
Software-Defined Address Mapping: A Case on 3D Memory
Jialiang Zhang

jlzhang@seas.upenn.edu
University of Pennsylvania

Philadelphia, PA, USA

Michael Swift
swift@cs.wisc.edu

University of Wisconsin-Madison
Madison, WI, USA

Jing (Jane) Li
janeli@seas.upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

ABSTRACT
3D-stacking memory such as High-Bandwidth Memory (HBM) and
Hybrid Memory Cube (HMC) provides orders of magnitude more
bandwidth and significantly increased channel-level parallelism
(CLP) due to its new parallel memory architecture. However, it is
challenging to fully exploit the abundant CLP for performance as
the bandwidth utilization is highly dependent on address mapping
in the memory controller. Unfortunately, CLP is very sensitive to
a program’s data access pattern, which is not made available to
OS/hardware by existing mechanisms.

In this work, we address these challenges with software-defined
address mapping (SDAM) that, for the first time, enables user pro-
gram to obtain a direct control of the low-level memory hardware
in a more intelligent and fine-grained manner. In particular, we
develop new mechanisms that can effectively communicate a pro-
gram’s data access properties to the OS and hardware and to use it to
control data placement in hardware. To guarantee correctness and
reduce overhead in storage and performance, we extend Linux ker-
nel and C-language memory allocators to support multiple address
mappings. For advanced system optimization, we develop machine
learning methods that can automatically identify access patterns of
major variables in a program and cluster these with similar access
patterns to reduce the overhead for SDAM. We demonstrate the
benefits of our design on real system prototype, comprising (1) a
RISC-V processor, near memory accelerators and HBM modules
using Xilinx FPGA platform, and (2) modified Linux and glibc. Our
evaluation on standard CPU benchmarks and data-intensive bench-
marks (for both CPU and accelerators) demonstrates 1.41×, 1.84×
speedup on CPU and 2.58× on near memory accelerators in our
system with SDAM compared to a baseline system that uses a fixed
address mapping.

CCS CONCEPTS
• Software and its engineering → Main memory; • Computer
systems organization→ Reconfigurable computing.

KEYWORDS
Software defined memory, 3D memory, Address mapping

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507774

ACM Reference Format:
Jialiang Zhang, Michael Swift, and Jing (Jane) Li. 2022. Software-Defined
Address Mapping: A Case on 3D Memory. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’22), February 28 – March 4, 2022, Lausanne,
Switzerland. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3503222.3507774

1 INTRODUCTION
DDR-based main memory is a critical performance bottleneck in to-
day’s data centers as memory bandwidth cannot keep pace with the
explosion in data. The problem becomesmore pronouncedwith new
trends in processor technology and applications: 1) Increasing the
number of general-purpose cores and accelerators integrated into
a single chip raises competition for access to DRAM and demands
higher bandwidth from main memory. 2) Emerging applications
such as data analytics and graph processing are data intensive and
increasingly becoming memory bound. As such, 3D-memory is a
promising alternative to tackle these problems by providing more
bandwidth. The two realizations of 3D-memory areHigh Bandwidth
Memory (HBM) [23] and Hybrid Memory Cube (HMC) [37]. These
memories exploit through-silicon via (TSV)-based stacking tech-
nology and organizes memory banks into multiple independently-
operated channels, offering > 10× more channel-level parallelism
(CLP) than DDR memory. Hence, they can achieve > 10× higher
peak hardware bandwidth. Such CLP is expected to grow more for
future-generation 3D memory devices [36].

One of the key challenge of using 3D memory is how to fully
exploit the CLP offered by the new parallel architecture. To increase
CLP and hence bandwidth utilization, it is important to spread con-
current memory requests across as many channels as possible. This
can be controlled via the address mapping in the memory controller
that transforms the flat 1D of physical addresses into an internal
3D hierarchical structure of channels, banks and rows. However, in
comparison to DDR DRAM, 3D memory has many more channels
but smaller row buffer size. Thus, to better exploit the CLP in 3D
memory, consecutive memory access (cache-line size granularity)
should be sent to distinct channels via fine-grained control of data
placement. The mapping has to vary with different data access pat-
terns to fully exploit its potential: when program strides through
data, the generated memory references may cause contention on
one or few memory channels. Thus, we need a mechanism that
can effectively predict/capture the access patterns of different data
structure in a program and leverage such knowledge to support
multiple address mappings for data structures with different data
access patterns.

Many existing works address the data placement issue using
hardware-only mechanisms. These methods rely on dedicated hard-
ware to control data placement based on a single address map-
ping [1, 17, 30, 49] and apply one global address mapping to all

70

https://doi.org/10.1145/3503222.3507774
https://doi.org/10.1145/3503222.3507774
https://doi.org/10.1145/3503222.3507774

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jialiang Zhang, Michael Swift, and Jing (Jane) Li

physical addresses after address translation or a very large address
range. To predict access patterns, they use physical addresses that
only provide a localized view (page) of accesses and cannot cap-
ture different access patterns to different data structures in virtual
memory. Hence, they often result in limited performance gain.

There have also been a number of software-only methods pro-
posed to learn the knowledge of a program’s access pattern in
memory system optimization [8, 14]. For instance, page coloring
places virtual pages that may be accessed concurrently in physical
frames associated with different cache blocks to reduce conflict
misses. However, page coloring and its variations have a common
problem: their control on data placement via virtual-to-physical
address translation is coarse-grained page granularity. However, in
3D memory, we need fine-grained control at cacheline granularity
in order to distribute concurrent requests across as many channels
as possible to fully exploit its CLP. Simply reducing page size to
cache-line size may incur prohibitively high paging overheads.

To summarize, the key insights are: 1) the hardware-only meth-
ods can achieve fine-grained control of data placement in physical
memory but cannot support multiple access patterns; 2) software-
only methods can support multiple access patterns but can only
provide control mechanism at coarse-grained granularity due to the
limitation of paging. To better exploit CLP, we need a cooperative
hardware-software mechanism that can combine the best of both
world which motivates our software-defined address mapping.

In this work, we propose Software-Defined Address Mapping
(SDAM) — a collaborative software/hardware technique — to ad-
dress these challenges. To the best of our knowledge, SDAM is the
first to provide new systemmechanisms that enable user program to
obtain a direct control of the low-level memory hardware in a more
intelligent and fine-grained manner. We apply SDAM to the case
of 3D-stacking memory to better exploit its CLP by allowing the
program to specify desired mappings for different data structures
according to their access patterns. The proposed mechanisms in-
clude a runtime memory allocator that passes the address mapping
information to the kernel and additional architectural support in
the memory controller hardware for selecting the desired mapping.
More specifically, the memory allocator can satisfy memory alloca-
tion call from pools of preconfigured physical memory chunks, or
reconfigure free memory into the desired mapping. On a request
to memory, the memory controller uses the desire mapping to cal-
culate the hardware address of the data including which channel
to use for access. The only added new hardware to the memory
controller are the address mapping unit (AMU) that maps physical
address to the channels/banks/rows of internal memory structure
and the chunk mapping table (CMT) that is a small SRAM (67 KB)
to store the AMU configuration. To guarantee the data in one chunk
is associated with only one address mapping, it only requires to
add two simple constraints to the allocation of virtual pages and
physical frames, complying with allocation rules in Linux kernel.

To absolve programmers of responsibility for finding access pat-
tern information to select an address mapping, we develop machine
learning methods that can automatically learn the access patterns
of the variables that contribute most to the external memory access
and cluster these access patterns into a reduced set. The reduced
number of data access patterns makes it easier for the OS to control
and manage address mappings. For that, we propose chunk-based

address mapping. We allocate coarse-grained regions and store
a mapping for the region, then allocate space for individual data
structures within the region. To expand or shrink, we allocate/free
memory to/from the region in the unit of chunks. The granularity
of chunk can vary, independent of page size and is typically larger
than a page. The chunk size has to be selected carefully to meet
a set of constraints to ensure correctness with low storage and
performance overhead.

We demonstrate the benefits of proposed research methodology
on real hardware comprising an FPGA-based RISC-V processor and
accelerators integrated with HBM. It also includes a bootable Linux
for a realistic software flow, allowing us to change Linux Kernel
functions to evaluate the proposed cross-stack address mapping
management. In detail, we implement a 4-core RISC-V CPU with
near memory accelerators on VCU37P FPGA platforms equipped
with 8GB HBM2 modules. On top of the standard RISC-V archi-
tecture, we add the proposed CMT and AMU to implement the
SDAM. The software modification is based on Linux kernel 4.15
and glibc 2.26. The evaluation covers a wide range of workloads, in-
cluding standard benchmarks i.e. SPEC2006, PARSEC and emerging
data-intensive benchmarks on both CPU and accelerators.

The primary contributions of the paper are:

• We propose the software defined address mapping (SDAM) that
employs a coarse-grained chunk-based address mapping manage-
ment while achieving fine-grained data placement in hardware
to fully exploit the CLP in 3D memory. The proposed method
leverages knowledge of variable-level data access information in
a program and associates meta-data containing address mapping
information with contiguous physical memory addresses that
have the same data access pattern and thus address mapping.

