
ASAP: A Speculative Approach to Persistence

Sujay Yadalam, Nisarg Shah, Xiangyao Yu, Michael Swift

University of Wisconsin-Madison
Madison, USA

Email: {sujayyadalam, nisargs, yxy, swift}@cs.wisc.edu

Abstract—Persistent memory enables a new class of ap-
plications that have persistent in-memory data structures.
Recoverability of these applications imposes constraints on
the ordering of writes to persistent memory. But, the cache
hierarchy and memory controllers in modern systems may
reorder writes to persistent memory. Therefore, programmers
have to use expensive flush and fence instructions that stall
the processor to enforce such ordering. While prior efforts
circumvent stalling on long latency flush instructions, these
designs under-perform in large-scale systems with many cores
and multiple memory controllers.

We propose ASAP, an architectural model in which the
hardware takes an optimistic approach by persisting data
eagerly, thereby avoiding any ordering stalls and utilizing the
total system bandwidth efficiently. ASAP avoids stalling by
allowing writes to be persisted out-of-order, speculating that
all writes will eventually be persisted. For correctness, ASAP
saves recovery information in the memory controllers which is
used to undo the effects of speculative writes to memory in the
event of a crash.

Over a large number of representative workloads, ASAP
improves performance over current Intel systems by 2.3× on
average and performs within 3.9% of an ideal system.

Keywords-persistent memory; NVM; recoverable applica-
tions; ordering; sfence; flush; eADR;

I. INTRODUCTION

Emerging non-volatile memory (NVM) technologies such

as Intel’s Optane Persistent Memory (PM) [1] pair the high

performance and byte-addressability of DRAM with the

durability of disks and Flash memory. These technologies

enable recoverable applications, which store critical data

structures in persistent memory to survive system crashes

and power failures [2]–[4]. However, current persistent

memory systems do not save the contents of the processor

cache on a failure: only data in the persistence domain sur-

vives. On systems supporting Optane, this domain includes

both data in NVM and data that has reached a memory

controller [5]. As a result, developers must ensure that data

has been flushed from the processor or caches to the mem-

ory controller using either non-temporal stores that write

directly to memory or cache write-back instructions. These

instructions incur long stalls in today’s NVM systems [6].

Ensuring that applications can correctly recover from a

failure is further complicated by the need to maintain data

consistency. To achieve high performance, current proces-

sors reorder data written out to memory. Yet, ensuring

consistency requires ordering certain updates, such as a

pointer update only after the data it references. Current

hardware provides a crude mechanism to enforcing order

through expensive fences that stall processor execution until

all prior flushes have reached the persistence domain.

Multi-threaded applications require persist ordering across

threads, which is hard to achieve efficiently. While early

studies of persistent memory usage found cross-thread de-

pendencies rare [6], they are frequent in a new class of con-

current applications: recently developed high-performance,

scalable concurrent data structures [4], [7]–[12] specifically

for persistence. For these structures, efficient support of con-

current accesses and subsequent cross-thread dependencies

is critical for performance.

Several prior proposals have looked to reduce the high

cost of ordering by either entrusting the cache hierarchy to

enforce ordering lazily [13], [14], or using buffering [6],

[15]–[19] or through speculation [20]. Some of these de-

signs do not support ordering across multiple memory-

controllers [15], [20], and others [6], [14], [15], [17] suffer

long flushing stalls while persisting writes ordered across

memory controllers. Also, these designs employ conserva-

tive techniques that stall flushing to enforce ordering in the

presence of cross-thread dependencies. Other designs [16]

either increase the hardware complexity or require batteries

for flushing data on a failure [19].

This paper introduces ASAP (A Speculative Approach to

Persistence), a novel persistence architecture that provides

the ability to order writes to NVM with almost no stalls

even in the presence of cross-thread dependencies and on

systems with multiple memory controllers. The key insight

of our work is that in the absence of failure, it is fine to write

data out to NVM in any order. Only when a failure occurs

must the system ensure that ordering was enforced. ASAP

therefore flushes writes optimistically and stores enough

information to correct the contents of memory when a failure

occurs. For example, when a write arrives early, ASAP

allows a speculative write to update NVM, but also saves

the old value at the address. If a failure occurs, ASAP can

restore the old value. In effect, ASAP maintains an undo log

for anything updated out of order.

While writing an undo record to NVM would be expensive



and lead to high write amplification, ASAP avoids additional

writes by leveraging Intel’s Asynchronous DRAM Refresh

(ADR) technology to save recovery information in the

memory controller. ADR allows a small amount of data to be

written back from the memory controller to NVM following

a failure but before power to the processor is completely lost.

On failure, ASAP uses the undo information at the memory

controller, to restore NVM to the correct state.

Storing recovery information at the memory controller

differs from logging employed in hardware approaches that

provide atomic durability [21]–[28]. First, these hardware-

assisted logging mechanisms generate additional writes to

NVM as they create a log entry on every write while ASAP

stores recovery information only when memory is updated

speculatively. Second, these designs can incur long latency to

enforce ordering between log and data writes, while ASAP

can reorder writes. Third, they may require large buffers

to hold out-of-place updates while ASAP performs well

with small buffers. ASAP does not aim to provide atomicity

and instead enforces ordering of writes efficiently. Many

PM applications [4], [7]–[10] do not use transactions but

still require ordering primitives from the hardware. These

designs would therefore benefit from ASAP but not from

the hardware transactional models. If applications do require

atomicity, ASAP can be coupled with any techniques such

as shadow paging or software transactions. This flexibility

allows ASAP to re-order writes to NVM, speculatively

update memory and use small buffers.

ASAP extends the processor core with persist buffers

that queue data waiting to be flushed to NVM. Queued

writes are flushed speculatively and out-of-order. Ordering

dependencies across threads are tracked by augmenting

the coherence protocol and are resolved through inter-core

communication. A small buffer called the recovery table at

the memory controller stores the recovery information.

To study the performance benefits of ASAP, we compare

it against one of the prior works that supports ordering

across multiple memory controllers, HOPS [6], and against

BBB [19] which has close to ideal performance. We evaluate

ASAP on a wide range of benchmarks including transac-

tional applications using Intel’s PMDK [29], applications

written to natively use PM, data structures using the Atlas

framework [30], and hand-written persistent data structures.

On average, ASAP is 22.8% faster than HOPS and within

3.9% of BBB [19]. In addition, we show that ASAP’s per-

formance scales with increasing threads, and offers greater

performance benefit with increasing NVM write bandwidth.

II. BACKGROUND

A. Persistency models

To ensure safety and correct recovery of persistent ap-

plications, the program state stored in persistent memory

must be in a consistent state. Persistency models [31],

like memory consistency models, define what constitutes a

consistent state and hence how a system is allowed to reorder

operations. We refer to stores in the volatile memory order

as writes and stores in the persistent order as persists.

ISA-level persistency models define what persist orderings

a processor exposes to programs. Strict persistency couples

the order of persists to the order of writes in volatile

memory order. It avoids the necessity for barriers to express

ordering but frequent ordering operations and the inability to

coalesce can hurt performance. Epoch persistency is more

relaxed as it allows some persists to be combined and/or

reordered. Every thread’s execution is divided into sequences

of persists called epochs, which are separated by fences (also

called persist barriers). Persists within an epoch can be re-

ordered or occur in parallel, allowing persists to coalesce.

Epoch persistency enforces two ordering constraints: (1) any

two memory accesses belonging to different epochs, i.e.,

separated by a persist barrier, are ordered. (2) Conflicting

memory accesses (accesses to the same address) within and

across threads assume the persist order from their volatile

memory order. The latter constraint is also called strong
persist atomicity. Strand persistency is the most relaxed

model. It divides a thread’s execution into strands. Writes in

different strands can be flushed concurrently but inter-strand

dependencies can still arise due to strong persist atomicity.

Language-level persistency. Reasoning about persist or-

dering across threads can be challenging. Acquire-Release
Persistency (ARP) is a language-level persistency model that

uses explicit acquire and release synchronization primitives

to specify ordering across threads [32]. When an acquire

synchronizes with a release, all writes preceding the release

should become durable before writes following the acquire.

Ordering within a thread is achieved by using barriers.

Along with the ordering that ARP enforces, Release Per-
sistency (RP) imposes ordering between writes and the syn-

chronization instructions themselves (acquire/release) [18],

allowing persistent synchronization variables. Writes preced-

ing a release are persisted before the release operation.

