
Selective Versioning in a Secure Disk System

Swaminathan Sundararaman

Stony Brook University

Gopalan Sivathanu

Stony Brook University

Erez Zadok

Stony Brook University

Abstract

Making vital disk data recoverable even in the event of

OS compromises has become a necessity, in view of the

increased prevalence of OS vulnerability exploits over

the recent years. We present the design and implemen-

tation of a secure disk system, SVSDS, that performs

selective, flexible, and transparent versioning of stored

data, at the disk-level. In addition to versioning, SVSDS

actively enforces constraints to protect executables and

system log files. Most existing versioning solutions that

operate at the disk-level are unaware of the higher-level

abstractions of data, and hence are not customizable. We

evolve a hybrid solution that combines the advantages

of disk-level and file-system—level versioning systems

thereby ensuring security, while at the same time allow-

ing flexible policies. We implemented and evaluated a

software-level prototype of SVSDS in the Linux kernel

and it shows that the space and performance overheads

associated with selective versioning at the disk level are

minimal.

1 Introduction

Protecting disk data against malicious damage is one

of the key requirements in computer systems security.

Stored data is one the most valuable assets for most or-

ganizations and damage to such data often results in ir-

recoverable loss of money and man power. In today’s

computer systems, vulnerabilities in the OS are not un-

common. OS attacks through root kits, buffer overflows,

or malware cause serious threat to critical applications

and data. In spite of this, security policies and mecha-

nisms are built at the OS level in most of today’s com-

puter systems. This results in wide-scale system com-

promise when an OS vulnerability is exploited, making

the entire disk data open to attack.

To protect disk data even in the event of OS compro-

mises, security mechanisms have to exist at a layer below

the OS, such as the disk firmware. These mechanisms

must not be overridable even by the highest privileged

OS user, so that even if a malicious attacker gains OS

root privileges, disk data would be protected.

Building security mechanisms at the disk-level comes

with a key problem: traditional disk systems lack higher-

level semantic knowledge and hence cannot implement

flexible policies. For example, today’s disk systems can-

not differentiate between data and meta-data blocks or

even identify whether a particular disk block is being

used or is free. Disks have no knowledge of higher-level

abstractions such as files or directories and hence are

constrained in providing customized policies. This gen-

eral problem of lack of information at the lower layers of

the system is commonly referred to as the “information-

gap” in the storage stack. Several existing works aim at

bridging this information-gap [4, 11, 16, 18].

In this paper, we present the design and implementa-

tion of SVSDS, a secure disk system that transparently

performs selective versioning of key data at the disk-

level. By preserving older versions of data, SVSDS pro-

vides a window of time where data damaged by mali-

cious attacks can be recovered through a secure admin-

istrative interface. In addition to this, SVSDS enforces

two key constraints: read-only and append-only, to pro-

tect executable files and system activity logs which are

helpful for intrusion detection.

In SVSDS, we leverage the idea of Type-Safe Disks

(TSD) [16] to obtain higher-level semantic knowledge at

the disk-level with minimal modifications to storage soft-

ware such as file systems. By instrumenting file systems

to automatically communicate logical block pointers to

the disk system, a TSD can obtain three key pieces of

information that are vital for implementing flexible secu-

rity policies. First, by identifying blocks that have out-

going pointers, a TSD differentiates between data and

meta-data. Second, a TSD differentiates between used

and unused blocks, by just identifying blocks that have

no incoming pointers (and hence not reachable from any



meta-data block). Third, a TSD knows higher abstrac-

tions such as files and directories by just enumerating

blocks in a sub-tree of the pointer hierarchy. For exam-

ple, the sub-tree of blocks starting from an inode block

of an Ext2 file system belong to a collection of files.

Using this semantic knowledge, SVSDS aggressively

versions all meta-data blocks, as meta-data impact the

accessibility of normal data, and hence is more impor-

tant. It also provides an interface through which ad-

ministrators can choose specific files or directories for

versioning, or for enforcing operation-based constraints

(read-only or append-only). SVSDS uses its knowledge

of free and used blocks to place older versions of meta-

data and chosen data, and virtualizes the block address-

space. Older versions of blocks are not accessible to

higher layers, except through a secure administrative in-

terface upon authentication using a capability.

We implemented a prototype of SVSDS in the Linux

kernel as a pseudo-device driver and evaluated its cor-

rectness and performance. Our results show that the

overheads of selective disk-level versioning is quite min-

imal. For a normal user workload SVSDS had a small

overhead of 1% compared to regular disks.

The rest of the paper is organized as follows. Sec-

tion 2 describe background. Section 3 discusses the

threat model. Section 4 and Section 5 explain the de-

sign and implementation of our system respectively. In

Section 6, we discuss the performance evaluation of our

prototype implementation. Related work is discussed in

Section 7 and we conclude in Section 8.

2 Background

Data protection has been a major focus of systems re-

search in the past decade. Inadvertent user errors, ma-

licious intruders, and malware applications that exploit

vulnerabilities in operating systems have exacerbated the

need for stronger data protection mechanisms. In this

section we first talk about versioning as a means for pro-

tecting data. We then give a brief description about TSDs

to make the paper self-contained.

2.1 Data Versioning

Versioning data is a widely accepted solution to data pro-

tection especially for data recovery. Versioning has been

implemented in different layers. It has been implemented

above the operating system (in applications), inside the

operating system (e.g., in file systems) and beneath the

operating system (e.g., inside the disk firmware). We

now discuss the advantages and disadvantages of ver-

sioning at the different layers.