• We present the necessary architectural support and system soft-
ware modification to enable SDAM for both CPU-only systems
and systems comprising both CPU and near memory accelerators.
The modifications to existing processor and system software are
minimal.

• We develop machine learning methods for advanced system op-
timization. They can automatically identify access patterns and
cluster variables that have similar access pattern to further reduce
the overhead of SDAM.

• We demonstrate the effectiveness of SDAM on an FPGA-based
full-system prototyping platform with full OS stack.The eval-
uation results show that the system implemented with SDAM
achieves 1.41× speedup on standard CPU benchmarks includ-
ing SPEC2006, PARSEC and 1.84× speedup on emerging data-
intensive benchmarks compared to a baseline system that uses
a fixed address mapping. Moreover, it achieves 2.58× speedup
for near memory accelerator on the evaluated data-intensive
benchmarks, compared to the case without SDAM, indicating
future systems with accelerators is likely to benefit more from
the proposed techniques.

2 BACKGROUND
2.1 CLP in 3D-Stacking Memory
3D-stacking memories provide significantly higher per socket peak
memory bandwidth (960 GB/s) than the DDR-SDRAM family (102.4

71

Software-Defined Address Mapping: A Case on 3D Memory ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

GB/s) by employing new parallel memory architectures that ver-
tically stack multiple DRAM dies using through-silicon-via (TSV)
technology. The two realizations of 3D memory are JEDEC High
BandwidthMemory (HBM) [23] andMicron’s HybridMemoryCube
(HMC) [37]. A HBM stack comprises multiple DRAM layers orga-
nized hierarchically, where each layer is further divided into two
channels, and each memory channel consists of multiple memory
banks. Since TSV technology provides high pin density (1024 per
HBM stack), 3D-stacking memories have significantly more inde-
pendent memory channels and can serve more than 10× concurrent
memory requests in parallel that traditional DDR-SDRAM-based
memory.

In general, memory architecture (DDR and 3D memory) offers
three levels of parallelism: channel-level parallelism (CLP), bank-
level parallelism (BLP) and row-level parallelism (RLP) to exploit
parallelism across channels, banks and within a row. Among them,
CLP (16–32) is the highest degree of parallelism for 3D-Memory
and thus is most performance-critical as memory accesses to in-
dependent channels can be served fully in parallel. In comparison
to CLP, BLP (8) and RLP (4) have limited impact on performance
since memory accesses to different banks in a channel or to dif-
ferent columns in a row within a bank has to be serialized due to
contention for shared resources in the same memory channel.

In DDR-based memory, most prior efforts focus on utilization
of RLP and BLP as the memory subsystem usually has large rows
(high RLP) but few memory channels (low CLP). For instance, a
modern CPU can have up to 4 DDR4 channels per socket and a
row buffer size of 2 KB per channel [2]. However, one socket can
integrate up to 4 HBM stacks that have a row size of 256B and
each socket provides 32 independent channels [23]. Therefore, 3D
memory offers 8×more CLP than DDRmemory but with 8× smaller
row.

Due to the key difference in architectural organization between
3D memory and traditional DDR-DRAM, it is important to maxi-
mally utilize the CLP in 3Dmemory when serving multiple memory
requests. To better illustrate the importance of utilizing CLP for
performance optimization, Fig. 1 shows that the throughput of
HBM linearly with increasing the number of utilized channels to
exploit CLP and sub-linearly increasing with the number of utilized
columns in a row to exploit RLP.

2.2 DRAM Address Mapping
Data placement in physicalmemory hierarchy across channels/banks
/rows is achieved via the two steps: (1) virtual to physical address
translation (VA-to-PA translation) and (2) physical to hardware ad-
dress mapping (PA-to-HAmapping). The VA-to-PA translation maps
a large per-process virtual address space to a limited-size physical
address space determined by the available hardware resources and
shared by all processes. Such translation is managed by the OS’s
virtual memory system.

The PA-to-HA mapping1 further transforms the flat 1D of physi-
cal addresses into an internal 3D hierarchical structure of channels,
banks, and rows. The PA-to-HA mapping is typically managed by
hardware (memory controller). As an illustrative example, Fig. 2

1PA-to-HA mapping is also refereed to as address mapping in the paper

Figure 1: Comparing HBM throughput for different number
of channels and row buffer hit rate

Figure 2: Illustration of channel conflicts (in red) for different
access patterns and addressmappings. The access granularity
is 64B (cache-line size of RISC-V architecture).

compares two different address mappings: (1) a 32-bit physical ad-
dress is split into a 18-bit row address, a 4-bit bank address, a 4-bit
channel address, and a 6-bit column address; (2) the 18-bit row
address is splitted into two parts and the 3 LSBs are put between
the channel address and the column address. The address mapping
determines the CLP utilization and is highly dependent on the ac-
cess patterns. In the example, when accessing data with a stride of
1 (streaming), mapping 1 allows consecutive memory access to be
evenly served by different channels and to exploit the CLP better
than mapping 2. With the same address mapping, accessing data
with a stride of 16 leads to severe channel contention, as only 1
out of 16 memory channels is used. Similarly, the mapping 2 can
better exploit the CLP for data access with a stride of 16, but causes
channel conflict for streaming access.

2.3 Address Mapping Mechanisms
Hardware-only methods: The first class of methods to control
data placement across channels/banks/rows to improve bandwidth
utilization are hardware-based via the direct control of PA-to-HA
address mapping.

Most commercial computer systems [20, 22] use a boot-time con-
figured PA-to-HA mapping. During the device discovery phase, the
BIOS determines the address mapping based on the DIMM configu-
ration. Memory accesses to consecutive cache blocks are uniformly
distributed to different memory channels (channel interleaving),
resulting in higher throughput for streaming data access. However,
such fixed and global address mapping may lead to imbalanced
channel utilization and performance degradation for non-streaming
access patterns.

To illustrate these problems, we construct a synthetic workload
that reads data with different strides from HBM using Xilinx VU37P

72

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jialiang Zhang, Michael Swift, and Jing (Jane) Li

0

1

15 14 13 12 11 10 9 8 7 6

B
it
 F

ilp
 R

at
e

Hardware address

Stride1 Stride 2
Stride 4 Stride 8
Stride 16

0
50

100
150
200

1 2 4 8 16

Th
ro

ug
hp

ut
s

(G
B/

s)

Stride
Row Bank Channel

(a) (b)

Figure 3: (a) HBM throughput with different stride using the
default addressmapping; (b) Bit flip distribution for different
stride using the default address mapping

FPGA (following the same experimental setup as that in Section 7).
As in Fig. 3, using the default HBM address mapping defined in the
Xilinx HBM controller IP [23], the throughput drops sharply by 20×
when increasing the stride from 1 to 16 in the unit of cache-line size.
That is because only a subset of the memory channels are utilized.
In the worst case, e.g., a stride of 32, only one channel is utilized.
To improve channel utilization (and CLP), we need to make the
PA-to-HA mapping adapt to the different data access patterns while
keeping fine-grained control to distribute consecutive memory
access to distinct channels.

Software-onlymethods: The software-only approaches use OS
support [8, 9, 14, 29, 42] to more intelligently place data in physical
memory by changing the VA-to-PA translation in virtual memory
(VM) according to the access patterns of data structures. These
works attempt to find variables/data structures in a program that
may be accessed concurrently and use the information to direct
the operating system’s VM page mapping strategy to place them to
physical pages that do not contend for the same cache line, thereby
reducing conflict misses. By effectively leveraging high-level pro-
gram semantic information, these methods can better predict the
program’s behavior in data access and achieve higher and more
deterministic cache performance. However, these methods assume
fixed hardware and allow controlling allocation to place data in
hardware (caches) at coarse-grained page granularity [8, 9, 14, 42].
However, as shown in Fig. 2, to exploit CLP for two different access
patterns (stride-1 and stride-16), the page-based data placement
becomes insufficient. We need more fine-grained control at cache-
line granularity to distribute concurrent memory requests across
as many channels as possible to fully exploit its CLP.

To summarize, the key limitations are: 1) the hardware-only
methods can achieve fine-grained control of data placement in
physical memory but cannot support multiple access patterns; 2)
software-only methods can support multiple access patterns of a
program but only provide control mechanism at coarse-grained
granularity due to the limitation of paging. To better exploit CLP,
we need a cooperative hardware-software mechanism that can
combine the best of both worlds, which motivates our software-
defined address mapping.

3 MOTIVATING EXPERIMENTS
In this section, we present three experimental studies to motivate
our proposed research approach. We use the same experimental
setup as that in Section 7 using a Xilinx VU37P FPGA [46] with
two HBM2 stacks which have 32 channels in total.
Experiment 1: In Fig. 3(a), we demonstrate the relationship be-
tween data access patterns and memory throughput. We construct

0

100

200

1 2 3 4T
h
ro

u
g
h
p
ut

(G

B
/s

)

of different strides

Single Multi

Figure 4: Throughput comparison of using single and multi-
ple address mapping for workloads with mixed access pat-
terns

Table 1: Summary of variable-level statistics

Benchmark # of
Var.

of
Major Var.