B. Synchronous ordering

Current Intel systems support PM through instructions

for durability and ordering. Programs flush data to NVM

using clflushopt and clwb to force write-back of

cache lines into memory [33]. These instructions are weakly

ordered, so a program that wants to enforce ordering must

use a sfence between epochs to wait for the preceding

flushes to complete, which stalls the CPU until the memory

controller acknowledges the flushes. Frequent ordering hurts

performance by stalling on every fence instruction [34].

C. Asynchronous DRAM Refresh (ADR) and enhanced ADR

Intel platforms that support Optane Persistent Memory

provide a feature called Asynchronous DRAM Refresh [5],

which flushes data queued at the memory controller to



ST A
ST B
ST C
ST D

Memory 
Controller 1

Memory 
Controller 2

Persist 
Barrier

Persist Buffer

ACK

(a) Conservative flushing in a multi
memory-controller system

E0,1E0,0 E0,2

E1,1E1,0 E1,2

E2,1E2,0 E2,2

T0

T1

T2

T
hr

ea
ds

Complete 
epoch

Flushing 
epoch

Waiting 
epoch

(b) Conservative flushing with cross-
thread dependencies

E0,1E0,0 E0,2

E1,1E1,0 E1,2

E2,1E2,0 E2,2

T0

T1

T2

Cross-thread
dependency

Intra-thread
dependency

(c) Eager flushing in ASAP enables de-
pendent threads to flush concurrently

Figure 1: Conservative flushing in earlier designs versus eager flushing in ASAP

Figure 2: Number of epochs and cross-thread dependencies

across 4 threads within 1 ms of execution

NVM on a power loss. Therefore, writes to NVM can be

considered durable once they reach the memory controller.

Recently, Intel announced enhanced ADR (eADR) that

flushes processor caches on power failure [5]. If eADR is

enabled, applications do not have to issue flush instructions

as all the data in the caches would be flushed to NVM

in the event of a crash. The operating system must be

able to handle a power fail interrupt and detect if the

reserve power is insufficient to flush caches, indicating that

eADR may not always guarantee data is flushed [35] [36].

However, the details of eADR are not available yet, so the

implications on performance are not clear. eADR is expected

to be costly as it requires a large battery to back the entire

cache hierarchy [36], [37]. Adding a battery to every system

supporting NVM is not generally practical or cost-effective.

ASAP is able to achieve performance close to that of eADR

(Section VI) without requiring additional battery.

III. MOTIVATION

The motivation for ASAP is two-fold: (1) Avoid flushing

stalls in a multi-core multi-memory controller system and

(2) handle cross-dependencies efficiently.

Multi memory-controller systems. Having multiple memory

controllers in a single processor is common for server-

class processors, such as Intel Xeon processors (the only

ones to currently support NVM). With multiple memory

controllers, enforcing ordering requires ensuring that persists

are ordered correctly across multiple controllers. So persists

at one controller may have to wait for persists to arrive and

complete at another controller. Compounding the problem,

the lower bandwidth of Intel Optane memory encourages

interleaving physical addresses across controllers to increase

memory parallelism. Recent studies [38], [39] have shown

that interleaving can improve write bandwidth by up to 5.6×.

This makes it more likely that data structures will span

memory controllers.

Currently available hardware and previously proposed

designs either do not address this problem or are not efficient

in doing so. Intel hardware tackles the problem through

synchronous fence operations: the processor stalls at every

epoch boundary to wait for preceding persists to complete,

which increases latency and fails to utilize the available

bandwidth to NVM. Many prior works such as DPO [15]

and PMEM-Spec [20] do not support multiple memory con-

trollers. Most other proposals such as LB++ [14], HOPS [6],

StrandWeaver [17], and LRP [18] implement inefficient

conservative flushing strategies. These designs order writes

across memory controllers by waiting for writes in the

current epoch to be acknowledged before flushing writes

from later epochs. Figure 1a illustrates this case, where the

second epoch writing to MC 2 must stall until the first epoch

is acknowledged by MC 1. These designs incur flushing

stalls when one memory controller is slower to respond than

the other and leads to poor bandwidth utilization.

To address this issue, Vorpal [16] proposed distributed

algorithms using vector clocks. Implementing such complex

protocols can involve significant overheads: 1) high tag cost:

every store needs to be tagged with a vector timestamp (a

vector containing as many timestamps as cores) which can

be quite large in a server with many cores, 2) communica-

tion overheads: memory controllers need to broadcast their

clocks frequently as the broadcast frequency determines the

rate of forward progress. There is a need for an efficient

implementation for ordering persists in a multi-memory

controller system.

Handling cross-thread dependencies. Efficiently ordering

persists correctly across threads is important for perfor-

mance. The WHISPER workload analysis [6] showed that

applications had few cross-dependencies, where one thread



Figure 3: Percentage of persist buffer stall cycles

persists data recently persisted by another thread. Since that

work, there have been numerous efforts at producing high-

performance concurrency-aware persistent data structures

specifically designed for efficient multi-threaded workloads

(e.g., CCEH [7]). Figure 2 shows the total number of epochs

and number of cross-dependencies in 1ms of simulated pro-

gram execution with release persistency. Cross-dependencies

are not common in workloads in the WHISPER benchmark

and PMDK-based applications such as Vacation and Mem-

cached. However, they are frequent in new concurrent data

structures such as CCEH [7], Dash [8] and RECIPE [4].

Thus, there is a necessity for a system that handles these

dependencies efficiently.

To handle these dependencies, designs that employ con-
servative flushing stall flushing in the dependent thread until

the earlier thread’s persists complete. Figure 1b illustrates

this problem. Writes in epoch E1,1 of thread T1 cannot be

flushed until source thread T2 completes flushing its epoch

E2,0. PMEM-Spec [20] speculates that persists will occur

in order, but has an expensive recovery mechanism if this

speculation is wrong.

We measure the frequency of such flushing stalls for

various workloads with HOPS (see Section VI for workload

details) to demonstrate the extent of the problem. Figure 3

shows the percent of cycles the persist buffers are blocked

without flushing writes for different workloads. Overall, the

persist buffers are unable to flush for 26% of cycles on

average. Many of these stalls come from cross-dependencies

which is why the stall cycles are higher in the new concur-

rent persistent data structures.

Although earlier works alleviate processor stalls by decou-

pling persistence from core execution with caches/buffers,

they suffer from frequent flushing stalls. Such frequent stalls

cause the finite buffers to fill up and exert back-pressure on

the core pipeline, ultimately stalling the processor.

IV. ASAP OVERVIEW

The main design goals of ASAP are:

• Reducing core stalls by avoiding flushing stalls: ASAP

overcomes flushing stalls by flushing writes eagerly

and possibly out-of-order. This in turn reduces the

Thread 1

ST A
ST B

Thread 2

ST A

ST X
ST YST C

Intra-thread 
ordering

Cross-thread 
ordering

2-sided barrier 1-sided barrier

(a) Epoch persistency

Thread 1

ST A

Thread 2

ST A
ST Y

AcqRel

ST B

ST C

(b) Release persistency

Figure 4: Persistency model semantics provided by ASAP

number of core stalls, increases bandwidth utilization,

and improves the overall performance.

• Maximizing common case performance: Persist order-

ing has to be preserved to ensure consistent state during

crashes. In the absence of failures, ordering is not a

necessity. Crashes are rare compared to the frequency

of ordering events during program execution. ASAP,

therefore, tries to improve the performance during

normal operation by speculatively updating memory.

• Handling cross-thread dependencies efficiently: ASAP

employs cross-thread dependency tracking and resolu-

tion strategies to overcome limitations of earlier works.

• Scaling to large scale servers: ASAP avoids global

shared state, global broadcast operations, or centralized

structures with per-core state in order to scale to many

cores and multiple memory controllers.

ASAP is a buffered persistency system that uses a separate

data path for persists. Writes are queued in a hardware

buffer and are later flushed from the buffer to the memory

controller. Buffering decouples the program execution from

data persistence, allowing the core to continue executing

instructions while the hardware handles making the writes

durable. Buffering also enables coalescing of writes which

reduces the number of persists issued to NVM.

ASAP flushes all persists automatically, as soon as pos-

sible. Flushes could, however, arrive out-of-order at the

memory controller, which could lead the system into an

inconsistent state during crashes. ASAP handles this by

storing fixup information in the memory controller, which

is flushed on failure using ADR. The recovery information

is used to resolve the inconsistency during a crash. ASAP

tracks cross-thread dependencies using coherence, and re-

solves dependencies using new inter-thread messages.

A. Persistency model

ASAP builds on the ofence and dfence primitives

from HOPS to enable applications to build high-level atom-

icity mechanisms. Writes within a thread are ordered using

ofence while dfence guarantees that all earlier writes

in that thread are persisted. ofence can be used to order

log updates before data updates and dfence can be used

at the end of transactions or after the completion of a data



structure update to ensure durability before responding to

the client.