Application-level versioning. Application-level ver-

sioning is primarily used for source code management [1,

2, 22]. The main advantage of these systems is that they

provide the maximum flexibility as users can control ev-

erything from choosing the versioning application to cre-

ating new versions of files. The disadvantage with these

systems is that they lack transparency and users can eas-

ily bypass the versioning mechanism. The versioned data

is typically stored in a remote server and becomes vulner-

able when the remote server’s OS gets compromised.

File-system–level versioning. Several file systems

support versioning [6, 10, 12, 15, 19]. These systems are

mainly designed to allows users to access and revert back

to previous versions of files. The older versions of files

are typically stored under a hidden directory beneath its

parent directory or on a separate partition. As these file

systems maintain older versions of files, they can also be

used for recovering individual files and directories in the

event of an intrusion. Unlike application-level versioning

systems, file-system–level versioning is usually transpar-

ent to higher layers. The main advantage of these ver-

sioning systems is that they can selectively version files

and directories and can also support flexible versioning

policies (e.g., users can choose different policies for each

file or directory). Once a file is marked for versioning by

the user, the file system automatically starts versioning

the file data. The main problem with file-system–level

versioning is that their security is closely tied to the se-

curity of the operating system. When the operating sys-

tem is compromised, an intruder can bypass the security

checks and change the data stored in the disk.

Disk-level versioning. The other alternative is to

version blocks inside the disk [7, 20, 23]. The main

advantage of this approach is that the versioning mech-

anism is totally decoupled from the operating system

and hence can make data recoverable even when the

operating system is compromised. The disadvantage

with block-based disk-level versioning systems is that

they cannot selectively version files as they lack seman-

tic information about the data stored inside them. As a

result, in most cases they end up versioning all the data

inside the disk which causes them to have significant

amount of space overheads in storing versions.

In summary, application-level versioning is weak

in terms of security as can be easily bypassed by users.

Also, the versioning mechanism is not transparent to

users and can be easily disabled by intruders. File-

system—level data-protection mechanisms provide

transparency and also flexibility in terms of what data

needs to be versioned but they do not protect the data in

the event of an operating system compromise. Disk-level



versioning systems provide better security than both

application and file system level versioning but they do

not provide any flexibility to the users to select the data

that needs to be versioned. What we propose is a hybrid

solution, i.e., combine the strong security that the

disk-level data versioning provide, with the flexibility of

file-system—level versioning systems.

2.2 Type-Safe Disks

Today’s block-based disks cannot differentiate between

block types due to the limited expressiveness of the block

interface. All higher-level operations such as file cre-

ation, deletion, extension, renaming, etc. are translated

into a set of block read and write requests. Hence, they

do not convey any semantic knowledge about the blocks

they modify. This problem is popularly known as the in-

formation gap in the storage stack [4, 5], and constrains

disk systems with respect to the range of functionality

that they can provide.

Pointers are the primary mechanisms by which data is

organized. Most importantly, pointers define reachability

of blocks; i.e., a block that is not pointed to by any other

block cannot be reached or accessed. Almost all popular

data structures used for storing information use pointers.

For example, file systems and database systems make ex-

tensive use of pointers to organize the data stored in the

disk. Storage mechanisms employed by databases like

indexes, hash, lists, and b-trees use pointers to convey

relationships between blocks.

Pointers are the smallest unit through which file sys-

tems organize data into semantically meaningful entities

such as files and directories. Pointers define three things:

(1) the semantic dependency between blocks; (2) the log-

ical grouping of blocks; and (3) the importance of blocks.

Even though pointers provide vast amounts of informa-

tion about relationships among blocks, today’s disks are

oblivious to pointers. A Type-Safe Disk (TSD) is a disk

system that is aware of pointer information and can use

it to enforce invariants on data access and also perform

various semantic-aware optimizations which are not pos-

sible in today’s disk systems.

TSDs widen the traditional block-based interface to

enable the software layers to communicate pointer infor-

mation to the disk. File systems that use TSDs should

use the disk APIs (CREATE PTR, DELETE PTR, AL-

LOC BLOCK, GETFREE) exported by TSDs to allocate

blocks, create and delete pointers, and get free-space in-

formation from the disk.

The pointer manager in TSDs keeps track of the re-

lationship among blocks stored inside the disk. The

pointer operations supported by TSDs are CREATE PTR

and DELETE PTR. Both operations take two arguments:

source and destination block numbers. The pointer

manager uses a P-TABLE (or pointer table) to main-

tain the relationship among blocks inside the disk. En-

tries are added to and deleted from the P-TABLE during

CREATE PTR and DELETE PTR operations. When there

are no incoming pointers to a block it is automatically

garbage collected by the TSD.

One other important difference between a regular disk

and a TSD is that the file systems no longer does free-

space management (i.e., file systems no longer need to

maintain bitmaps to manage free space). The free-space

management is entirely moved to the disk. TSDs export

ALLOC BLOCK API to allow file systems to request new

blocks from the disk. The ALLOC BLOCK API takes a

reference block number, a hint block number, and the

number of blocks as arguments and allocates the re-

quested number of file system blocks from the disk main-

tained free block list. After allocating the new blocks,

TSD creates pointers from the reference block to each of

the newly allocated blocks.

The garbage-collection process performed in TSDs is

different from the traditional garbage-collection mecha-

nism employed in most programming languages. A TSD

reclaims back the deleted blocks in an online fashion as

opposed to the traditional offline mechanism in most pro-

gramming languages. TSDs maintain a reference count

(or the number of incoming pointers) for each block.