Avg. Major
Var. Size (MB)

Min. Major
Var. Size (MB)

SP
EC

20
06

perlbench 7268 1 910 910
bzip2 10 10 32 4
gcc 49690 34 59 4
mcf 3 3 1215 953
gobmk 43 5 8 7
hmmer 84 10 6 4
sjeng 4 4 60 54
libquantum 10 7 212 4
h264ref 193 8 24 7
omnetpp 9400 65 3 1
astar 178 38 1.8 9
xalancbmk 4802 4 230 78

PA
R
SE

C

bodytrack 220 12 212 36
cenneal 17 9 365 69
dedup 29 15 215 12
ferret 109 22 65 23
freqmine 60 9 215 37
streamcluster 35 9 234 68
vips 892 25 125 36

three synthetic workloads, which read data from memory with
different strides. We apply the same method as prior hardware-only
approach [1] to use bit flip rate as a metric to select desired address
mapping. We pick bits of physical addresses that vary the most to
be mapped onto the channels to distribute accesses across the most
number of channels. Fig. 3(b) shows the normalized bit flip rate in
the stream of memory access. With increasing stride, the flip rate
peak moves to the left, indicating the optimal address mapping for
different access patterns varies.

Observation 1: The address mapping needs to adapt to different
memory access patterns to best exploit the CLP.
Experiment 2: The second experiment shows the impact of mixing
multiple data access patterns. Fig. 4 shows the throughput of the
four strides from experiment 1 with the globally best mapping
(maximum bit flip rate) and with a separate mapping for each stride.
In case-1, we apply the same method as experiment 1 to select
the optimal address mapping based on overall bit flip rate when
running the workload mix comprising different concurrent memory
accesses. Alternatively, in case-2, we independently choose the
optimal address mapping for each access pattern and measure the
aggregated throughput. The results show that a global address
mapping cannot deliver the best performance as compared with the
case of independently selecting address mapping for each individual
access pattern.

Observation 2: It is important to capture the detailed program’s
access behaviors i.e., the diversity of the access patterns to guide
address mapping selection for higher CLP.
Experiment 3: In the third experiment, we profile SPEC2006 and
PARSEC workloads to identify the number of unique data struc-
tures that may have different access patterns. The detailed profiling
process is described in Section 5. As illustrated in Table 1, we run
19 applications to collect variable-level statistics of SPEC2006 and
PARSEC. As defined in [24], a variable is the reference symbol in

73

Software-Defined Address Mapping: A Case on 3D Memory ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

the program for a piece of allocated memory and is the granularity
of memory management from programmer’s view. These applica-
tions show highly diverse distributions in the number of variables
(ranging from 3 to 49k). While the programs have a wide range
and often large number of variables, when we focus on those that
comprise 80% of references –major variables – we find that they are
fewer in number and large in size. This makes it feasible to track
these variables in hardware and provide distinct address mappings
for each one if necessary.

Observation 3: A limited number of major variables contribute
to most of the external memory accesses and have large memory
footprints.

4 SOFTWARE-DEFINED ADDRESS MAPPING
From Section 3, we learned that a limited number of major vari-
ables in a program have a large memory footprint and contribute
to the vast majority of external memory accesses in hardware. It
inspires our SDAM: Applications provide access pattern informa-
tion to the OS, which configures large chunks of memory for the
aggregate allocations reached by a variable. For efficiency, the OS
maintains pools of memory for each address mapping, and only
reconfigures when memory is reclaimed or more memory with a
specific mapping is requested. The hardware provides a table to
record the address mapping for each chunk of memory.

Coarse-grained Chunk-based Address Mapping. Observation 3
in Section 3 inspires our chunk-based address mapping, which
manages address mapping at a coarse-grained chunk granularity
(2MB in our case). More specifically, we allocate coarse-grained
regions and store mapping for the region, then allocate space for
individual data structures within the region from one or more pro-
cesses. And, to expand or shrink, we allocate/free memory to/from
the region in the unit of chunks. The chunk size can be selected,
independent of page size, to meet a set of constraints to ensure
correctness with low storage and performance overhead, described
later in this section. In chunk-based address mapping, we map a
pool of data with the same (or similar) access patterns to chunks
during the allocation of virtual pages and physical frames. Each
chunk consists of contiguous physical pages containing data with
the same access pattern. The kernel maintains a chunk mapping
table (CMT) that store address mapping information for each chunk.
At runtime, the memory controller retrieves the mapping on each
reference from CMT to determine how to use bits from the address
to select channel, row, and bank indexes. Therefore, at high level,
chunk-based address mapping is a collaborative software/hardware
technique that improves PA-to-HA address mapping but does not
need any modification to existing VA-to-PA translation.

The required modification to system software is straightforward.
To coalesce data with the same access pattern into chunks, we
add additional constraints to the allocation of physical frames and
virtual pages in software. For physical frame allocation, SDAM
configures all physical frames in one chunk have the same address
mapping. For virtual allocations, it uses pages from the chunks with
the same address mapping. For this, wemodify themalloc() function
to take the desired address mapping as an additional argument, and
store the address mapping as meta-data for allocated virtual pages
and chunks. Malloc will allocate pages with the desired mapping,

Figure 5: Chunk-based address mapping management

and can call the kernel for more memory with the desired mapping.
The kernel will allocate pages from any available chunks with that
mapping, and if none exist, create a new chunk for the desired
mapping. The detailed modification to the system software can be
found in Section VI-A. In addition, in Section VI-B, we discuss a
mechanism to statically and dynamically analyze data structure
reference pattern, and apply machine learning to determine a set
of variables with distinct reference patterns to further reduce the
overhead of SDAM.

The chunk-based address mapping has two steps: (1) looking up
the address mapping based on the PA of chunks, (2) calculating the
HA based on the PA and address mapping and using HA to place
the cache blocks across channels/banks/rows in 3D memory. As in
Fig. 5, the chunk mapping table stores the address mapping for each
chunk. Compared to the page table in virtual memory system, the
CMT is much smaller, since (1) the physical memory space is much
smaller than the virtual memory space and is globally shared by
all the processes and (2) the chunk size is much larger than typical
page size. (3) 3D-stacked memory is often much smaller due to
physical constraints. The physical address of chunks is divided into
two parts: chunk number and chunk offset. The chunk number is
used as an index to look up the corresponding address mapping in
the CMT and the chunk offset is applied as inputs to the hardware
address mapping unit, which calculates the HA based on the address
mapping. Finally, according to the HA bit field information, memory
controller performs data placement in internal structure of physical
3D memory.

The proposed chunk-based address mapping has low implemen-
tation overhead. First of all, the only new hardware is the address
mapping unit (AMU) that converts the PA to HA based on the
selected address mapping. Secondly, we can use a small table to
store the meta-data associated with each access pattern (address
mapping), resulting in low storage overhead and fast CMT look-
up. Finally, the modifications to the virtual and physical memory
allocators are minor.

Next, we discuss a few properties of SDAM.
Functional correctness guarantee: As explained previously, the
proposed method keeps standard virtual memory unchanged to
ensure correct VA-to-PA translation. As such, we only need to
guarantee the correct PA-to-HA mapping, i.e., one PA can map to
only one HA or verse versa. To ensure correct PA-to-HA mapping,
we need to consider two cases: inter-chunk and intra-chunk: (i)
In case of inter-chunk mapping, we keep the chunk number (high
order bits of the physical address) unchanged during PA-to-HA

74

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jialiang Zhang, Michael Swift, and Jing (Jane) Li

address mapping. Since the chunk number is directly copied from
the MSBs of the physical frame number (PFN), it guarantees no
inter-chunk mapping conflict. (ii) For intra-chunk mapping, all
addresses in a chunk use the same and invertible address mapping
function, which can guarantee 1-to-1 mapping from PA to HA. A
rigorous mathematical proof for that can be found in [1].
Chunk size: To determine the chunk size, we first consider a hard
constraint. Since address mapping only applies to chunk offset,
so chunk size should large enough to cover variety strides. Also,
since we need to keep track of chunks using a mapping table, to
keep a low storage overhead, we would prefer a large chunk size.
However, similar to pages in VM, larger chunk sizes may cause
internal fragmentation, as the free space in one chunk cannot be
allocated to others due to the address mapping constraint. In our
implementation, we choose a chunk size of 2MB to balance stor-
age overhead and internal fragmentation based on the following
overhead analysis.

(i). Storage overhead: The 2MB chunk size leads to low storage
overhead. The physical memory space is much smaller than the
virtual memory space and is globally shared by all the processes, so
the total number of chunks in physical memory is limited. In our
system with 8GB HBM, we only have 4096 chunks, that is much less
than the number of physical frames. Moreover, as the number of
data access patterns is significantly reduced after applying machine
learning-based optimization (discussed in Section 6.2), we only need
to store 1 byte to encode them. As a result, our CMT size consumes
only 68 KB. Due to the compactness of CMT, it can be implemented
using a small fast on-chip SRAM with negligible latency compared
to the HBM access latency. More details can be found in Section 5.