The key design aspects such as eager flushing, speculative

updates to memory, and cross-thread dependency handling

are not tied to the persistency model. We discuss and evalu-

ate the design of ASAP that supports 1) epoch persistency or

2) release persistency [18]. The key difference between the

two models is when cross-thread dependencies arise. With

epoch persistency, a cross-thread dependency arises when a

thread issues a conflicting access to any address which has

been modified by another thread. With release persistency,

a cross-thread dependency is detected only when a thread’s

acquire synchronizes with another thread’s release,

whether or not the address refers to persistent or volatile

memory. Figure 4 shows the ordering semantics of the two

persistency models. Persists within a thread are ordered

using 2-sided persist barriers (ofence) while acquire
and release act as 1-sided barriers.

B. Nomenclature

We define some of the terms useful for understanding the

design of ASAP. Writes refer to stores issued to addresses in

NVM. We use the term flush to indicate a write was sent to

the memory controller, where ADR will ensure it is stored

to NVM on a failure. We use the term persist to indicate

that a write has reached the persistence domain. All flushes

and persists occur at cache-line granularity.

• An epoch is a region of code separated by persist

barriers within a thread. Writes in an epoch can be

flushed concurrently. Writes in a later epoch should not

survive a failure unless all writes from its preceding

epochs also survive.

• Epoch number labels an epoch. Writes are tagged with

the epoch number of the epoch it belongs to.

• An epoch is safe if all ordering constraints are satisfied,

i.e., (1) all previous epochs on the same thread have

been committed and (2) if it is dependent on an epoch

from another thread and that epoch has committed.

• A future epoch is one that is not safe.

• An epoch completes when all the persists in the epoch

have been flushed.

• An epoch commits when it is safe and is complete.

We use thread to refer to a CPU core that supports a

single thread. We leave hyperthreading to future work.

C. Eager Flushing

ASAP employs eager flushing wherein it flushes writes in

different epochs concurrently. ASAP speculates that writes

from earlier epochs will eventually become durable and so

it eagerly flushes writes from future epochs. This enables

ASAP to overlap flushes from different epochs and use the

total available system bandwidth more efficiently. ASAP

differentiates between writes that are in the current flushing

epoch and writes in future epochs. When ASAP flushes

a persist in a future epoch, it marks the persist as early.

Eager flushing reduces latency and improves bandwidth

by removing stalls needed to order epochs across multiple

memory controllers, and to order dependent epochs on

different threads.

D. Speculative updates to memory

When the memory controller receives an early flush, it

speculatively persists the write in memory. The system might

crash after the update (mis-speculation) and leave memory in

an inconsistent state. To handle this, the memory controller

saves recovery information in the memory controller before

speculatively persisting the write. Specifically, it creates an

undo record for the speculatively updated address by reading

the value at that address from memory before issuing a

write. ASAP includes the recovery information in the ADR

domain, which can be flushed to NVM on a power outage.

If the system crashes, ASAP reverts the state of memory

using the undo record in the memory controller.

E. Cross-thread dependencies

Similar to HOPS [6], ASAP extends the coherence pro-

tocol to track cross-thread dependencies. ASAP augments

coherence messages with dependence information. When a

thread receives a coherence request for a cache-line, it replies

with the data and current epoch number and then starts a

new epoch. The core requesting the cache-line starts a new

epoch that is dependent on the remote thread’s epoch. Note

that with release persistency, dependence information is sent

only if the coherence request is for a cache-line touched

by an acquire/release. With epoch persistency, by

creating new epochs on cross-thread dependencies, circular

dependencies can be avoided. This approach is borrowed

from the epoch deadlock avoidance mechanism proposed

earlier [14]. Since ordering is cheap in ASAP, this has little

effect on performance. Furthermore, it is always safe to split

an epoch into several smaller epochs, as they ensure the same

ordering requirement. Note that, with release persistency,

regular coherence requests do not establish a dependency,

so ASAP requires race-free code.

ASAP applies eager flushing to cross dependencies.

ASAP allows writes from a dependent thread to be flushed

before or concurrently with writes from a source thread. This

lets the dependent thread drain its buffer eagerly without

having to wait for the source thread to complete its epoch.

Like before, the dependent thread marks the writes as early
when it sends the packets to the memory controllers. Fig-

ure 1c illustrates how ASAP improves flushing concurrency

by allowing dependent threads to flush eagerly.

Cross-thread dependencies are resolved using thread-to-

thread communication. When an epoch commits at the

source thread, it notifies the dependent thread about the

commit by sending an explicit message. This direct inter-

thread communication has three advantages: (1) it scales



ST A=1

Acq

synchronizes 
with

Thread 1

Thread 2 Rel

ST A=3Acq

synchronizes 
with

RelThread 3

Memory Controller

early

early
safe

Rel

ST A=2

Figure 5: Write collision

better as there is no single point of contention unlike the

global register in HOPS [6], (2) it avoids costly snooping

mechanisms used in DPO [15], and (3) it reduces the

resolution latency and saves energy compared to polling.

F. Write collision

Since ASAP flushes writes eagerly, writes to the same

address can be flushed concurrently from multiple threads.

A problem arises when multiple early flushes to the same

address arrive at the memory controller out-of-order. For

instance, a write with an older value could arrive at the mem-

ory controller after writes with newer values. Updating the

memory speculatively and maintaining recovery information

won’t work as it could leave the memory with a stale value.

Consider the example in Figure 5. Suppose initially A =
0. All three threads write to A, but early flushes A = 3
from thread 3 arrives at the memory controller, followed by

A = 2. When the MC speculatively updates memory with

value A = 3, it stores an undo record of A = 0. When it

speculatively persists A = 2, the value in memory is 3, so

the MC stores the undo record A = 3. Memory now has

the incorrect value due to the reordering of the two writes.

Furthermore, If the system fails now, the correct value A = 0
has been lost, so ASAP cannot recover to a consistent state.

ASAP handles such write collision with additional record

keeping. An MC creates delay record when an early write

arrives and an undo record for that address already exists. A

delay record contains the value of a write from an epoch that

has not yet committed; once it is committed, the value from

the delay record becomes the safe value and is copied into

the undo record. In the above example, the MC speculatively

updates memory with value A = 3 but creates a delay record

for A = 2. The MC applies the delay record to update the

undo value when the epoch containing A = 2 commits. Note

that more than one delay record may be created if multiple

early writes arrive at the memory controller.

V. ASAP IMPLEMENTATION

We implement ASAP for the x86-64 architecture to allow

a comparison against Intel’s currently available systems. The

x86-64 ISA enforces TSO (Total Store Order) consistency

model and lacks support for explicit acquire and release op-

erations in the ISA. For release persistency, ASAP requires

the programs to provide acquire/release information either

through extensions to existing instructions or through anno-

tations. We use acquire/release annotations in our programs.

A. Hardware Structures

We first describe the hardware structures used to imple-

ment ASAP; later, we describe the overall operations.

Persist Buffers (PBs): These are per-core circular buffers

alongside the private caches similar to HOPS [6] and

DPO [15]. Writes to NVM are buffered and tracked in the

PB. When a core issues a store to an address in NVM, the

write is simultaneously updated in the caches and enqueued

in the PB. PBs flush writes in the background without the

core’s intervention. Memory is updated by flushing data

from the PBs. Cache-lines for NVM evicted from the LLC

are dropped and are not written back to memory.

ASAP uses logical timestamps to label epochs. Each core

has a timestamp register for the current active epoch. When

an entry is added to the buffer, it is assigned the timestamp

register’s value. PBs also track the status of the flush. While

flushing, PBs use the timestamp of the entry to look up in

the Epoch Table (described below) to determine if a flush is

safe or early. To notify the memory controller if a flush is

early, PB sets a bit in the packet sent to the MC. PBs delete

entries after they have been acknowledged by the MC.

Epoch Tables (ETs): The per-core epoch tables are CAMs

that hold metadata about in-flight epochs. An epoch table

resides next to the core’s persist buffer. It tracks information

about the status of in-flight epochs and cross-thread depen-

dencies. For each ongoing epoch, the epoch table tracks

the number of writes waiting to be flushed or awaiting ac-

knowledgment. When a cross-thread dependency is detected

via coherence message, the core records the source thread

and epoch in the ET. The source thread adds the dependent

thread to its epoch table as well.

Execution of an ofence increments the current epoch

timestamp and adds a new entry to the ET. When the core

issues a dfence instruction, the ET waits to respond until

all the in-flight epochs in the table have been committed.