When the reference count of a block decreases to zero,

the block is garbage-collected; the space is reclaimed by

the disk and the block is added to the list of free blocks. It

is important to note that it is the pointer information pro-

vided by TSD that allows the disk to track the liveness of

blocks, which cannot be done in traditional disks [17].

3 Threat Model

Broadly, SVSDS provides a security boundary at the disk

level and makes vital data recoverable even when an at-

tacker obtains root privileges. In our threat model, ap-

plications and the OS are untrusted, and the storage sub-

system comprising the firmware and magnetic media is

trusted. The OS communicates with the disk through a

narrow interface that does not expose the disk internal

versioning data. Our model assumes that the disk sys-

tem is physically secure, and the disk protects against at-

tackers that compromise a computer system through the

network. This scenario covers a major class of attacks

inflicted on computer systems today.

Specifically, an SVSDS provides the following guar-

antees:

• All meta-data and chosen file data marked for pro-

tection will be recoverable to an arbitrary previous

state even if an attacker maliciously deletes or over-

writes the data, after compromising the OS. The



depth of history available for recovery is solely de-

pendent on the amount of free-space available on

disk. Given the fact that disk space is cheap, this is

an acceptable dependency.

• Data items explicitly marked as read-only is guar-

anteed to be intact against any malicious deletion or

overwriting.

• Data items marked as append-only can never be

deleted or overwritten by any OS attacker.

It is important to note that SVSDS is designed to pro-

tect the data stored on the disk and does not provide

any guarantee on which binaries/files are actually exe-

cuted by the OS (e.g., rootkits could change the binaries

in memory). As files with operation-based constraints

(specifically read-only constraints) cannot be modified

inside SVSDS, upon a reboot, the system running on

SVSDS would return to a safe state (provided the system

executables and configuration files are marked as read-

only).

4 Design

Our aim while designing SVSDS is to combine the se-

curity of disk-level versioning, with the flexibility of

versioning at higher-layers such as the file system. By

transparently versioning data at the disk-level, we make

data recoverable even in the event of OS compromises.

However, today’s disks lack information about higher-

level abstractions of data (such as files and directories),

and hence cannot support flexible versioning granulari-

ties. To solve this problem, we leverage Type-Safe Disks

(TSDs) [16] and exploit higher-level data semantics at

the disk-level.

Type-safe disks export an extended block-based in-

terface to file systems. In addition to the regular

block read and write primitives exported by traditional

disks, TSDs support pointer management primitives that

can be used by file systems to communicate pointer-

relationships between disk blocks. For example, an Ext2

file system can communicate the relationships between

an inode block of a file and its corresponding data blocks.

Through this, logical abstractions of most file systems

can be encoded and communicated to the disk system.

Figure 1 shows the on-disk layout of Ext2. As seen

from Figure 1, files and directories can be identified us-

ing pointers by just enumerating blocks of sub-trees with

inode or directory blocks as root.

The overall goals of SVSDS are the following:

• Perform block versioning at the disk-level in a com-

pletely transparent manner such that higher-level

software (such as file systems or user applications)

Inode Block Directory Block Data BlockSB IB DBDirBSuper Block

IB IB IB IB IB

DB DB DB DB DB

IB

DirB DirB DirB

DirB DB

SB

Legend:

Figure 1: Pointer relationship inside an FFS-like file sys-

tem

cannot bypass it. System administrators or users

can set up versioning policies or revert and delete

versions through an offline privileged channel after

a capability-based authentication process enforced

by the disk system.

• Aggressively version all meta-data (e.g., Ext2 inode

blocks) and chosen data as per the policies set up by

administrators or users. In the perspective of a file

system, versioning policies must be at granularities

of individual files or directories.

• Enforce basic constraints at the disk-level, such as

read-only and append-only. Users must be able to

choose specific files or directories to be protected

by these constraints.

Figure 2 shows the overall architecture of SVSDS. The

three major components in SVSDS are, (1) Storage virtu-

alization Layer (SVL), (2) The Version Manager, and (3)

The Constraint Manager. The SVL virtualizes the block

address space and manages physical space on the device.

The version manager automatically versions meta-data

and user-selected files and directories. It also provides

an interface to revert back the disk state to previous ver-

sions. The constraint manager enforces read-only and

append-only operation-level constraints on files and di-

rectories inside the disk.

The rest of this section is organized as follows. Sec-

tion 4.1 describe how transparent versioning is per-

formed inside SVSDS. Section 4.2 talks about the ver-

sioning mechanism. Section 4.4 describes our recov-

ery mechanism and how an administrator recovers af-

ter detecting an OS intrusion. Section 4.5 describes how

SVSDS enforces operation based constraints on files and



S
E

T
_

R
E

A
D

_
O

N
L

Y

S
E

T
_

A
P

P
E

N
D

_
O

N
L

Y

V
E

R
S

IO
N

_
B

L
O

C
K

S

W
R

IT
E

R
E

A
D

D
E

L
E

T
E

_
P

T
R

C
R

E
A

T
E

_
P

T
R

A
L

L
O

C
_

B
L

O
C

K

File System / Software Layer

Physical Blocks

Storage Virtualization Layer Version ManagerCache

ManagerConstraint

D
is

k
S

o
ft

w
a
re

Figure 2: Architecture of SVSDS

directories. Finally, in Section 4.6, we discuss some of

the issues with SVSDS.