(ii). Fragmentation: The 2MB chunk size does not suffer from
the same internal fragmentation issue as that in huge page. Internal
fragmentation at the chunk level in SDAM is bounded by the num-
ber of access patterns rather than the the number of chunks as that
in huge page. Our system supports up to 256 access patterns, which
is confirmed to be sufficient in our evaluation. In the worst memory
allocation pattern, we would only waste 256 chunks (6.25% of the
total number of chunks, 256/4096=6.25%) due to the internal frag-
mentation. Furthermore, since SDAM does not need to expand the
number of chunk groups for larger memory capacity, the overhead
of non-allocatable memory caused by internal fragmentation would
be even smaller for larger HBM capacity. Finally, SDAM uses paging
for memory allocation that does not have external fragmentation.

The chunk-based address mapping does not introduce security
vulnerabilities. Nevertheless, it can be exploited to mitigate row
hammer attacks. As each chunk consists of a large number of con-
tiguous rows within a bank, we can mitigate the row hammer attack
by adding guard rows to the sensitive data to ensure the strong phys-
ical isolation between data belonging to different security domains,
following the same methodology in [7]. More detailed study on
extending SDAM to address security challenges will be our future
work.

5 ARCHITECTURAL SUPPORT
5.1 Overview
To implement SDAM, the required hardware modifications to exist-
ing processor are relatively minor. There is no need to modify the

architecture/micro-architecture of CPU cores, e.g., ISA, TLB, page
walker. The only modification is to add two dedicated hardware
components in the memory controller: an address mapping unit
(AMU) and on-chip SRAM to store the CMT. (i) The AMU contains
a simple crossbar to support arbitrary address remapping. (ii) To
achieve compact storage, we use two-level CMT that stores the in-
dices of the address mapping to associate with chunks and address
mappings separately. As shown in Fig. 6, for each external memory
access, the physical address is divided into two parts: the chunk
number (MSBs) and the chunk offset (LSBs). The chunk number is
used to index the CMT to find the corresponding entry for address
mapping. Then, the AMU maps the chunk offset from the physical
address to the hardware address. Finally, the chunk number and
the mapped chunk offset are sent to the memory controller. Next,
we describe the detailed design of the AMU and the CMT.

5.2 Address Mapping Unit
The address mapping unit (AMU) maps the chunk offset in the
physical memory space to that in the hardware address space.

We choose to implement the bit-shuffle mechanism in the AMU,
to rearrange the address bits in an arbitrary order. From the discus-
sion in [1] and our evaluation in Section 7, we confirmed that the
bit-shuffle is flexible enough to support different address mappings
for the workloads of interest and has low implementation over-
heads. As shown in Fig. 6, AMU implements the bit-shuffle using
a simple crossbar, which is an array of switches. In the crossbar,
the bit-shuffle allows only one closed switch in each column. The
crossbar can be configured by the address mapping information
stored in the CMT. Since each input to the crossbar is a single bit,
the crossbar requires only 𝑛2 switches, where 𝑛 is the size of the
chunk offset. Using a 2MB chunk size and a 64B cache-line size, our
implementation has a 15-bit chunk offset. Thus, the AMU only adds
2 % area to our RISC-V CPU. It is negligible compared with the per-
formance benefit from improved CLP utilization. More evaluation
are presented in Section 7.

5.3 Chunk Mapping Table
The CMT stores themeta-data in a compact table containing address
mapping information for each entry. To keep storage overhead low,
the CMT stores the address mapping in two tables. As in Fig. 6,
entries in the first table stores the index of the address mapping
and those in the second table store the actual address mapping that
is used to control the AMU. Although the AMU supports a large
number of address mappings, only a few of them are used concur-
rently. Using these two tables can reduce the storage requirement
since there are more chunks than the concurrent address mapping
in the program.

As discussed in Section 5.2, the crossbar in the AMU allows only
one closed switch in each column. Hence, the crossbar configuration
for rearranging 𝑛 chunk offset bits, requires only 𝑛 integers, that
represent the locations of closed switch in columns. Since there are
𝑛 switches in each column, each integer should have 𝑙𝑜𝑔2 (𝑛) bits. In
our implementation, as the chunk offset is 15-bit, the configuration
of the AMU requires 15 × 𝑙𝑜𝑔2 (15) ≈ 60 bits. Considering the
2MB chunk size used in this work and a system configuration that
has 128GB 3D-stacking memory per socket, the chunk-mapping

75

Software-Defined Address Mapping: A Case on 3D Memory ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Figure 6: Hardware modification

Figure 7: Chunk allocation

Figure 8: Multi-heap memory allocation

table has 64k entries. To support 256 concurrent address mappings,
which is confirmed to be sufficient in our evaluation (Section 7),
each entry in the first table has only 𝑙𝑜𝑔2 (256) = 8 bits. The two-
level table design only requires 67.94 KB (64𝑘 entries×8 bits/entry+
256 entries × 60 bits/entry) in storage. In comparison, storing the
meta-data using a flat table would require 491 kB (64𝑘 entries ×
60 bits/entry). Due to the compact storage of the two-level address
mapping table, we can implement CMT using a small fast on-chip
SRAM with 6 ns latency that is negligible in comparison to the
HBM access latency (> 130ns).

6 SOFTWARE SUPPORT
6.1 Address-Mapping-Aware Memory

Allocation
The chunk-based address mapping requires modest modifications
to the system software. For both virtual memory and physical
frame allocations, rather than using a single allocator, we separate
memory based on the address mappings. Then, we can have an
allocator for each mapping, and provide a way to move memory
between mappings.

Virtual Memory Allocator. We extend the malloc() in glibc to
associate heaps with address mappings and leverage the standard
heap memory allocation procedure for each memory allocation. As
each heap is associated with one address mapping, we only need
to use the address mapping to select the heap, and use the existing
heap code to handle the allocation/deallocation within heap. As
in the standard malloc() in glibc, the proposed mechanism keeps
separate memory pools (arena in glibc) for each thread to reduce
the lock contention [16].

As in Fig. 8, in the first heap, we maintain an array to track
the heaps assigned by address mapping, i.e. heap-mapping array,

and also an array to track the address mapping used by the pro-
cess. We add a new API add_addr_map(), that adds a new address
mapping and returns the ID for this address mapping. Also, we
add the ID of address mapping as an optional input argument of
the malloc() function. Each malloc() call starts with checking if
any heap matches its address mapping. If it fails, a new heap is
created and attached to the heap list in the first heap. Otherwise,
it will check if there is enough space. If not, it will also create a
new heap. Then it will allocate the memory in the heap with the
matched address mapping. Since addresses allocated to heaps are
page-aligned and heaps allocate/free memory independently, this
method can guarantee that each page contains data that only have
the same address mapping. To free the allocated heap space, the
free() function compares the base address of the variable with the
ar_ptr and size (Fig. 8) to find the corresponding heap.

Physical Page Allocator. As shown in Fig. 7, in the physical mem-
ory space, we manage chunks as chunk groups. Each chunk group
contains chunks with the same mapping (and thus the same access
pattern). At the beginning, all chunks are in the global free-list
that contains all the unused chunks. Then, we allocate/free chunks
to/from the chunk group associated with different address map-
pings as needed.

Similar to the modifications to the malloc(), we add the address
mapping ID as an argument of the mmap() that allocates the physi-
cal page. For each mmap() call, if there is not enough memory in the
corresponding chunk group, it acquires one or more chunks from
the global chunk free-list and writes the chunk index and address
mapping to the hardware CMT. The proposed method is compat-
ible with on-demand paging. To support the on-demand paging,
for each modified mmap() call, we store the address mapping ID
in the vm_area_struct in the kernel and move the proposed chunk-
based physical page allocator to the page fault handler. The page
fault handler can allocate the physical page based on the address
mapping ID.

We rely on the original Linux buddy allocator to free the chunks.
If all the blocks within one chunk are freed by the user program,
the chunk buddy allocator sets all the bits in the block to 0 and adds
it to the chunk free-list.

76

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jialiang Zhang, Michael Swift, and Jing (Jane) Li

6.2 Address Mapping Selection
For programs with simple repetitive data access such as element
size and stride, programmers can identify the access pattern and
select the address mapping directly from the source code.

In more complex scenarios, to absolve programmers of respon-
sibility for finding access pattern information to select an address
mapping, we develop a method that automatically i) finds the vari-
ables that contribute most to the external memory access (or re-
ferred to asmajor variables), ii) applies machine learning to identify
the access patterns of these major variables, and iii) further clus-
ters the access patterns into a reduced set to reduce the storage
overhead of the meta-data. Depending on the number of identified
major variables of co-run applications and the hardware constraint
such as the size of the CMT, we provide additional flexibility of
making quality-time trade offs for selecting address mapping, i.e.
fast runtime using K-Means in which the clustering quality is likely
constrained vs. slow runtime using (DL)-assist K-Means for high
quality. After profiling and training, the CMT chunk table will be
updated over time.