This ensures that all the writes prior to the dfence have

been persisted. The core stalls until the ET responds.

Recovery Tables (RTs) are CAMs residing in the memory

controller that hold undo and delay records. Early flushes

could create either undo or delay records when they reach

the MC. Undo and delay records store the address, data,

threadID, and timestamp of the flush that created it.

Undo records are used to store the safe state for an

address, i.e., value in memory prior to the speculative persist

or the value written by the most recently safe flush. Undo

records are created by reading the value from memory before

speculatively updating it. Such a read-modify-write approach

is acceptable because (1) NVM has read/write asymmetry,

with read bandwidth much higher than write bandwidth, (2)

only the number of reads increase (the number of writes



Core

L$

Epoch 
Table

Persist
Buffer

Shared LLC

Core Core Core

iMC iMC

DRAM PM DRAM PM

Recovery 
Table

3

2
1

1
2
3

Persist path
Epoch commit
CDR

WBB

L$ L$ L$

WBB WBB WBBPB PB PB

ETET ET

(a) System Overview. Colored structures are modifications in ASAP. Orange structures
belong to volatile domain while green structures belong to persistence domain.

TS
Pending 

Ack
Src
TS

32b 5b 8b

Epoch Table
Dependent
ThreadID

32b 8b

Addr TS S Data

64b 32b 2b 64 bytes

Persist Buffer

Recovery Table

MC
bit vec

16b

Src
ThreadID

Addr Src
ThreadID

Src
TS

Undo\
Delay

Data

64b 8b 32b 1b 64 bytes

(b) Hardware implementation of Persist
buffers (per core), Epoch Table (per core)
and Recovery Table (per memory controller)

Figure 6: ASAP Implementation overview

Event Action

Undo record for
address not present

Undo record for
address present

Safe flush arrives Update memory Update undo record

Early flush arrives
- Create undo record
- Speculatively update
memory

Create delay record

Table I: Handling of incoming flushes at the MCs

might decrease because of coalescing). (3) XPBuffer [1]

in Intel Optane Persistent memory caches most recently

accessed lines. Write would mostly hit in this cache.

Delay records hold updates that belong to epochs that

have not yet been committed. The value in the delay record

is the value flushed by the PB. Delay records are processed

when the epoch they belong to commits (see Section V-C).

B. Handling incoming flushes

Eager flushing can reorder flushes to the memory con-

troller. The flushes cannot be written out to memory naïvely.

The memory controller re-orders some of the writes using

delay records. Table I shows the different ways in which

the memory controller handles incoming flushes. We briefly

explain the actions here:

1) Incoming safe flush without matching undo record:

This is the normal case where the flush updates the

memory normally.

2) Incoming safe flush with matching undo record: Since

an undo record exists, the address in memory has been

speculatively updated with a later value. The older value

in the incoming safe flush is not copied to memory to

avoid losing the newer value already in memory, and

instead is stored in the undo record.

3) Incoming early flush without matching undo record:

The memory controller creates an undo record and

speculatively updates memory.

4) Incoming early flush with matching undo record: Pres-

ence of an undo record implies memory is in a specula-

tive state. The memory controller delays the incoming

early flush by creating a delay record to process this

flush later when its epoch commits.

C. Epoch commit and cross dependency resolution

ETs determines when an epoch is safe, complete, or can

be committed. First, it recognizes an epoch En as safe when

(i) En’s preceding epoch has committed, and (ii) En has

no cross dependency, or if it does, the ET has received

a Cross Dependency Resolved (CDR) message from the

source thread (described below). Second, ET recognizes an

epoch as complete when the PB has received ACKs for all

the writes in the epoch from the memory controller. ET

commits an epoch when it is both safe and complete.

When an ET detects that an epoch can be committed, it

sends commit messages to the memory controllers. In order

to avoid unnecessary communication between the ET and the

memory controllers, the ET records the memory controllers

to which early flushes were issued.

A memory controller, on receiving a commit message,

searches the RT and deletes any undo records belonging

to that epoch, making space for new records. If any delay
records exist for the epoch, they are processed as if the

corresponding flushes just arrived at the MC (Section V-B):

if no undo record exists, the delay value is persisted to NVM;

otherwise the undo record is updated with the delay value.

After receiving an ACK for the commit message from

the memory controllers, the ET considers the epoch to be

committed. It then sends a CDR (Cross-thread Dependency

Resolved) message to the dependent thread (if it exists).

The dependent thread resolves the dependency (clears the

metadata in its ET) when it receives the CDR message.

Unlike prior designs [15], [16], the recovery tables in

the memory controller do not have to track epoch ordering.

Instead, ETs track ordering information and send commit
messages to the memory controller in the correct order. This

strategy allows the recovery tables to commit writes in the

right order without having to compare epoch timestamps.



D. Handling insufficient Recovery Table space

One of the challenges in ASAP is that RTs are finite.

There may be no space in the RT to handle an incoming

early flush. ASAP uses negative acknowledgments (NACK)

to reject early flushes if there is no space in the RT.

Such a mechanism lets the memory controller exert back-

pressure on the PBs. If a flush is NACKed, PBs pause eager

flushing and fall back to conservative flushing wherein only

safe flushes are issued. These never allocate space in the RT.

PBs waits until the epoch becomes safe and then retries the

flush but this time as a safe flush instead of an early flush.

Eager flushing resumes after the current epoch commits.

E. Crash handling

On failure, memory controllers are notified of a pending

shutdown. MCs flush all writes in their WPQ (Write Pending

Queue). Along with these writes, memory controllers write

the values in the undo records to memory, thereby unwinding

the effects of speculative updates. After this, no data from

unsafe epochs remain in memory. delay records don’t play

any role here since they belong to epochs that were not

completed before the crash and had not updated memory yet.

Memory is restored to a consistent state during the crash and

doesn’t require additional recovery in hardware after restart.

F. Discussion

Handling private cache evictions. Cross-thread dependen-

cies are established when a coherence request is forwarded

to the thread that last wrote to it. It is possible that the

cache-line is evicted from the private caches while preceding

writes are still enqueued in the PB. Past designs [17], [18]

solved this problem by managing the cache evictions in a

small buffer. The cache-line eviction is delayed until all the

preceding writes are persisted. ASAP uses a similar write-

back buffer (WBB) [17] to prevent cache evictions before

preceding writes are persisted. WBB records the tail index of

the persist buffer when the cache initiates the eviction. The

cache-line is written back from the WBB when the persist

buffer flushes the corresponding index entry.

Handling early LLC cache-line evictions. In ASAP, cache-

lines for persistent memory are dropped when they are

evicted from the LLC since writes take the persist path

through the persist buffer. A cache-line might be queued

in the PB while it is evicted from the LLC. Loads to this

address cannot read from memory since the latest value

resides in the PBs and not in memory. However, these events

are very rare. Some previous designs [28], [40] leverage

the fact that writes in non-temporal paths almost always

complete before the temporal counterparts. Nevertheless, this

problem could arise in ASAP when flushes are NACKed.

When a flush is NACKed, the data sits in the persist buffer

until it is safe to be reissued. The cache-line pertaining to

this flush might face an LLC eviction during this time. To

CPU cores 4 cores, 8-way OoO, 2GHz
L1D caches private, 32kB, 8-way, 1ns
L1I caches private, 32kB, 8-way, 1ns
L2 cache private, 2MB, 8-way, 10ns
LLC shared, 16MB, 16-way
Coherence MESI Three level

Memory controllers 16 entry WPQ, 32 entry RT

PM Read = 175ns/Write = 90ns

Persist buffers 32 entry, flush = 60ns

Table II: Simulator configuration

Benchmark Data structures Description

Nstore PM-native DBMS
Echo Scalable key-value store
Vacation Travel reservation system
Memcached In-memory key-value store

ATLAS [30] heap, queue, skip list Insert/delete elements

CCEH [7] extendible hashing Insert/search elements
Fast_Fair [9] B+-Trees Insert/search/delete elements

Dash [8]
level hashing,
extendible hashing

Insert elements

RECIPE [4]
radix tree, hash table,
masstree

Insert elements

Table III: Workloads

overcome this, ASAP uses a counting Bloom filter at the

memory controller, similar to HOPS [6]. The Bloom filter

is populated with flush addresses that were NACKed. ASAP

uses the Bloom filter to check address of the cache-line being

evicted from the LLC. If it hits, the cache eviction is delayed

since the corresponding write in enqueued in the PB. When

the write is retried, the address is removed from the Bloom

filter and the cache-line is evicted.

DMA coherence. To ensure that DMA reads and writes

are coherent with the CPU caches, software needs to issue

dfence before initiating DMA operations. This ensures

that all writes queued in the persist buffers are persisted.