4.1 Transparent Versioning

Transparent versioning is an important requirement, as

SVSDS has to ensure that the versioning mechanism is

not bypassed by higher layers. To provide transparent

versioning, the storage virtualization layer (SVL) virtu-

alizes the disk address space. The SVL splits the disk ad-

dress space into two: logical and physical, and internally

maintains the mapping between them. The logical ad-

dress space is exposed to file systems and the SVL trans-

lates logical addresses to physical ones for every disk

request. This enables SVL to transparently change the

underlying physical block mappings when required, and

applications are completely oblivious to the exact physi-

cal location of a logical block.

SVSDS maintains T-TABLE (or translation table),

to store the relationship between logical and physical

blocks. There is a one-to-one relationship between each

logical and physical block in the T-TABLE. A version

number field is also added to each entry of T-TABLE to

denote the last version in which a particular block was

modified. Also, a status flag is added to each T-TABLE

entry to indicate the type (meta-data or data), and sta-

tus (versioned or non-versioned) of each block. The T-

TABLE is indexed by the logical block number and every

allocated block has an entry in the T-TABLE. When ap-

plications read (or write) blocks, the SVL looks up the

T-TABLE for the logical block and redirects the request to

the corresponding physical block stored in the T-TABLE

entry.

Free-Space Management SVSDS has two different

address spaces, whereas the regular TSDs only have one.

Hence, SVSDS cannot reuse the existing block alloca-

tion mechanism of regular TSDs. To manage both ad-

dress spaces, the SVL uses two different bitmaps: log-

ical block bitmaps (LBITMAPS) in addition to the exist-

ing physical block bitmaps (PBITMAPS). SVSDS uses

a two-phased block allocation process. During the first

phase, the SVL allocates the requested number of physi-

cal blocks from PBITMAPS. The allocation request need

not always succeed as some of the physical blocks are

used for storing the previous versions of blocks. If the

physical block allocation request succeeds, it proceeds

to the next phase. In the second phase, the SVL allocates

an equal number of logical blocks from LBITMAPS. It

then associates each of the newly allocated logical block

with a physical block and adds an entry in the T-TABLE

for each pair. The flags for these new entries are copied

from the reference block passed to the ALLOC BLOCK

call and the version number is copied from the disk main-

tained version number. This ensures that all blocks that

are added later to a file inherit the same attributes (or

flags) as their parent block.

4.2 Creating versions

The version manager is responsible for creating new ver-

sions and maintaining previous versions of data on the

disk. The version manager provides the flexibility of file-

system–level versioning while operating inside the disk.

By default, it versions all meta-data blocks. In addi-

tion, it can also selectively version user-selected files and

directories. The version manager automatically check-

points the meta-data and chosen data blocks at regular

intervals of time, and performs copy-on-write upon sub-

sequent modifications to the data. The version manager

maintains a global version number and increments it af-

ter every checkpoint interval. The checkpoint interval is

the time interval after which the version number is au-

tomatically incremented by the disk. SVSDS allows an

administrator to specify the checkpoint interval through

its administrative interface.

The version manager maintains a table, V-TABLE (or

version table), to keep track of previous versions of

blocks. For each version, the V-TABLE has a separate

list of logical-to-physical block mappings for modified

blocks.

Once the current version is checkpointed, any subse-

quent write to a versioned block creates a new version for

that block. During this write, the version manager also

backs up the existing logical to physical mapping in the

V-TABLE. To create a new version of a block, the version

manger allocates a new physical block through the SVL,

changes the corresponding logical block entry in the T-



TABLE to point to the newly allocated physical block, and

updates the version number of this entry to the current

version. Figure 3 shows a V-TABLE with a few entries

in the mapping list for the first three versions. Let’s take

a simple example to show how entries are added to the

V-TABLE. If block 3 is overwritten in version 2, the entry

in the T-TABLE for block 3 is added to the mapping list

of the previous version (i.e., version 1).

Versioning TSD Pointer Structures TSDs maintains

their own pointer structures inside the disk to track block

relationships. The pointer management in TSDs was ex-

plained in Section 2.2. The pointers refers to the disk-

level pointers inside TSDs, unless otherwise mentioned

in the paper. As pointers are used to track block live-

ness information inside TSDs, the disk needs to keep its

pointer structures up to date at all times. When the disk is

reverted back to the previous version, the pointer opera-

tions performed in the current version have to be undone

for the disk to reclaim back the space used by the current

version.

To undo the pointer operations, SVSDS logs all

pointer operations to the pointer operation list of the cur-

rent version in the V-TABLE. For example, in Figure 3 the

first entry in the pointer operation list for version 1 shows

that a pointer was created between logical blocks 3 and 8.

This create pointer operation has to be undone when the

disk is reverted back from version 1 to 0. Similarly, the

first entry in the pointer operation list for version 3 de-

notes that a pointer was deleted between logical blocks 3

and 8. This operation has to be undone when the disk is

reverted back from version 3 to version 2.

To reduce the space required to store the pointer opera-

tions, SVSDS does not store pointer operations on blocks

created and deleted (or deleted and created) within the

same version. When a CREATE PTR is issued with source

a and destination b in version x. During the lifetime of

the version x, if a DELETE PTR operation is called with

the same source a and destination b, then the version

manager removes the entry from the pointer operation

list for that version in the V-TABLE. We can safely re-

move these pointer operations because CREATE PTR and

DELETE PTR operations are the inverse of each other and

would cancel out their changes when they occur with-

ing the same version. The recovery manager maintains a

hash table indexed on the source and destination pair for

efficient retrieval of entries from the V-TABLE.