First, we use profiling to find major variables and associate each
major variable with its corresponding physical memory address
(PA) trace. At compile time, we use gcc to create a table that maps
program counters (PC) to the variables referenced at that PC. Then,
we run the application and collect the physical address of each
external memory access and its corresponding PC value using the
profiling tools as described in [48] (identified by call-stack match-
ing [24]). The call-stack matching has two passes. In the first pass,
we run the programwith a modified malloc() by preloading a shared
library that intercepts all heap memory allocation routine and col-
lects allocation call stack. Once we have the call-stack information,
we rerun the program with the profiler and find the allocation sites
corresponding to a memory reference by matching the call stack. In
this way, we can separate the collected PA trace into sub-traces asso-
ciated with each allocation site(variables) and the address mapping
are learned for each variable.

Based on the PC, we can associate each variable in the source
code with a corresponding PA trace.

For programs known to have few major variables or in situations
with constrained hardware that can only support a small number
of mappings, we can use classical machine learning K-Means to
identify the few best (most representative) reference patterns with
which to create address mappings. In particular, we calculate the
bit-flip rate vector BFRV below:

BFRV = [bfr1, bfr2, . . . , bfr𝑚], bfri =
∑𝑛−1

𝑗=1 bit𝑖,𝑗 ⊕ bit𝑖,𝑗+1
𝑛

, (1)

where 𝑚 is the total number of address bits and bfr𝑖 is the 𝑖-th
element of the BFRV, 𝑛 is the number of memory accesses in the
PA address trace and bit𝑖, 𝑗 is the 𝑖-th address bit of 𝑗-th memory
access in the trace associated with each major variable. We then
apply K-Means clustering to minimize the clustering loss [31]:

Lcluster =
𝑘∑︁
𝑖=1

∑︁
BFRV∈𝑆𝑖

| |BFRV − 𝜇𝑖 | |2, (2)

where 𝑘 is the number of clusters, 𝑆𝑖 is a cluster containing BFRVs
with similar access pattern and 𝜇𝑖 is the averaged BFRV in each
cluster which determines the address mapping of these variables.
The bits with higher bit-flip rate are used for channel address while
the bits with lower bit-flip rate are mapped onto banks and rows.

Figure 9: The embedding LSTM model.

For complex programs with more major variables, K-Means
may be less effective, as the bit-flip rate vector becomes a poor
representation for clustering when further increasing data set size.
To improve the clustering quality, we propose to learn a clustering-
friendly representation (embedding) for each application from the
trace using Autoencoder [4] and classifies the bit-flip patterns using
the learned embedding. To the best of our knowledge, this work
is the first to use deep learning to improve the quality of address
mapping selection, which is an unsupervised learning problem since
there is no groundtruth (label) of address mapping. In comparison,
previous work [3, 18] focus on applying deep learning for prefetch-
ing which is a supervised learning problem since the groundtruth
of a prefetching decision is the address of the following memory
access. We summarize the key steps of the DL-assisted address
mapping selection using the embedding Long Short Term Memory
(LSTM) model below.

(1) As shown in Fig. 9, the input is a sequence of (Δ, VID) pairs,
where Δ is the address difference (XOR result) between two
consecutive memory accesses and VID is the index of the
variable identified by gcc. Δ and VID are separately embed-
ded (mapping of a discrete–categorical–variable to a vector
of continuous numbers) and the embedding is concatenated
and fed as an input to an LSTM-based auto-encoder [18] of
which the hyper-parameters are summarized in Table 2. We
first train the auto-encoder byminimizing the reconstruction
loss function, defined as follows:

L𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 = L(Δ, Δ̃,𝑊) =
𝑛∑︁
𝑖

𝑚∑︁
𝑗

|Δ̃𝑖, 𝑗 − 𝑓𝑤 (Δ𝑖, 𝑗) |, (3)

where𝑚 is the total number of address bits, 𝑛 is the number
of memory accesses and Δ𝑖, 𝑗 is the 𝑗-th address bit of 𝑖-th
memory access in a Δ trace.

(2) We then apply K-Means on the learned embedding vec-
tors and continue the training by minimizing the MSE loss
and clustering loss jointly using the loss function Ltotal =
Lreconstruct + 𝜆Lcluster. This DL-assisted K-Means on the
high-dimensional embedding vector (256-dim) compared to
the K-Means on the bit-flip rate vector (15-dim), improves
the clustering quality as the learned embedding can mean-
ingfully represent categories in the transformed space [33].

(3) Once we have a cluster, we use the bit flip rate to select
the desired address mapping for all variables in the cluster.
The highly flipping bits correspond to frequent accesses in a
short time and are mapped onto channel address bits to best
exploit the CLP, while the less frequently flipping bits are
mapped onto banks and rows.

(4) We add the ID of the selected address mapping to the input
argument of the malloc() function as in Section 6.1.

77

Software-Defined Address Mapping: A Case on 3D Memory ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 2: Training hyper-parameters

Network size 256x2 LSTM Learning Rate 0.001
Steps 500k Sequential Length 32
Embedding Size 256 𝜆 0.01

Figure 10: (a) Diagram of the prototyping system; (b) Photo of
the FPGA prototyping platformwith integrated HBM devices

We note that, profiling is done offline, once for each application.
This will not degrade the runtime performance when input changes.
As we will show in our evaluation (Section 7.4), similar speedup
can be achieved even when different inputs are used for profiling
and execution. For software that runs many times or has a long
execution time, the profiling cost added is incidental. Moreover, in
the context of software development, the added cost can be further
amortized since the profiling result can be reused across variations
of the program as long as the data structure and memory allocation
site do not change. In practice, profiling-guided optimization (PGO)
has been widely deployed by different types of commercial software
such as browsers, OS kernel, and datacenter applications. Moreover,
a similar high level motivation for using PGO to improve system per-
formance has been used in prior work [3, 18] that applies profiling
to improve the performance of software prefetching. As discussed
earlier, SDAM differs from these work in several key aspects. In
addition to the fundamental machine learning method (supervised
vs unsupervised), SDAM is developed to improve data placement
in 3D memory instead of cache performance. In Section 7.4, we
will show more detailed results to compare the profiling time and
quality. In practice, the address mapping selection method can be
judiciously determined based on the number of major variables and
the number of clusters (K) and the CMT size to balance profiling
complexity and quality and make the optimal quality-time trade
off.

7 EVALUATION
7.1 Prototyping Platform
To accurately capture the detailed HBM-specific behaviors and
comprehensive interactions between OS and the hardware, we eval-
uate our design on an open source full system FPGA prototyping
platform MEG [48] with integrated HBM devices and full OS stack.
Our baseline system comprises a BOOM RISC-V processor [10] and
shared-memory interfaces for near-memory accelerators on the
AlphaData 9H7 FPGA board equipped with an Xilinx VU37P FPGA
and an in-package 8GB HBM2 memory [45]. It also supports Linux,
allowing us to evaluate our modifications to the functions in glibc
and Linux.

Specifically, the BOOM CPU consists of four 64-bit out-of-order
coreswith 64 KB L1 caches that run at 200MHz.Multiple application-
specific accelerators generated by SystemVerilog are integrated
with the CPU through shared memory interface provided by MEG
platform. The Xilinx VU37P FPGA integrates twoHBMGEN2 stacks

Table 3: FPGA resource utilization

LOGIC SRAM
Boom Core 91.8% 88.0%
HBM
Controller 7.5% 10.2%
AMU 0.5% 0%
CMT 0.2% 1.8%

Table 4: LOC changed

Feature LOC
changed

VM allocator 131
PM allocator 97
Driver 98
Miscellaneous 33

with 32 independent memory channels. Due to the hardware limita-
tion of our prototyping platform, in this work, we did not evaluate
more comprehensive memory subsystem which comprises hetero-
geneous memories (e.g. DDR, HBM, NVM). A large body of prior
work have explored the topic [12, 26, 32, 35, 38, 42] and provide
mechanisms to migrate performance critical data from slow DDR
memory to fast HBM. These works are orthogonal to ours and can
benefit from our technique when combing them.

To implement our design, the modified hardware is highlighted
in Fig. 10. We add the AMU and the CMT (implemented in System-
Verilog) between the HBM2 controller and the Boom core. The
AMU is attached to the memory bus, and its upstream is the last
level cache (LLC). The AMU maps the PA to HA and sends the
HA to the memory controller. We duplicate the AMU eight times
to guarantee the peak HBM bandwidth can be achieved (4 billion
HBM access (64B) per second). In the real CPU implementation,
the duplication of AMUs is unnecessary as the CMOS-based logic
is much faster than the FPGA-based logic (4GHz vs 500 MHz) The
CMT is attached to the I/O bus of the CPU, so that OS can modify
the content of the table through memory-mapped IO. The design
is implemented using Xilinx Vivado 2018.4 and Xilinx AXI-HBM
IP 1.0. The resource utilization including the duplicated AMU is
summarized in Table 3. The two newly added hardware components
(AMU and CMT) have negligible area overhead compared to the
baseline system.

We implement the software modification in linux 4.15 and glibc
2.26. The lines of code changed split up by functionality are shown
in Table 4.