Context switches. To ensure correct ordering when the

operating system migrates a software thread from one core to

another, the OS must issue a dfence instruction to ensure

the thread’s data have been safely persisted.

VI. EVALUATION

We implemented and evaluated ASAP using full-system

simulation on gem5 [41]. We simulated a modern multi-

core system with 2 memory controllers similar to Intel Xeon

processors. The hardware configuration is summarized in

Table II. We modeled NVM characteristics based on a study

on Intel Optane [38]. Each core has a 32-entry persist buffer

and 32-entry epoch table along with the private caches. Each

MC has a 32-entry buffer for the recovery table.

Table III shows the workloads used to evaluate the per-

formance of ASAP. We chose workloads from a variety of

sources with a variety of programming models, emphasizing

multi-threaded workloads. We use 3 classes of applications:



Figure 7: Performance study in a 4-core system

1) Benchmarks from the WHISPER suite with a mix of

native (Nstore and Echo) and PMDK code (Vacation

and Memcached) [6].

2) Hand-written data structures using the ATLAS persis-

tence framework [30].

3) New concurrent persistent data structures, both hand-

written (CCEH, Fast_Fair) and converted from DRAM

structures (RECIPE, Dash).

We configure all applications to be update-intensive in order

to stress PM write performance. For Nstore, Echo and

Vacation we use default parameters used in WHISPER [6].

For the rest of the workloads, key and value sizes vary from

16B to 128B. Data is interleaved across memory controllers.

We compare the following designs in our evaluation:

• Baseline: This model replicates current Intel machines

that support synchronous ordering through clwb and

sfence instructions.

• HOPS: HOPS_EP [6] implements epoch persistency

and HOPS_RP implements a variation of HOPS that

provides release persistency. We make changes to the

polling implementation in HOPS. The original imple-

mentation unrealistically polled every cycle and as-

sumed read took a single cycle. We updated HOPS to

poll every 500 cycles with each access of the global TS

register taking 50 cycles.

• ASAP: ASAP_EP supports epoch persistency and

ASAP_RP implements release persistency. These de-

signs implement PBs, ETs and RTs to provide specu-

lative persistence.

• eADR/BBB: This model implements a system with

eADR. We also implemented an optimistic version of

BBB [19]. BBB’s performance is very close to that of

a system with eADR. We therefore use a single graph

to represent the performance of both eADR and BBB.

For all models, we assume ADR, i.e. the Write Pending

Queues in the controllers are part of the persistence domain.

A. Performance study

Figure 7 compares the performance of all the models in a

4-core 2-MC system. Speedups are normalized to the Intel

baseline. ASAP outperforms the baseline and HOPS while

performing close to eADR/BBB for almost all workloads.

Comparison to baseline. As expected, the baseline model is

the slowest as it stalls the CPU frequently waiting for cache

flushes to complete. By decoupling ordering and durabil-

ity, ASAP can overlap flushing with useful computation.

ASAP_EP and ASAP_RP offers a speedup of 2.1× and

2.29× on average respectively. The speedup is significant in

applications without frequent durability fences as it allows

ASAP to make writes durable in the background without

stalling the CPU. We see that ASAP performs well for

applications with smaller critical sections. Vacation uses

a coarse-grained lock while performing a query on the

reservation system, and performs bookkeeping of volatile

data before releasing the lock. By the time another thread

acquires the lock, writes have been flushed out so early

flushing is not beneficial.

Comparison to HOPS. ASAP outperforms HOPS for both

persistency models. ASAP_EP improves performance by

37% on average over HOPS_EP while ASAP_RP improves

by 23% on average over HOPS_RP. The performance im-

provement is significant for concurrent data structures such

as CCEH, Dash and RECIPE. These workloads have smaller

epochs with writes to different memory controllers. They

also exhibit high cross-thread dependencies as shown in

Figure 2, which leads to frequent flushing stalls in HOPS

which ultimately results in core stalls because of insufficient

buffering capacity. Instead of stalling, ASAP flushes writes

early, making space in the persist buffers for newer writes.

HOPS also stalls longer on dfence as it takes longer to

drain the persist buffer completely. Having flushed writes

early, ASAP has fewer durability stalls.

Comparison of persistency models. Both HOPS and ASAP

perform better with release persistency than epoch persis-
tency. This is mainly because the number of cross-thread

dependencies is much higher with epoch persistency than

release persistency. However, the difference between the

performance is not significant with ASAP because ASAP

is optimized to handle frequent cross-thread dependencies.

On the other hand, HOPS_EP’s performance drops be-

low baseline for concurrent data-structures such as queue,

CCEH, DASH and P-ART. These applications have small

epochs and frequent cross-thread dependencies. HOPS uses

polling to resolve cross-thread dependencies, and if the

polling period is longer than the time it takes to flush all

writes in an epoch, HOPS stalls longer than baseline. For the

rest of this section, we present results of models supporting



Figure 8: Number of PM write operations

release persistency as it performs better. We use HOPS to

refer to HOPS_RP and ASAP to refer to ASAP_RP.

Comparison to eADR/BBB. ASAP_RP’s performance is

very close to eADR, on average within 3.9%. The primary

cause of stalls in ASAP are dfence instructions used to

ensure durability, and even then it rarely stalls because

ASAP flushes writes early. Similar to BBB, cores could

stall if persist buffers get filled up. This could happen if

the rate at which the core issues writes is greater than the

memory bandwidth. However, this doesn’t happen often and

as shown in Figure 10, the average PB occupancy is well

below maximum capacity.

The downside of BBB is that on failure, it requires a

larger battery to ensure that all the entries in the buffers are

persisted along with any in-flight inter-core communication.

ASAP can achieve comparable performance by using con-

solidated smaller buffers in the memory controller instead.

Write endurance PM has limited write endurance compared

to DRAM. It is therefore important to reduce write traffic.

Buffering enables coalescing which reduces the number of

writes issued to memory and improves the write endurance.

Figure 8 shows the number of write operations in HOPS

and ASAP normalized to HOPS. For most applications,

ASAP has fewer write operations compared to HOPS. Some

applications (Memcached, vacation, P_ART) benefit from

additional coalescing in the persist buffer due to HOPS’s

conservative flushing. For most applications, however, ASAP

achieves better coalescing for following reasons:

1) Latest value is already in memory: When writes arrive

out of order, MCs often suppress the write issued from

an earlier epoch that arrives later. Instead, the MC

simply updates the undo record.

2) Coalescing in the Recovery Table: Flushes to the same

address, belonging to the same epoch can be coalesced

in the delay record in the RT.

3) Coalescing in the WPQ: For applications such as Dash-

LH and Dash-EH, we observe that concurrent flushing

from different threads can be coalesced in the WPQ

(Write Pending Queue) in the memory controller.

Therefore, along with improving the performance, ASAP

improves write endurance of NVM by improving coalescing.

However, ASAP incurs additional cost in creating undo

records before updating memory speculatively. On average,

number of PM reads increases by 5.3% in ASAP over HOPS.

Figure 9: Sensitivity study of different number of cores

Figure 10: PB occupancy averages and 99th percentile. Bars

plot the average, and the line caps show the 99th percentile.

B. Sensitivity studies

Number of cores. One of the key design goals for ASAP

is to scale to larger servers. In that aspect, we evaluate the

performance of ASAP and HOPS for release persistency
by varying the number of cores. We varied the number of

software threads in the applications accordingly. We fix the

number of MCs to 2.

For a single thread, on average, ASAP improves per-

formance by 18% over HOPS. With a single thread, there

are no cross-thread dependencies. ASAP’s improvement in

throughput can be attributed to eager flushing, which allows

concurrent flushes to both the MCs. ASAP is therefore able

to utilize the system bandwidth better than HOPS.

ASAP scales better than HOPS as the number of cores

increases. Due to limited space, we show the scalability

for workloads that scale best (P-ART) and worst (Skiplist)

along with the average in Figure 9. On average, ASAP

achieves a speedup of 1.18×, 1.79×, 2.51× and 2.85×
with 1, 2, 4 and 8 threads over a single thread of HOPS.

HOPS is only able to achieve a speedup of 1.36×, 1.94×
and 2.15× by increasing the threads to 2, 4 and 8. As

the number of cores increases, the probability of cross-

thread dependencies increases. HOPS falls off when the

number of cores is increased because of its inefficiency in

handling cross-thread dependencies. HOPS stalls frequently

as it employs conservative flushing. ASAP on the other hand,

avoids stalls as it employs eager flushing to flush writes from

dependent threads early.