4.3 Selective Versioning

Current block-based disk systems lack semantic infor-

mation about the data being stored inside. As a result,

disk-level versioning systems [7, 23] version all blocks.

But versioning all blocks inside the disk can quickly con-

sume all available free space on the disk. Also, version-

ing all blocks is not efficient for the following two rea-

sons: (1) short lived temporary data (e.g., data in the /tmp

folder and installation programs) need not be versioned,

and (2) persistent data blocks have varying levels of im-

portance. For example, in FFS-like file systems, version-

ing the super block, inode blocks, or indirect blocks is

more important than versioning data blocks as the for-

mer affects the reachability of other blocks stored inside

the disk. Hence, SVSDS selectively versions meta-data

and user-selected files and directories to provide deeper

version histories.

Versioning meta-data. Meta-data blocks have to be

versioned inside the disk for two reasons. First, reach-

ability: meta-data blocks affects the reachability of data

blocks that it points to (e.g., the data blocks can only be

reached through the inode or the indirect block). Sec-

ond, recovery of user-selected files: we need to preserve

all versions of the entire file system directory-structure

inside the disk to revert back files and directories.

To selectively version meta-data blocks, SVSDS

uses the pointer information available inside the TSDs.

SVSDS identifies a meta-data block during the first CRE-

ATE PTR operation the block passed as the source is iden-

tified as a meta-data block. For all source block passed

to the CREATE PTR operation, SVSDS marks it as meta-

data in the T-TABLE.

SVSDS defers reallocation of deleted data blocks until

there are no free blocks available inside the disk. This

ensures that for a period of time the deleted data blocks

will still be valid and can be restored back when their

corresponding meta-data blocks are reverted back during

recovery.

To version files and directories, applications issue an

ioctl to the file system that uses SVSDS. The file sys-

tem in turn locates the logical block number of the file’s

inode block, and calls the VERSION BLOCKS disk prim-

itive. VERSION BLOCKS is a new primitive added to the

existing disk interface for applications to communicate

the files for versioning (see Table 1). After the blocks of

the file are marked for versioning, the disk automatically

versions the marked blocks at regular intervals.

Versioning user-selected data. Versioning meta-data

blocks alone does not make the disk system more se-

cure. Users still want the disk to automatically version

certain files and directories. To selectively version files

and directories, applications and file systems only have

to pass the starting block (or the root of the subtree) un-

der which all the blocks needs to be versioned. For ex-

ample, in Ext2 only the inode block of the file or the di-

rectory needs to be passed for versioning. SVSDS does



Version No.

Pointer Operation List

Old Mapping List

Old Mapping List

Old Mapping List

Pointer Operation List

Pointer Operation List

1

2

3

3 5 64

8

7

68

3 5

D

3

3 8

C

10 10 5

Figure 3: The v-table data structure. A simplified v-table state is shown for first three versions in SVSDS. Each entry

in the old mapping list corresponds to logical and physical block pair. C & D in the pointer operation list represent

Create pointer and Delete pointer operations, respectively.

a Breadth First Search (BFS) on the P-TABLE, starting

from the root of the subtree. All the blocks traversed dur-

ing the BFS are marked for versioning in the T-TABLE.

One common issue in performing BFS is that there

could potentially be many cycles in the graph that is be-

ing traversed. For example, in the Ext2TSD [16] file

system, there is a pointer from the inode of the direc-

tory block, to the inode of the sub-directory block and

vice versa. Symbolic links are yet another source of cy-

cles. SVSDS detects cycles by maintaining a hash table

(D-TABLE) for blocks that have been visited during the

BFS. During each stage of the BFS, the version manager

checks to see if the currently visited node is present in the

D-TABLE before traversing the blocks pointed to by this

block. If the block is already present in the D-TABLE,

SVSDS skips the block as it was already marked for ver-

sioning. If not, SVSDS adds the currently visited block

to the D-TABLE before continuing with the BFS.

To identify blocks that are subsequently added to

versioned files or directories, SVSDS checks the flags

present in the T-TABLE of the source block during the

CREATE PTR operations. This is because when file sys-

tems want to get a free block from SVSDS, they is-

sue an ALLOC BLOCK call with a reference block and

the number of required blocks as arguments. This

ALLOC BLOCK call is internally translated to a CRE-

ATE PTR operation with the reference block and the

newly allocated block as its arguments. If the reference

block is marked to be versioned, then the destination

block that it points to is also marked for versioning. File

systems normally pass the inode or the indirect block as

the reference block.

4.4 Reverting Versions

In the event of an intrusion or an operating system

compromise, an administrator would want to undo the

changes done by an intruder or a malicious application

by reverting back to a previous safe state of the disk. We

define reverting back to a previous versions as restoring

the disk state from time t to the disk state at time t - tv,

where tv is the checkpoint interval.

Even though SVSDS can access any previous ver-

sion’s data, we require reverting only one version at a

time. This is because SVSDS internally maintains state

about block relationships through pointers, and it re-

quires that the pointer information be properly updated

inside the disk to garbage-collect deleted blocks. To il-

lustrate the problem with reverting back to an arbitrary

version, let’s revert the disk state from version f to ver-

sion a by skipping reverting of the versions between f

and a. Reverting back the V-TABLE entries for version

a alone would not suffice. As we directly jump to ver-

sion a, the blocks that were allocated, and pointers that

were created or deleted between versions f and a, are

not reverted back. The blocks present during version a

does not contain information about blocks created after

version a. As a result, blocks allocated after version a

becomes unreachable by applications but according to

pointer information in the P-TABLE they are still reach-

able. As a result, the disk will not reclaim back these

block and the we will be leaking disk space. Hence,

SVSDS allows an administrator to revert back only one

version at a time.