7.2 Workloads
In the experiments, to perform comprehensive evaluation, we se-
lect a broad set of benchmarks, including synthetic memory-access
benchmark, standard benchmarks i.e. SPEC2006 and PARSEC, as
well as representative emerging data-intensive benchmarks in three
important domains covering large-scale graph processing, in mem-
ory data analytics, machine learning and information retrieval. In
addition to the evaluation on CPU, we also evaluate the perfor-
mance gain of offloading data-intensive workloads to hardware
accelerators which becomes increasingly important in data center
and HPC. Below are the details of evaluated benchmarks.
Synthetic benchmark: We use data copy with different strides as
a synthetic benchmark. The size of each data copy is the same as
the cache-line size of the RISC-V processor (64B).
SPEC2006:We studied all 12 integer applications [19].
PARSEC: PARSEC [6] is a popular benchmark for evaluating shared-
memory multi-processor. The benchmark covers a wide range of
memory behaviours including working set size, locality and exter-
nal memory access. We studied all 7 applications.
Data-intensive benchmarks: In addition to the synthetic and
standard benchmarks on CPU, we also evaluate 8 representative

78

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jialiang Zhang, Michael Swift, and Jing (Jane) Li

Figure 11: (a) Throughput of running four-thread data copy
with different stride, normalized to the peak streaming
throughput. (b) Distribution of HBM bandwidth utilization
for 64 different strides using BS+BSM, BS+HMand SDM+BSM.

data-intensive benchmarks written in both C++ and SystemVer-
ilog for both cases of running on CPU alone and offloading to
accelerators, including large-scale graph processing (Breadth-First
Search [47], PageRank [21], Single-Source Shortest Path [34]), in-
memory data analytics (Hash Join [5], Merge-Sort Join [43]), ma-
chine learning and information retrieval (K-Means [31], HNSW [25]
and IVFPQ [25]). The custom accelerators allow concurrent exe-
cution by adding more pipeline stages and parallel compute units.
Thus, they can generate more concurrent memory accesses to the
external memory than CPU, and its performance is more sensitive
to CLP utilization compared to the CPU workloads.

7.3 System Configuration
We compare the proposed SDAM with three baseline systems that
adopt the hardware-only address mapping approach proposed in
prior work [1] [30] as a default address mapping (DM). We also
include two more complex address mapping schemes: bit-shuffle ad-
dressmapping(BSM) and hashing-based addressmapping (HM) [30].
The bit-shuffle approach rearranges the order of address bits accord-
ing to the distribution of the bit flip rate collected from profiling.
The hashing-based approach maximizes the entropy in the channel
bits by XORing a number of address bits. As summarized in Section
2.3, software-based solutions use fixed hardware and control the
data allocation at page granularity. Therefore, the three baseline
systems which use a single static address mapping can represent
software-based solutions.
Baseline system + default address mapping (BS+DM): A single,
fixed address mapping as defined in the Xilinx HBM controller
IP [23]) is applied globally to all applications.
Baseline system + bit-shuffle address mapping (BS+BSM):
This configuration still uses a single address mapping for all ap-
plications but trends to optimize the address mapping selection
according to the profiling results. In particular, we collect physical
addresses of 500 million of cache misses per benchmark and calcu-
late the bit flip rate for the workload mix combining all benchmarks.
Then, we select the optimal address mapping based on the bit flip
rate where the highly flipping bits are mapped onto channels to
best exploit the CLP, while the rest are mapped onto banks and
rows.
Baseline system + hashing-based address mapping (BS+HM):
Similar to BS+DM and BS+BSM, this configuration uses a single
address mapping for all applications but applies a different optimiza-
tion method, i.e., using hashing [30] for address mapping selection.
The selected hash function is capable of harvesting entropy from
many and randomly selected address bits and concentrating the en-
tropy into channel bits. In comparison to BSM, HM does not rely on
profiling. In this configuration, we refer to the method in a recent

work [30] which provides a good balance between implementation
complexity and performance gain. In our study, we found theoret-
ically perfect hashing function leads to marginal speedup (<3%)
over [30] at the cost of significantly increased overhead. We defer
more comprehensive hashing methods to our future work.
Software-defined mapping + bit-shuffle address mapping
without machine learning (SDM+BSM): This configuration uses
the proposed SDAM (with the AMU and the CMT and running
modified Linux and glibc). For each process, it uses a single address
mapping chosen using bit-flip rate.
Software-defined mapping + bit-shuffle address mapping
with machine learning: K-Means (SDM +BSM+ML) and DL-
assisted K-Means (SDM+BSM+DL): These two configurations
evaluate our complete design. As compared with the case of SDM+
BSM that selects one address mapping for one application, SDM
+BSM +ML and SDM+BSM+DL select the optimal address mapping
for each individual variable within an application using the K-
Means-based and DL-assisted K-Means address mapping selection,
respectively.

For systems of BS+BSM, SDM+BSM, SDM+BSM+ML, SDM+BSM
+DL that require profiling, we compare the results using different
program input for profiling and evaluation. In detail, for SPEC2006
and PARSEC, we use the training dataset for profiling and test
dataset for the evaluation. Both datasets are selected by the script
provided by the benchmark suite (e.g. runspec). For Graph Work-
load, we generate different graphs using graph500 generator with
different seed for profiling and test. The scale is 20 and edge factor
is 16.

7.4 Results
In the synthetic benchmark, we run four threads for data copy
and vary the strides. Since the optimal address mapping can be
derived from the strides directly, we do not need to use profiling. As
shown in Fig. 11(a), when there is only one access pattern (number
of strides = 1), both BS+BSM and SDM+BSM achieve the maxi-
mum throughput and outperform the other two baseline systems
(BS+DM and BS+HM). It demonstrates the bit-shuffle approach can
be effective if the address mapping can be optimally selected ac-
cording to a single access pattern. However, in more complex cases
of increasing concurrent data accesses with different strides, we ob-
serve a significant performance degradation for BS+BSM, as a fixed
and global address mapping becomes less effective in capturing the
diversity in access behaviors. In comparison, the performance of
BS+HM is nearly kept constant across all the three cases but is still
worse than SDM+BSM. The reason for the constant performance is
that the hash function used by BS+HM is optimally selected to be
less sensitive to different access behaviors, as it takes many address
bits as input to cover a majority of access patterns [30]. We plot
the distribution of the CLP utilization of different strides (1 to 64)
using BS+BSM, BS+HM and SDM+BSM in Fig. 11(b). For better
illustration, we sort the CLP utilization in ascending order. We can
see that the BS+HM tends to maximize the averaged CLP utilization
for a large number of access patterns statistically, but the hashing
function cannot cover all possible ones and thus for some cases
may lead to underutilized CLP compared to BS+BSM. In contrast,

79

Software-Defined Address Mapping: A Case on 3D Memory ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Figure 12: Speedup on CPU for (a) standard benchmarks and (b) emerging data-intensive benchmarks.
SDM+BSM try to select the optimal address mapping determinis-
tically for each access pattern. Thus, as shown in Fig. 11(a) and
Fig. 11(b), the proposed SDM+BSM consistently outperforms the
other three systems for all the strides and the performance benefit
of SDM+BSM grows with respect to the other three as data access
patterns become more complex. These results validate the effective-
ness of SDAM as compared with the hardware-only global address
mapping in the baseline systems.

We further provide evaluation results for the standard CPU
benchmarks. In Fig. 12, we compare the speedup of BS+BSM, BS+HM,
SDM+BSM, SDM+BSM+ML and SDM+BSM+DL against the base-
line BS+DM using different inputs for profiling and evaluation and
perform cross-validation. For SDM+BSM+ML and SDM+BSM+DL,
we include results using different numbers of clusters (4 and 32).
Using 4 clusters per application represents the case in which sev-
eral variables may need to share the same address mapping when
there is a large number of co-run applications but only a limited
number of chunk table entries can be used for each application. In
comparison, in the case of using 32 clusters per application, each
application may acquire enough chunk table entries so that each
major variable can have its address mapping, resulting in improved
accuracy.

As expected, the BS+BSM only has an average speedup of 1.01×
over the baseline BS+DM. For some benchmarks e.g., perl and
stream, the SDM+BSM shows worse performance than BS+BSM.
It is because the global address mapping cannot effectively cap-
ture the different access patterns within/across applications, even
when address mapping is optimally selected. It is not practical
to find a single address mapping to benefit all applications. The
SDM+BSM achieves more performance improvement (1.08×, 1.09×)
than BS+DM and BS+BSM, as it provides application-dependent ad-
dress mapping (one address mapping for one application) to better
adapt to different access patterns.

In addition, we observe the same trend as that in the synthetic
benchmark. The BS+HM achieves better performance than both
BS+BSM and BS+DM for almost all standard benchmarks (1.14×).
The reason for such performance improvement across the major-
ity of benchmarks is because the channel bits are generated from
multiple address bits in hashing-based method, making it possible
to adapt to a wide range of access patterns within/across differ-
ent applications. However, due to the nature of the pseudo-random
hashing function generation, it may not be optimal for a specific
set of access patterns.