PB and RT occupancy Buffer sizes are crucial for two

reasons: (1) it determines the cost (area, power) of imple-

menting the design changes, and (2) it impacts the maximum

performance achievable. ASAP adds 3 buffers in the form

of PBs, ETs and RTs. ETs are very small since they neither



Figure 11: Recovery Table max occupancy

Figure 12: System bandwidth utilization

store addresses nor data. We study the occupancy of PBs

and RTs to understand their impact on performance.

Figure 10 plots the average and 99th percentile occupan-

cies of the PBs in HOPS and ASAP. Since ASAP flushes

writes eagerly, writes are queued for less time in the PB,

leading to lower occupancy. Both the average and the 99th

percentile occupancy are much lower in ASAP. Although

we simulate performance with 32 entry PB, we expect to

observe similar performance with smaller PBs.

Figure 11 shows the maximum occupancy of the recovery

table for both 4 threads and 8 threads. The max occupancy

does not increase significantly from 4 threads to 8 threads.

We believe that a small RT would improve performance even

as applications scale. ASAP handles full RTs by falling back

to conservative flushing. Therefore, ASAP’s performance

does not drop below that of HOPS even if the RT gets filled

up. Nstore is an exception, in that it sometimes filled the RT

and triggered NACKs to the persist buffer. However, NACKs

did not hurt performance as the persist buffers were still able

to flush data conservatively.

C. System bandwidth utilization

One of the advantages of eager flushing and speculative

memory updates is the overlap of work across memory

controllers. With eager flushing, ASAP can utilize more

of the system bandwidth efficiently. To understand how

well ASAP utilizes the available write bandwidth, we ran a

custom bandwidth micro-benchmark. The benchmark issues

256-byte writes alternating across 2 MCs and the writes are

ordered using an ofence. The results of the experiment

are plotted in Figure 12. HOPS fails to utilize the system

bandwidth efficiently while ASAP performs 2x better than

HOPS on average owing to eager flushing which overlapped

the writes to the 2 MCs.

D. Hardware cost analysis

We ran CACTI [42] simulations to study the area, access

latency and energy overheads. At the time of writing this

paper, CACTI supported 22nm node but nothing smaller.

Table V summarizes the hardware cost for the persist buffer,

epoch table and recovery table. We also present the numbers

for a typical L1 cache for comparison. The sizes of the

buffers were as specified earlier and the size of each field

in the buffers is shown in Figure 6b.

Epoch Tables are small and do not add significant over-

head. The benefits of having a persist buffer and recovery

table outweigh the hardware cost they incur. Buffering

improves performance significantly and enables coalescing

which improves the write endurance. Recovery table enables

speculative updates of memory which also speeds up the

performance and reduces write operations.

Draining energy cost: Unlike BBB [19] and eADR [36],

ASAP does not require a backup battery to flush data

during crashes. ASAP extends the ADR domain in modern

processors to store recovery information. With eADR, all

the dirty cache blocks in the entire cache hierarchy needs to

be flushed. Considering a server class CPU with 32 cores

and cache sizes in Table II and assuming 50% of the cache

blocks as dirty, about 42MB of data has to be flushed from

the caches to NVM on power failure. BBB [19] reduces the

amount of data to be flushed to about 64KB. ASAP requires

less than 4KB of data to be flushed from the recovery tables

in the memory controller. Additionally, ASAP needs to flush

data only from the memory controllers and not the caches,

therefore ASAP requires much less energy.

E. Qualitative comparison to other related work

Table IV summarizes ASAP’s comparison to related work.

Comparison to LB++ [14]. LB++ augments the cache tag

arrays to track ordering. Unlike ASAP, flushing begins only

after an epoch is completed and all earlier epochs are

complete. Since the design couples persist path to cache

management, the system suffers from stalls on cache evic-

tions and replacements. It also lacks durability guarantees

required for ACID transactions and would suffer from long

stalls even if it were to support it. We expect LB++’s

performance to be lower than that of HOPS and ASAP.

Comparison to DPO [15]. Similar to HOPS and ASAP, DPO

uses buffers alongside private caches to enqueue writes to

NVM. DPO uses conservative flushing and stalls flushing

on cross-thread dependencies. It uses broadcasts to resolve

cross-thread dependencies which would be costly in a large

system. Moreover, DPO does not support multiple memory-

controllers. DPO’s performance could be comparable to that

of HOPS and lesser than that of ASAP.

Comparison to LRP [18]. LRP enforces release persistency

by extending the cache tag array to include epoch numbers.

LRP stalls on certain cache coherence state transitions. For

instance, a forward request for a released cache-line could

block until previous writes in the cache persist. ASAP

instead records the dependency information and persists



LB++ [14] DPO [15] HOPS [6] LRP [18]
Strand-

Weaver [17]
PMEM-

Spec [20]
Vorpal [16] BBB [19] eADR ASAP

Multi MC support Yes No Yes Yes Yes No Yes Yes Yes Yes

Flushing Stallsa High High High High Medium None High None None Lowb

Durability guarantees No No Yes No Yes No No Yes Yes Yes
Battery size None None None None None None None Medium Large None

Recovery Costc None None None None None High None None None Low

Table IV: Comparison of related work.
aFlushing stalls refer to cycles when flushing is blocked to enforce ordering(Section III). bASAP encounters flushing stalls only when RT is filled up (see
Section V-D). cAdditional recovery cost introduced by the hardware, excluding software recovery.

Area
(mm)

Access
latency (ns)

Write
energy (pJ)

Read
energy (pJ)

Persist Buffer 0.093 0.402 30 28.876
Epoch Table 0.006 0.185 0.428 0.092
Recovery Table 0.097 0.413 31.5 31.5
32KB L1 cache 0.759 1.403 327.86 327.85

Table V: Hardware overheads of ASAP. Values are per-core

for PB and ET, and per memory controller for RT.

writes speculatively without stalling. Hence, ASAP would

perform better than LRP.

Comparison to StrandWeaver [17]. StrandWeaver is the

only design that provides strand persistency. It performs

better than HOPS as it allows epochs from different strands

to be flushed concurrently. It uses conservative flushing to

handle cross-strand dependencies. ASAP should outperform

StrandWeaver as it allows flushing writes from different

epochs concurrently including those dependent on other

threads. ASAP could be integrated with StrandWeaver to

support strand persistency and achieve higher performance.

Comparison to PMEM-Spec [20]. PMEM-Spec allows

flushing speculatively any PM accesses without stalling or

buffering. PMEM-Spec speculates that all accesses obey the

ordering constraints and flushes them as they appear to the

MC. Mis-speculations have high overhead as they are treated

as failures and handled in software. For a single-MC system,

PMEM-Spec performs similar to ASAP as it never stalls.

But, in a multi-MC system out-of-order writes are common,

leading to very high overhead from expensive recovery.

Comparison to Vorpal [16]. Vorpal is one of the few works

that have addressed multi-memory controller systems. It

uses distributed algorithms based on vector clocks to order

persists across multiple memory controllers. Unlike ASAP,

Vorpal delays the write until the memory controller deems

it safe. As stated earlier in Section III, Vorpal incurs

large overheads because of vector timestamps, and requires

frequent communication amongst the memory controllers.

VII. RELATED WORK

Related work on enforcing ordering was discussed previ-

ously, so we focus here on other closely related topics.

There has been growing interest in designing systems that

provide software-transparent atomicity. These works [21]–

[28], [43] provide hardware-assisted atomicity either through

logging, out-of-place updates or hardware transactions.

ThyNVM [44] provides software transparent crash con-

sistency using a periodic hardware-assisted checkpointing

mechanism. ASAP, in contrast, focuses only on order-

ing, which is component of many atomicity protocols.

Themis [40] proposes lightweight extensions to the de-

fault x86 persistency model to provide ordering guarantees

without explicitly requiring barriers but only supports pro-

grams that use undo-logging. LAD [45] provides atomically

durable transactions in a multi-MC system. It uses buffers in

the memory controllers to accumulate all updates within a

transaction and uses a distributed 2PC-like protocol to atom-

ically commit the transaction. ASAP reduces complexity by

providing ordering instead of atomicity guarantees.

Recent research has also focused on developing data

structures optimized for NVM [11], [46], [47]. FAST and

FAIR [9] is a crash-consistent B-+tree, while CCEH [7]

and Dash [8] implement persistent hash tables. Recipe [4],

Pronto [48] and TIPS [12] are approaches to convert con-

current DRAM indexes to crash-consistent data structures

with minimal changes. These structures do not rely on

transactions but do benefit from ASAP’s faster ordering.