SVSDS also allows an administrator to revert back

the disk state to a arbitrary point in time by revert-

ing back one version at a time until the largest ver-

sion whose start time is less than or equal to the

time mentioned by the administrator is found. RE-

VERT TO PREVIOUS VERSION and REVERT TO TIME



Disk Primitives Description

Marks all blocks in the subtree starting from block BNo to be versioned.

VERSION BLOCKS(BNo) The data blocks present in the subtree will be versioned along with the

reference (or meta-data) blocks.

REVERT TO PREVIOUS VERSION Reverts back the disk state from current version to the previous version.

REVERT TO TIME(t) Reverts back the disk state one version at a time till it finds a version v

with start time less than or equal to t.

MARK READ ONLY(BNo) Marks all blocks in the sub-tree starting from block BNo as read-only.

Marks all blocks in the sub-tree starting from block BNo as

MARK APPEND ONLY(BNo) append-only. BNo itself will not be an append-only block as it could be

a meta-data block, with non-sequential updates.

Table 1: Additional Disk APIs in SVSDS

are the additional primitives added to the existing disk

interface to revert back versions by the administrator (see

Table 1).

While reverting back to a previous version, SVSDS

recovers the data by reverting back the following: (1)

Pointers: the pointer operation that happened in the cur-

rent version are reverted back; (2) Meta-data: all meta-

data changes that happened in the current version are re-

verted back; (3) Data-blocks: all versioned data blocks

and some (or all) of the non-versioned deleted data-

blocks are reverted back (i.e., the non-versioned data

blocks that have been garbage collected cannot be re-

verted back); and (4) Bitmaps: both logical and physical

block bitmap changes that happened during the current

version are reverted.

4.4.1 Reverting Mapping

SVSDS reverts back to its previous version from the cur-

rent version in two phases. In the first phase, it restores

all the T-TABLE entries stored in the mapping list of the

previous version in the V-TABLE. While restoring back

the T-TABLE entries of the previous version, there are two

cases that need to be handled. (1) An entry already ex-

ists in the T-TABLE for the logical block of the restored

mapping. (2) An entry does not exist. When an entry

exists in the T-TABLE, the current mapping is replaced

with the old physical block from the mapping list in the

V-TABLE. The current physical block is freed by clearing

the bit corresponding to the physical block number in the

PBITMAPS. If an entry does not exist in the T-TABLE, it

implies that the block was deleted in the current version

and the mapping was backed up in the V-TABLE. SVSDS

restores the mapping as a new entry in the T-TABLE and

the logical block is marked as used in the LBITMAPS.

The physical block need not be marked as used as it is

already alive. At the end of the first phase, SVSDS re-

stores back all the versioned data that got modified or

deleted in the current version.

4.4.2 Reverting Pointer Operations

In the second phase of the recovery process, SVSDS re-

verts back the pointer operations performed in the cur-

rent version by applying the inverse of the pointer op-

erations. The inverse of the CREATE PTR operation is a

DELETE PTR operation and vice versa. The pointer op-

erations are reverted back to free up the space used by

blocks created in the current version and also for restor-

ing pointers deleted in the current version.

Reverting back CREATE PTR operations are straight

forward. SVSDS issues the corresponding DELETE PTR

operations. If there are no incoming pointers to the des-

tination blocks of the DELETE PTR operations, the disk

automatically garbage collects the destination blocks.

While reverting the DELETE PTR operations, SVSDS

checks if the destination blocks are present in the T-

TABLE. If yes, SVSDS executes the corresponding CRE-

ATE PTR operations. If the destination blocks is not

present in the T-TABLE, it implies that the DELETE PTR

operations were performed on non-versioned blocks. If

the destination blocks are present in the deleted block

list, SVSDS restores the backed up T-TABLE entries from

the deleted block list and issues the corresponding CRE-

ATE PTR operations.

While reverting back to a previous version, the inverse

pointer operations have to be replayed in the reverse or-

der. If not, SVSDS would prematurely garbage collect

these blocks. We illustrate this problem with a simple

example. From Figure 4(a) we can see that block a has

a pointer to block b and block b has pointers to blocks c

and d. The pointers from b are first deleted and then the

pointer from a to b is deleted. This is shown in Figs. 4(b)

and 4(c). If the inverse pointer operations are applied in

the same order, first a pointer would be is created from

block b to d (assuming pointer from b to d is deleted first)

but block b would be automatically garbage collected by

SVSDS as there are no incoming pointers to block b. Re-

playing pointer operations in the reverse order avoids this

problem. Figs 4(d), 4(e), and 4(f) show the sequence of



(a)

b
d

c
a a b

d

c
a b ba a b

d

c

(f)

a

(b) (c) (d) (e)

Figure 4: Steps in reverting back delete pointer operations

steps performed while reverting back the delete pointer

operations in the reverse order. We can see that revert-

ing back pointer operations in the reverse order correctly

reestablishes the pointers in the correct sequence.