Our results show by selecting the optimal address mapping for
each individual data structurewithin an application, SDM+BSM+ML
can further improve the performance by 1.16× and 1.27× over the
baseline BS+DM for 4 and 32 clusters per application respectively.
Increasing the number of clusters leads to better speedup. In compar-
ison to K-Means based method (SDM+BSM+ML), the DL-assisted
K-Means (SDM+BSM+DL) achieves 1.33× and 1.43× speedup over

Figure 13: Profiling time for K-Means vs DL-assisted K-Means

Figure 14: Speedup on CPU when varying the HBM fre-
quency.
the BS+DM for 4 clusters and 32 clusters respectively. Comparing
the two methods, we can see DL-assisted K-Means achieves con-
sistently better performance, insensitive to the number of clusters
chosen for each application. However, SDM+BSM+ML works well
for applications with smaller number of major variables such as
perl (1 major variable) and mcf (3 major variables). For applications
with a large number of major variables such as omnetpp (65 major
variables) and astar (38 major variables), SDM+BSM+ML has nearly
no performance improvement (1.04×, 1.09×), but SDM+BSM+DL
can deliver a speedup of 1.27× and 1.22×.

For data-intensive benchmarks, the BS+HM achieves similar
speedup as that observed in standard benchmarks. In comparison,
the and SDM+BSM+DL have higher speedup (1.44× vs. 1.27×, 1.84×
vs. 1.41×) on the data-intensive benchmarks than standard bench-
marks as they have more memory accesses. The results are consis-
tent with our expectation that emerging data intensive applications
would benefit more from our techniques.

We can observe that, even with different input, the proposed
method could still detect the access pattern and achieve 1.84×
speedup. The reason is that address mapping is a function of data
structure, so the changes of the program do not affect the choice
of address mapping as long as the data structure and program
structure (e.g. memory allocation site) remain the same.

In principle, SDAM achieves higher performance gain with more
powerful cores (count, frequency etc.), due to the increased memory
requests and thus more chances for memory channel contention.
To emulate such effect, we conducted experiments by varying 1)
the number of cores, 2) the working frequency of HBM to further
stress the memory system. As expected, our measurement results
confirmed, on average, the speedup increases from 1.27× to 1.32×
when increasing the number of cores from 1 to 4, and the speedup
increases by 19% on all the benchmarks when slowing down the
HBM to a quarter of its maximum frequency.

80

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jialiang Zhang, Michael Swift, and Jing (Jane) Li

Figure 15: Speedup on accelerators (baseline: BS+DM).

Near-data acceleration: To account for the growing importance of
accelerators in future system, we also evaluate the case of offloading
a set of data-intensive applications to near memory accelerators.
We observe the similar trends as running these benchmarks on
CPU in Fig. 15 and show that SDM+BSM+DL outperforms the
other four systems for the evaluated benchmark. But they achieves
much higher performance gain (2.58× speedup of pairing SDAM
with accelerators over the baseline of accelerator without SDAM).
It indicates the hardware accelerator can benefit more from our
techniques. The reasons are: (i) accelerators typically have more
parallelisms, and thus can generate more concurrent memory ac-
cesses to external memory; (ii) accelerator tends to have smaller
caches, leading to higher cache miss rate.
Profiling time: We measure the profiling time of four SDAM con-
figurations on our workstation with intel i7-9700 CPU for all appli-
cations: SDM+BSM+ML (4 patterns), SDM+BSM+ML (32 patterns),
SDM+BSM+DL (4 patterns), and SDM+BSM+DL (32 patterns). As
shown in Fig. 13, we observe that SDM+BSM+ML (0.3 minutes for
4 patterns and 2 minutes for 32 patterns) has much lower overhead
than SDM+BSM+ML (26 minutes for 4 patterns and 29 minutes for
32 patterns). Also, the SDM+BSM+ML approach is more sensitive
to the number of clusters (0.3 minutes vs 2 minutes) as the K-Means
algorithm converges with fewer iterations for a smaller number of
clusters. For benchmarks such as perl and bzip, SDM+BSM+ML (4
patterns) is sufficient to achieve the same speedup as the other three
configurations but only takes 0.3 minutes which is much lower than
the execution time of the application itself (e.g., 5.9 minutes for
perl and 4.4 minutes for bzip). We see similar low overhead for the
other benchmark applications when using the appropriate profiling
method.

8 RELATEDWORK
Address mapping schemes: DRAM address mapping schemes
have been previously proposed for single-core CPUs [15, 50], multi-
core CPUs [27], and GPUs [11, 30]. Bit-shuffle rearranges the order
of the address bits that map to the bank, channel, and column
address fields. For instance, Kaseridis et al. [27] use the LSBs as
the bank and channel bits to better exploit BLP in the streaming
applications. This mapping method is also widely used in com-
mercial computer systems. A common issue of these works is that
a global fixed address mapping is configured at the system boot
time and cannot be changed at runtime to adapt to different access
patterns. Alternatively, hashing-based methods take XOR of several
address bits to increase the entropy of the bank address bits to im-
prove BLP on CPU [30, 50] and GPU [30], which could be extended
to improve CLP. However, this one-size-fit-all approach relies on
the pseudo-random permutation generation that avoids very bad
channel contention but cannot achieve optimal CLP for a access
pattern [39].

Numerous research work target ways of remapping address dy-
namically at run-time to improve memory access performance. The
most similar works to ours are Akin et. al. [1] and Mohsen et al. [17].
Akin et al. [1] proposes to shuffle the order of physical address,
while Mohsen et al. [17] proposes to take the XOR of bank addresses
and row addresses with the bank index. However, the common prob-
lem of these works is that they select address mapping based on the
physical address only whereas the physical address does not contain
useful information of the program, such as thread ID, data struc-
ture. Without such knowledge, it is difficult to infer the program’s
behavior accurately at runtime from the statistics collected from
hardware to capture the different access patterns in the memory
access stream, especially with the interference of other co-running
applications. Compared to these hardware-only approaches, our
work is a collaborative software/hardware technique. Our SDAM
associates the physical address with the high-level program’s ac-
cess semantics and thus can effectively adapt to the different access
patterns of applications.
Software-based data-placement optimization: Another lines of
research target to leverage the benefits of static program analysis [8,
9, 14, 29, 38, 41, 42], dynamic profiling [42, 44] or a combination of
them to guide data-placement in the physical memory hierarchy for
performance optimization. The annotations are used to guide the
data placement in the different locations of cache [8, 9, 14], hetero-
geneous memories [12, 13, 26, 32, 35, 42] and NUMA nodes [28, 42]
to better exploit MLP and/or to improve the locality. However, a
common problem of these methods is that they often rely on a given
memory access pattern and become ineffective to cases when ap-
plications have different patterns [8, 9, 14, 28, 32, 41, 42]. Moreover,
these works can only control the data-placement at coarse-grained
granularity [8, 9, 13, 14, 29, 41, 42]. However, as discussed in Sec-
tion 3, to best exploit CLP in 3D-stacking memory, we need to
have more fine-grained control at the granularity of cache block.
As discussed in [1, 40], simply decreasing the granularity leads
to prohibitively high overhead in both storage and performance,
especially for programs with a large number of data structures [41].
In comparison, by clustering data with the same access pattern into
chunks, our work can effectively reduce management overhead.

9 CONCLUSION
In this work, we propose software-defined address mapping (SDAM)
which is a new system mechanism (architecture/OS support) that
enables user program to obtain a direct control of the low-level
memory hardware in a more intelligent and fine-grained manner.
As a case study, we apply SDAM to 3D-stacking memory to better
exploit its CLP by controlling the address mapping, adaptive to the
data access pattern to different data structures across applications at
runtime, which, is not currently supported in existing systems. We
apply machine learning for system optimization to further reduce
the overhead of SDAM and improve performance. Our evaluation
results not only confirmed the effectiveness of SDAM but also
showed new trends with emerging data-intensive applications and
new system components such as near memory accelerators will
benefit more from the proposed technique. We believe SDAM is an
essential step towards Software-Defined Memory (SDM).

81

Software-Defined Address Mapping: A Case on 3D Memory ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

REFERENCES
[1] Berkin Akin, Franz Franchetti, and James C Hoe. 2016. Data reorganization in

memory using 3D-stacked DRAM. ACM SIGARCH Computer Architecture News
43, 3 (2016), 131–143.

[2] JEDEC Solid State Technology Association et al. 2012. JEDEC Standard: DDR4
SDRAM. JESD79-4, Sep (2012).

[3] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ranganathan.
2020. Classifying Memory Access Patterns for Prefetching. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’20). Association for Computing Machinery, New York, NY, USA, 513–526.
https://doi.org/10.1145/3373376.3378498

[4] Pierre Baldi. 2011. Autoencoders, Unsupervised Learning and Deep Architectures.
In Proceedings of the 2011 International Conference on Unsupervised and Transfer
Learning Workshop - Volume 27 (Washington, USA) (UTLW’11). JMLR.org, 37–50.

[5] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware.
In 2013 IEEE 29th International Conference on Data Engineering (ICDE). 362–373.
https://doi.org/10.1109/ICDE.2013.6544839

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. 72–81.

[7] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. 2017. CAn’t touch this: Software-only mitigation against Rowham-
mer attacks targeting kernel memory. In 26th {USENIX} Security Symposium
({USENIX} Security 17). 117–130.