VIII. CONCLUSION

NVM promises high-performance persistent data struc-

tures. Yet, the need to ensure ordering for consistency

causes expensive stalls in current and proposed platforms,

or limits the use of multiple memory controllers. Adding

to that is the necessity for ordering persists across threads.

ASAP relies on a novel early flushing mechanism that

speculatively persists data out of order, and only ensures

proper ordering on failure. ASAP maintains a small amount

of recovery information in the memory controller to unroll

the speculatively persisted data. This approach performs

almost 23% better than past solutions to this problem, and

within 3.9% of an ideal system.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

insightful and useful feedback. We would also like to thank

Mark Hill and Swapnil Haria for their support. This work

is supported by National Science Foundation under grant

NSF-CNS-1900758 and partially supported by the Parallel

and Concurrent Computer Hardware and Software Research

Fund generously provided by an alumnus.



REFERENCES

[1] I. Corp., “Intel optane persistent memory.” [Online]. Avail-
able: https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-dc-persistent-memory.html

[2] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
Lightweight persistent memory,” ACM SIGARCH Computer
Architecture News, 2011.

[3] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson, “Nv-heaps: Making persis-
tent objects fast and safe with next-generation, non-volatile
memories,” ACM SIGARCH Computer Architecture News,
2011.

[4] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chi-
dambaram, “Recipe: Converting concurrent dram indexes to
persistent-memory indexes,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP), 2019.

[5] I. Corp., “Asynchronous DRAM Refresh.” [Online]. Avail-
able: https://software.intel.com/content/www/us/en/develop/
articles/intel-xeon-processor-scalable-family-overview.html

[6] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos,
and K. Keeton, “An analysis of persistent memory use with
whisper,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). ACM, 2017.

[7] M. Nam, H. Cha, Y.-r. Choi, S. H. Noh, and B. Nam,
“Write-optimized dynamic hashing for persistent memory,” in
17th USENIX Conference on File and Storage Technologies
(FAST), 2019.

[8] B. Lu, X. Hao, T. Wang, and E. Lo, “Dash: scalable hashing
on persistent memory,” Proceedings of the VLDB Endowment,
2020.

[9] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable
transient inconsistency in byte-addressable persistent b+-tree,”
in 16th USENIX Conference on File and Storage Technologies
(FAST), 2018.

[10] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson,
“Bztree: A high-performance latch-free range index for non-
volatile memory,” Proceedings of the VLDB Endowment,
2018.

[11] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh,
“Wort: Write optimal radix tree for persistent memory storage
systems,” in 15th USENIX Conference on File and Storage
Technologies (FAST), 2017.

[12] R. M. Krishnan, W.-H. Kim, X. Fu, S. K. Monga, H. W. Lee,
M. Jang, A. Mathew, and C. Min, “Tips: Making volatile
index structures persistent with dram-nvmm tiering,” in 2021
USENIX Annual Technical Conference (USENIX ATC), 2021.

[13] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee, “Better i/o through byte-
addressable, persistent memory,” in Proceedings of the ACM
SIGOPS 22nd Symposium on Operating systems principles
(SOSP), 2009, pp. 133–146.

[14] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient
persist barriers for multicores,” in Proceedings of the 48th In-
ternational Symposium on Microarchitecture (MICRO), 2015.

[15] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu,
P. M. Chen, and T. F. Wenisch, “Delegated persist ordering,”
in 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). IEEE, 2016.

[16] K. Korgaonkar, J. Izraelevitz, J. Zhao, and S. Swanson,
“Vorpal: Vector clock ordering for large persistent memory
systems,” in Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing (PODC), 2019.

[17] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Relaxed persist order-
ing using strand persistency,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2020.

[18] M. Dananjaya, V. Gavrielatos, A. Joshi, and V. Nagarajan,
“Lazy release persistency,” in Proceedings of the 25th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2020.

[19] M. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Soli-
hin, “Bbb: Simplifying persistent programming using battery-
backed buffers,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE,
2021.

[20] J. Jeong and C. Jung, “Pmem-spec: Persistent memory spec-
ulation,” in Proceedings of the 26th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2021.

[21] X. Wei, D. Feng, W. Tong, J. Liu, and L. Ye, “MorLog:
Morphable hardware logging for atomic persistence in non-
volatile main memory,” in 47th Annual International Sympo-
sium on Computer Architecture (ISCA). IEEE, 2020.

[22] M. Cai, C. C. Coats, and J. Huang, “Hoop: efficient hardware-
assisted out-of-place update for non-volatile memory,” in
2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2020.

[23] T. M. Nguyen and D. Wentzlaff, “Picl: A software-
transparent, persistent cache log for nonvolatile main mem-
ory,” in 2018 51st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). IEEE, 2018.

[24] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom:
Atomic durability in non-volatile memory through hardware
logging,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2017.

[25] J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Ef-
ficient hardware-assisted logging with asynchronous and
direct-update for persistent memory,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018.

[26] K. Doshi, E. Giles, and P. Varman, “Atomic persistence for
scm with a non-intrusive backend controller,” in 2016 IEEE
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2016.



[27] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Dhtm:
Durable hardware transactional memory,” in 2018 ACM/IEEE
45th Annual International Symposium on Computer Architec-
ture (ISCA). IEEE, 2018.

[28] M. A. Ogleari, E. L. Miller, and J. Zhao, “Steal but no force:
Efficient hardware undo+ redo logging for persistent memory
systems,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018,
pp. 336–349.

[29] I. Corp., “Intel Persistent Memory Development Kit.”
[Online]. Available: https://github.com/pmem/pmdk

[30] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas:
Leveraging locks for non-volatile memory consistency,” in
Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Appli-
cations (OOPSLA, 2014.

[31] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persis-
tency,” in 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA). IEEE, 2014.

[32] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persis-
tency,” in 2017 ACM/IEEE 44th Annual International Sym-
posium on Computer Architecture (ISCA). IEEE, 2017.

[33] A. Raad, J. Wickerson, G. Neiger, and V. Vafeiadis, “Persis-
tency semantics of the intel-x86 architecture,” Proceedings of
the ACM on Programming Languages, 2019.

[34] S. Haria, M. D. Hill, and M. M. Swift, “Mod: Minimally
ordered durable datastructures for persistent memory,” in
Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

[35] P. Zardoshti, M. F. Spear, A. Vosoughi, and G. Swart,
“Understanding and improving persistent transactions on op-
tane™ DC memory,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2020.

[36] I. Corp., “Persistent Memory Learn More Series.”
[Online]. Available: https://software.intel.com/content/www/
us/en/develop/articles/pmem-learn-more-series-part-2.html

[37] S. Blanas, “From FLOPS to IOPS: The New
Bottlenecks of Scientific Computing.” [Online]. Avail-
able: https://www.sigarch.org/from-flops-to-iops-the-new-
bottlenecks-of-scientific-computing

[38] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swan-
son, “An empirical guide to the behavior and use of scalable
persistent memory,” in 18th USENIX Conference on File and
Storage Technologies (FAST), 2020.

[39] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and
J. Zhao, “Characterizing and modeling non-volatile memory
systems,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2020,
pp. 496–508.

[40] S. M. Shahri, S. A. V. Ghahani, and A. Kolli, “(almost) fence-
less persist ordering,” in 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE,
2020, pp. 539–554.

[41] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti
et al., “The gem5 simulator,” ACM SIGARCH computer
architecture news, 2011.

[42] R. Balasubramonian, A. B. Kahng, N. Muralimanohar,
A. Shafiee, and V. Srinivas, “Cacti 7: New tools for inter-
connect exploration in innovative off-chip memories,” ACM
Transactions on Architecture and Code Optimization (TACO),
2017.

[43] K. Genç, M. D. Bond, and G. H. Xu, “Crafty: efficient,
htm-compatible persistent transactions,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2020.

[44] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mu-
tiu, “Thynvm: Enabling software-transparent crash consis-
tency in persistent memory systems,” in 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2015, pp. 672–685.

[45] S. Gupta, A. Daglis, and B. Falsafi, “Distributed logless
atomic durability with persistent memory,” in Proceedings
of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2019.

[46] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main
memory,” in Proceedings of the VLDB Endowment, 2015.

[47] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He,
“Nv-tree: Reducing consistency cost for nvm-based single
level systems,” in 13th USENIX Conference on File and
Storage Technologies (FAST), 2015.

[48] A. Memaripour, J. Izraelevitz, and S. Swanson, “Pronto:
Easy and fast persistence for volatile data structures,” in
Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.



ARTIFACT APPENDIX

A. Abstract

This artifact includes the gem5 simulation code used to

evaluate ASAP and other models (HOPS, baseline, ideal).