4.4.3 Reverting Meta-Data

SVSDS uses the mapping information in the V-TABLE to

revert back changes to the meta-data blocks. There are

three cases that need to be handled while reverting back

meta-data blocks: (1) The meta-data block is modified

in the new version, (2) The meta-data block is deleted

in the new version, and (3) The meta-data block is first

modified and then deleted in the new version. In the first

case, the mappings that are backed up in the previous

version for the modified block in the V-TABLE are re-

stored. This is done to get back the previous contents

of the meta-data blocks. For the second case, the delete

pointer operations would have caused the T-TABLE en-

tries to be backed up in the V-TABLE as they would be

the last incoming pointer to the meta-data blocks. The

T-TABLE entries will be restored back in the first phase

of the recovery process and the deleted pointers are re-

stored back in the second phase of the recovery process.

Reverting meta-data blocks when they are first modified

and then deleted is the same as in reverting meta-data

blocks when they are deleted.

4.4.4 Reverting Data Blocks

When the recovery manager reverts back to a previous

version, it cannot revert back to the exact disk state in

most cases. To revert back to the exact disk state, the disk

would need to revert mappings for all blocks, including

the data blocks that are not versioned by default. In a

typical TSD scenario, blocks are automatically garbage

collected as soon as the last incoming pointer to them

is deleted, making their recovery difficult if not impos-

sible. The garbage collector in SVSDS tries to reclaim

the deleted data blocks as late as possible. To do this,

SVSDS maintains an LRU list of deleted non-versioned

blocks (also known as the deleted block list).

When the delete-pointer operations are reverted back,

SVSDS issues the corresponding create-pointer opera-

tions only if the deleted data blocks are still present in

the deleted block list. This policy of lazy garbage collec-

tion allows users to recover the deleted data blocks that

have not yet been garbage collected yet.

Lazy garbage collection is also useful when a user re-

verts back the disk state after inadvertently deleting a di-

rectory. If all data blocks that belong to the directory are

not garbage collected, then the user can get back the en-

tire directory along with the files stored under it. If some

of the blocks are already reclaimed by the disk, the user

would get back the deleted directory with data missing in

some files. Even though SVSDS does not version all data

block, it still tries to restore back all deleted data blocks

when disk is revert back to its previous version.

4.4.5 Reverting Bitmaps

When data blocks are added or reclaimed back during

the recovery process the bitmaps have to be adjusted to

keep track of free blocks. The PBITMAPS need not be

restored back as they are never deleted. The physical

blocks are backed up either in the deleted block list or

in the old mapping lists in the V-TABLE. The physical

blocks that are added in the current version are freed dur-

ing the first and second phases of the recovery process.

During the first phase, the previous version’s data is re-

stored from mapping list in the V-TABLE. At this time the

physical blocks of the newer version are marked free in

the PBITMAPS. When the pointers created in the current

version are reverted back by deleting them in the second

phase, the garbage collector frees both the physical and

the logical blocks, only if it is the last incoming pointer

to the destination block.

The LBITMAPS only have to be restored back for ver-

sioned blocks that have been deleted in the current ver-

sion. While restoring the backed up mappings from the

V-TABLE, SVSDS checks if the logical block is allocated

in the LBITMAPS. If it is not allocated, SVSDS reallo-

cates the deleted logical block by setting the correspond-

ing bit in the LBITMAPS. The deleted non-versioned

blocks need not be restored back. Previously, these

blocks were moved to the deleted block list and were

added back to the T-TABLE during the second phase of

the recovery process.



4.5 Operation-based constraints

In addition to versioning data inside the disk, it is also

important to protect certain blocks from being modified,

overwritten, or deleted. SVSDS allows users to spec-

ify the types of operations that can be performed on a

block, and the constraint manager enforces these con-

straints during block writes. SVSDS enforces two types

of operation-based constraints: read-only and append-

only.

The sequence of steps taken by the operation man-

ager to mark a file as read-only or append-only is the

same as marking a file to be versioned. The steps for

marking a file to be versioned was described in Sec-

tion 4.3. While marking a group of blocks, the first

block (or the root block of the subtree) encountered in

the breadth first search is treated differently to accom-

modate special file system updates. For example, file

systems under UNIX support three timestamps: access

time (atime), modification time (mtime), and creation

time (ctime). When data from a file is read, its atime

is updated in the file’s inode. Similarly, when the file

is modified, its mtime and ctime are updated in its in-

ode. To accommodate atime, mtime, and ctime updates

on the first block, the constraint manager distinguishes

the first block by adding a special meta-data block flag

in the T-TABLE for the block. SVSDS disallows dele-

tion of blocks marked as read-only or append-only con-

straints. MARK READ ONLY and MARK APPEND ONLY

are the two new APIs that have been added to the disk for

applications to specify the operation-based constraints on

blocks stored inside the disk. These APIs are described

in Table 1.

Read-only constraint. The read-only operation-based

constraint is implemented to make block(s) immutable.

For example, the system administrator could mark bi-

naries or directories that contain libraries as read-only,

so that later on they are not modified by an intruder or

any other malware application. Since SVSDS does not

have information about the file system data structures,

atime updates cannot be distinguished from regular block

writes using pointer information. SVSDS neglects (or

disallows) the atime updates on read-only blocks, as they

do not change the integrity of the file. Note that the read-

only constraint can also be applied to files that are rarely

updated (such as binaries). When such files have to be

updated, the read-only constraint can be removed and set

back again by the administrator through the secure disk

interface.

Append-only constraint. Log files serve as an impor-

tant resource for intrusion analysis and statistics collec-

tion. The results of the intrusion analysis is heavily de-

pendent on the integrity of the log files. The operation-

based constraints implemented by SVSDS can be used

to protect log files from being overwritten or deleted by

intruders.