[8] Edouard Bugnion, Jennifer M Anderson, Todd C Mowry, Mendel Rosenblum, and
Monica S Lam. 1996. Compiler-directed page coloring for multiprocessors. In
ACM SIGPLAN Notices, Vol. 31. ACM, 244–255.

[9] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998. Cache-
conscious data placement. In ACM SIGPLAN Notices, Vol. 33. ACM, 139–149.

[10] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David Patterson, and Krste
Asanovic. [n.d.]. BOOM v2. ([n. d.]).

[11] Niladrish Chatterjee, Mike O’Connor, Gabriel H Loh, Nuwan Jayasena, and Rajeev
Balasubramonian. 2014. Managing DRAM latency divergence in irregular GPGPU
applications. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 128–139.

[12] Shuai Che, Jeremy W Sheaffer, and Kevin Skadron. 2011. Dymaxion: Optimizing
memory access patterns for heterogeneous systems. In Proceedings of 2011 in-
ternational conference for high performance computing, networking, storage and
analysis. ACM, 13.

[13] AamerJaleel ChiachenChou and MoinuddinK Qureshi. 2015. BATMAN: Maxi-
mizing Bandwidth Utilization of Hybrid Memory Systems. (2015).

[14] Trishul M Chilimbi, Mark D Hill, and James R Larus. 1999. Cache-conscious
structure layout. In ACM SIGPLAN Notices, Vol. 34. ACM, 1–12.

[15] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P Jouppi. 2010.
Simple but effective heterogeneous main memory with on-chip memory con-
troller support. In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE Computer
Society, 1–11.

[16] Jason Evans. 2006. A scalable concurrent malloc (3) implementation for FreeBSD.
In Proc. of the bsdcan conference, ottawa, canada.

[17] Mohsen Ghasempour, Aamer Jaleel, Jim D Garside, and Mikel Luján. 2016. Dream:
Dynamic re-arrangement of address mapping to improve the performance of
DRAMs. In Proceedings of the Second International Symposium on Memory Systems.
ACM, 362–373.

[18] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
Memory Access Patterns. In International Conference on Machine Learning. 1919–
1928.

[19] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006).

[20] Marius Hillenbrand. 2017. Physical Address Decoding in Intel Xeon v3/v4 CPUs:
A Supplemental Datasheet. Karlsruhe Institute of Technology, Tech. Rep. (2017).

[21] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. 2011. Efficient Parallel
Graph Exploration on Multi-Core CPU and GPU. In 2011 International Conference
on Parallel Architectures and Compilation Techniques. 78–88. https://doi.org/10.
1109/PACT.2011.14

[22] Intel. 2016. Intel Xeon Processor E7 v4 Product Family Datasheet. (2016).
[23] JEDEC. 2013. High bandwidth memory (hbm) dram. JESD235 (2013).
[24] Xu Ji, Chao Wang, Nosayba El-Sayed, Xiaosong Ma, Youngjae Kim, Sudharshan S

Vazhkudai, Wei Xue, and Daniel Sanchez. 2017. Understanding object-level
memory access patterns across the spectrum. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–12.

[25] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[26] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
HeteroOS—OS design for heterogeneous memory management in datacenter. In
2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 521–534.

[27] Dimitris Kaseridis, Jeffrey Stuecheli, Jian Chen, and Lizy K John. 2010. A
bandwidth-aware memory-subsystem resource management using non-invasive
resource profilers for large cmp systems. In HPCA-16 2010 The Sixteenth Interna-
tional Symposium on High-Performance Computer Architecture. IEEE, 1–11.

[28] Christoph Lameter et al. 2013. NUMA (Non-Uniform Memory Access): An
Overview. Acm queue 11, 7 (2013), 40.

[29] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and Chengyong
Wu. 2012. A software memory partition approach for eliminating bank-level in-
terference in multicore systems. In Proceedings of the 21st international conference
on Parallel architectures and compilation techniques. ACM, 367–376.

[30] Yuxi Liu, Xia Zhao, Magnus Jahre, Zhenlin Wang, Xiaolin Wang, Yingwei Luo,
and Lieven Eeckhout. 2018. Get out of the valley: power-efficient address mapping
for GPUs. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 166–179.

[31] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[32] Mitesh R Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Igna-
towski, and Gabriel H Loh. 2015. Heterogeneous memory architectures: A
HW/SW approach for mixing die-stacked and off-package memories. In 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 126–136.

[33] Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long. 2018.
A survey of clustering with deep learning: From the perspective of network
architecture. IEEE Access 6 (2018), 39501–39514.

[34] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010.
Introducing the graph 500. (2010).

[35] Aditya Narayan, Tiansheng Zhang, Shaizeen Aga, Satish Narayanasamy, and
Ayse Coskun. 2018. MOCA: Memory object classification and allocation in het-
erogeneous memory systems. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 326–335.

[36] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya
Agrawal, Stephen W Keckler, and William J Dally. 2017. Fine-grained DRAM:
energy-efficient DRAM for extreme bandwidth systems. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 41–54.

[37] J Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In 2011 IEEE Hot Chips
23 Symposium (HCS). IEEE, 1–24.

[38] Sujay Phadke and Satish Narayanasamy. 2011. MLP aware heterogeneous mem-
ory system. In 2011 Design, Automation & Test in Europe. IEEE, 1–6.

[39] B Ramakrishna Rau. 1991. Pseudo-randomly interleaved memory. In Proceedings
of the 18th annual international symposium on Computer architecture. 74–83.

[40] Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Rajeev Bal-
asubramonian, and Al Davis. 2010. Micro-pages: increasing DRAM efficiency
with locality-aware data placement. ACM Sigplan Notices 45, 3 (2010), 219–230.

[41] Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons, and Onur
Mutlu. 2018. The Locality Descriptor: A Holistic Cross-Layer Abstraction to
Express Data Locality In GPUs. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 829–842. https://doi.org/10.1109/
ISCA.2018.00074

[42] Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady
Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B Gibbons, and Onur
Mutlu. 2018. A case for richer cross-layer abstractions: Bridging the semantic gap
with expressive memory. In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 207–220.

[43] J.L. Wolf, D.M. Dias, and P.S. Yu. 1993. A parallel sort merge join algorithm for
managing data skew. IEEE Transactions on Parallel and Distributed Systems 4, 1
(1993), 70–86. https://doi.org/10.1109/71.205654

[44] Qiang Wu, Artem Pyatakov, Alexey Spiridonov, Easwaran Raman, Douglas W
Clark, and David I August. 2004. Exposing memory access regularities using
object-relative memory profiling. In Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime optimization.
IEEE Computer Society, 315.

[45] Xilinx. 2019. AXI High Bandwidth Memory Controller v1.0. (2019).
[46] Xilinx. 2019. UltraScale+ FPGA Product Tables and Product Selection Guide.

(2019).
[47] Jialiang Zhang, Soroosh Khoram, and Jing Li. 2017. Boosting the Performance of

FPGA-based Graph Processor Using Hybrid Memory Cube: A Case for Breadth
First Search. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA ’17). ACM,
New York, NY, USA, 207–216. https://doi.org/10.1145/3020078.3021737

[48] Jialiang Zhang, Yang Liu, Gaurav Jain, Yue Zha, Jonathan Ta, and Jing Li. 2019.
MEG: A RISCV-Based System Simulation Infrastructure for Exploring Memory
Optimization Using FPGAs and Hybrid Memory Cube. In 2019 IEEE 27th Annual

82

https://doi.org/10.1145/3373376.3378498
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1109/PACT.2011.14
https://doi.org/10.1109/PACT.2011.14
https://doi.org/10.1109/ISCA.2018.00074
https://doi.org/10.1109/ISCA.2018.00074
https://doi.org/10.1109/71.205654
https://doi.org/10.1145/3020078.3021737

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jialiang Zhang, Michael Swift, and Jing (Jane) Li

International Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 145–153.

[49] Lixin Zhang, Zhen Fang, Mike Parker, Binu K Mathew, Lambert Schaelicke,
John B Carter, Wilson C Hsieh, and Sally A McKee. 2001. The impulse memory
controller. IEEE Trans. Comput. 50, 11 (2001), 1117–1132.

[50] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. 2000. A permutation-based page
interleaving scheme to reduce row-buffer conflicts and exploit data locality. In
Proceedings 33rd Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-33 2000. IEEE, 32–41.

83

	Abstract
	1 Introduction
	2 Background
	2.1 CLP in 3D-Stacking Memory
	2.2 DRAM Address Mapping
	2.3 Address Mapping Mechanisms

	3 Motivating Experiments
	4 Software-defined Address Mapping
	5 Architectural Support
	5.1 Overview
	5.2 Address Mapping Unit
	5.3 Chunk Mapping Table

	6 Software Support
	6.1 Address-Mapping-Aware Memory Allocation
	6.2 Address Mapping Selection

	7 Evaluation
	7.1 Prototyping Platform
	7.2 Workloads
	7.3 System Configuration
	7.4 Results

	8 Related work
	9 Conclusion
	References

