the inherent strength of the
cloud. In the cloud context, the incentive to make your applications malleable would even be
much higher than on HPC systems as resource usage is paid in the pay-per-use model.
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