Additionally, we provide the disk images (required for

gem5 simulations) containing the workloads used to evaluate

ASAP in this paper. We open-source this artifact to allow

other researchers and developers to use and improve it in

their own work.

This artifact includes the necessary scripts and tools to be

able to reproduce the performance results shown in Figure

7. In this appendix, we briefly describe the necessary steps

for compiling gem5 and executing the benchmarks.

B. Artifact check-list (meta-information)
• Program: gem5
• Compilation: GCC version 7.0.0 or above, Scons 3.0 or

greater.
• Models: A total of 6 models including baseline, HOPS_EP,

HOPS_RP, ASAP_EP, ASAP_RP and ideal.
• Execution: Scripts included in the artifact.
• Metrics: Execution time.
• Output: gem5 simulation stats are recorded for each run. The

execution time for each simulation is obtained from these stat
files.

• Experiments: Performance evaluation of 6 different models
under 15 workloads.

• How much disk space required?: 50GB.
• How much time is needed to prepare workflow?: 1 hour

(includes time to download images and compile)
• How much time is needed to complete experiments?: 2

days, running experiments in parallel is recommended.
• Publicly available: Yes, open-sourced on GitHub and

archived on Zenodo.
• Code licenses (if publicly available): Same as gem5 (mostly

BSD and MIT open-source licenses)
• Workflow framework: Custom workflow. Clone git, compile

gem5, use scripts to run simulations, repeat these steps for
all models, run script to gather results from the simulations.

• Archived: https://doi.org/10.5281/zenodo.5776777.

C. Description

1) How to access: The artifact is publicly available

on Zenodo at https://doi.org/10.5281/zenodo.5776777. A

GitHub repository for the same can be found at https:

//github.com/multifacet/ASAP. Supporting files such as disk

and kernel images used with gem5 are included with the

archive. The images can also be accessed at https://pages.

cs.wisc.edu/~sujayyadalam/asap/. All the workloads used for

evaluation are included in these disk images.

2) Hardware dependencies: gem5 is largely agnostic

about the hardware it runs on. Here’s a list of hardware

requirements:

• 64-bit platform (tested on x86_64, gem5 supports mul-

tiple archs)

• Each experiment requires a little over 10GB of memory.

The number of experiments that can be run in parallel

is limited by the amount of memory available.

• 50GB of disk space to store disk images.

• Internet connection for cloning the repository and

downloading the disk images.

3) Software dependencies: The version of gem5 used for

implementing ASAP is tested on Ubuntu 18.04 and Ubuntu

20.04. Some of the software dependencies include:

• gcc version between 7 and 10 for compiling gem5.

• scons ≥ 3.0 for gem5 build environment.

• Python 2.7 (do not use Python 3 as it causes issues with

gem5 version 20.0.0.3).

• latest versions of the following packages required for

compiling and running gem5: build-essential
m4 zlib1g zlib1g-dev libprotobuf-dev
libgoogle-perftools-dev libprotoc-dev
libboost-all-dev pkg-config.

• Python 3 for plotting graphs.

4) Data sets: Each workload used for evaluation uses its

own data sets. Some workloads generate data sets before

beginning execution and some use pre-generated data sets.

The scripts included in the artifact ensure that the data sets

are generated before the workload begins execution.

5) Models: Along with ASAP, this artifact includes 3

models: baseline, HOPS and ideal. Each of these models

are implemented in gem5 and are available on separate

branches in the GitHub repository. For ASAP and HOPS,

there is an additional runtime parameter that is used to

decide the persistency model (either epoch persistency or

release persistency) to be used for the simulations.

6) About gem5 simulations: gem5 offers various CPU

models with different features. In our experiments, we make

use of 3 CPU models namely x86KvmCPU, TimingSim-
pleCPU and O3CPU along with the Ruby memory model.

Each simulation has 4 stages:

Linux boot: x86KvmCPU is used the first phase which

involves booting the kernel. x86KvmCPU uses KVM

to accelerate the booting within the simulations.

Warmup: The linux boot phase is followed by the warmup

phase where the TimingSimpleCPU model is used.

ROI: Once the warmup is complete, the detailed O3CPU
model is used to simulate the region of interest or ROI.

Cool down: After the ROI is complete, the simulation is

ended with a TimingSimpleCPU model.

The stats for the warmup, ROI and cool down phases are

captured separately but written out to the same output file.

D. Installation

The README.md file of the https://github.com/multifacet/

ASAP repository contains a detailed step-by-step installation

guide. Summarizing the installation steps here:

- Install software dependencies.

$ apt install build-essential git m4
scons zlib1g zlib1g-dev libprotobuf-
dev python python-dev protobuf-
compiler libgoogle-perftools-dev



libprotoc-dev libboost-all-dev pkg-
config

- Clone the repository.

$ git clone https://github.com/
multifacet/ASAP

- Create a directory called disks and download

the disk images into it. Download the kernel

image to the gem5 directory. Disk and kernel

images can either be downloaded from Zenodo

at https://doi.org/10.5281/zenodo.5776777 or from

https://pages.cs.wisc.edu/~sujayyadalam/asap.

$ cd ASAP; wget https://pages.cs.
wisc.edu/~sujayyadalam/asap/vmlinux_
12
$ mkdir disks; cd disks
$ wget -r -np -nd -A "*.img" https:
//pages.cs.wisc.edu/~sujayyadalam/
asap/images/

- Checkout the branch corresponding to the model you

wish to simulate. There are 4 branches in the repository:

ASAP (default), baseline, HOPS and ideal.

$ git checkout <branch>
- After changing the model, it is recommended to delete

the build folder before re-compiling the new model.

$ rm -r build
- Compile the gem5 model.

$ python2 $(which scons)
build/X86/gem5.fast -j<threads>

E. Experiment workflow

We have included a script ‘run.sh’ that can be used to

execute a workload with any model. We have also included a

‘run_all.sh’ that would execute all the workloads for a

single model in parallel. However, running all the workloads

in parallel would require a large number of cores (around 16)

and large memory (150GB). Note that root access (sudo) is

required to run the scripts. This is because the simulations

use x86KvmCpu model which uses KVM to accelerate the

kernel booting in gem5.

For ASAP and HOPS models (ASAP_EP, ASAP_RP,

HOPS_EP, HOPS_RP), an additional parameter for the

persistency model needs to be passed to the script.

$ ./run.sh <workload> <persistency
model>

F. Evaluation and expected results

Use the ‘run.sh’ or the ‘run_all.sh’ to execute all

the workloads for that model. After all the workloads finish

execution, change the model and repeat the process, i.e.

recompile and re-run the experiments. Once all the models

Each gem5 simulation generates an output ‘stats.txt’

file that can be accessed under the results directory.

Stats Description

cyclesBlocked Cycles for which PB is unable to flush
cyclesStalled CPU stall cycles because of full PB
dfenceStalled CPU stall cycles because of dfence
entriesInserted Total number of writes enqueued in the PBs
interTEpochConflict Number of cross-thread dependencies
totSpecWrites Number of early flushes
totalUndo Number of undo records created

Table VI: Relevant stats and their descriptions

have been evaluated, use ‘reproduce_results.py’ to

plot the speedups similar to Figure 7.

Some stats of relevance and their descriptions are listed

in Table VI. The reproduce_results.py extracts the

runtimes from these output files and generates the graph

similar to Figure 7.

G. Experiment customization

Those familiar with gem5 can modify the models to try

out new ideas. It would just require making changes to the

source, re-compiling and running the experiments.

Running new workloads with these models is possible but

requires additional effort. New workloads can be added to

the existing disk images or new ones. Change the disk image

in the run.sh script accordingly. More importantly, the

new workloads need to be instrumented to include ofence
and dfence in place of flushes and fences. A new gem5

script would also be needed. You could use the scripts in

the scritps directory as reference.

Other runtime parameters can be varied to perform sen-

sitivity studies and analysis. Refer to the configs/com-
mon/Options.py file for a list of run-time parameters.

Parameters such as the persist buffer size and PMEM read

and write bandwidth can be varied.

H. Notes

There are multiple sources of randomness while running

gem5 simulations. Therefore the execution times for a par-

ticular experiment can vary from one run to another. For

better accuracy, it is recommended to average the execution

times from multiple runs.

On Ubuntu 18.04, there is an issue with tcmalloc and

some simulations might crash mid-way. This is an issue with

the gem5 source and not with the modifications made by us.

While running on Ubuntu 20.04, some Python modules

might have to be installed. You can do so by using the

following commands:

$ wget https://bootstrap.pypa.io/pip/2.
7/get-pip.py
$ python2 get-pip.py
$ python2 -m pip install six