SVSDS allows marking any subtree in the pointer

chain as “append-only”. During a write to a block in

an append-only subtree, the operation manager allows

it only if the modification is to change trailing zeroes

to non-zeroes values. SVSDS checks the difference be-

tween the original and the new contents to verify that

data is only being appended, and not overwritten. To

improve the performance, the operation manager caches

the append-only blocks when they are written to the disk

to avoid reading the original contents of block from the

disk during comparison. If a block is not present in the

cache, the constraint manager reads the block and adds

it to the cache before processing the write request. To

speed up comparisons, the operation manager also stores

the offsets of end of data inside the append-only blocks.

The newly written data is compared with the cached data

until the stored offsets.

When data is appended to the log file, the atime and

the mtime are also updated in the inode block of the file

by the file system. As a result, the first block of the

append-only block is overwritten with every update to

the file. As mentioned earlier, SVSDS does not have the

information about the file system data structures. Hence,

SVSDS permits the first block of the append-only files to

be overwritten by the file system.

SVSDS does not have information about how file

systems organize its directory data. Hence, enforcing

append-only constraints on directories will only work iff

the new directory entries are added after the existing en-

tries. This also ensures that files in directories marked as

append-only cannot be deleted. This would help in pre-

venting malicious users from deleting a file and creating

a symlink to a new file (for example, an attacker can no

longer unlink a critical file like /etc/passwd, and then just

creates a new file in its place).

4.6 Issues

In this section, we talk about some of the issues with

SVSDS. First we talk about the file system consistency

after reverting back to a previous version inside the disk.

We then talk about the need for a special port on the disk

to provide secure communication. Finally, we talk about

Denial of Service (DoS) attacks and possible solutions to

overcome them.

Consistency Although TSDs understand a limited

amount of file system semantics through pointers, they

are still oblivious to the exact format of file system-

specific meta-data and hence it cannot revert the state that



is consistent in the viewpoint of specific file systems. A

file system consistency checker (e.g., fsck) needs to be

run after the disk is reverted back to a previous version.

Since SVSDS internally uses pointers to track blocks, the

consistency checker should also issue appropriate calls to

SVSDS to ensure that disk-level pointers are consistent

with file system pointers.

Administrative Interfaces To prevent unauthorized

users from reverting versions inside the disk, SVSDS

should have a special hardware interface through which

an administrator can log in and revert back versions.

This port can also be used for setting the checkpoint fre-

quency.

Supporting Encryption File Systems Encryption File

systems (EFS) can run on top of SVSDS with minimal

modifications. SVSDS only requires EFS to use TSD’s

API for block allocation and notifying pointer relation-

ship to the disk. The append-only operation-based con-

straint would not work for EFS as end of block can-

not be detected if blocks are encrypted. If encryption

keys are changed across versions and if the administra-

tor reverts back to a previous version, the decryption of

the file would no longer work. One possible solution is

to change the encryption keys of files after a capability

based authentication upon which SVSDS would decrypt

all the older versions and re-encrypt them with the newly

provided keys. The disadvantage with this approach is

that the versioned blocks need to be decrypted and re-

encrypted when the keys are changed.

DoS Attacks SVSDS is vulnerable to denial of service

attacks. There are three issues to be handled: (1) blocks

that are marked for versioning could be repeatedly over-

written; (2) lots of bogus files could be created to delete

old versions, and (3) versioned files could be deleted and

recreated again preventing subsequent modifications to

files from being versioned inside the disk. To counter at-

tacks of type 1, SVSDS can throttle writes to files that

are versioned very frequently. An alternative solution to

this problem would be to exponentially increase the ver-

sioning interval of the particular file / directory that is

being constantly overwritten resulting in fewer number

of versions for the file. As with most of the denial of

service attacks there is no perfect solution to attack of

type 2. One possible solution would be to stop further

writes to the disk, until some of the space used up by

older versions, are freed up by the administrator through

the administrative interface. The downside of this ap-

proach is that the disk effectively becomes read-only till

the administrator frees up some space. Type 3 attacks are

not that serious as versioned files are always backed up

when they are deleted. One possible solution to prevent

versioned files from being deleted is to add no-delete flag

on the inode block of the file. This flag would be checked

by SVSDS along with other operation-based constraints

before deleting/modifying the block. The downside of

this approach is that normal users can no longer delete

versioned files that have been marked as no-delete. The

administrator has to explicitly delete this flag on the no-

delete files.

5 Implementation

We implemented a prototype SVSDS as a pseudo-device

driver in Linux kernel 2.6.15 that stacks on top of an

existing disk block driver. Figure 5 shows the pseudo

device driver implementation of SVSDS. SVSDS has

7, 487 lines of kernel code out of which 3, 060 were

reused from an existing TSD prototype. The SVSDS

layer receives all block requests from the file system,

and re-maps and redirects the common read and write

requests to the lower-level device driver. The additional

primitives required for operations such as block alloca-

tion and pointer management are implemented as driver

ioctls.

User Applications

File Systems

Regular Block Interface

Disk / RAID

Regular Block Interface

SCSI/IDE Driver

K
E

R
N

E
L

U
S

E
R

SVSDS Pseudo−device Driver

SVSDS Interface

Figure 5: Prototype Implementation of SVSDS

In the current implementation we maintain all hash ta-

bles (V-TABLE, T-TABLE, P-TABLE, and D-TABLE) as in-

memory data structures. As these hash tables only have

small space requirements, they can be persistently stored

in a portion of the NVRAM inside the disk. This helps

SVSDS to avoid disk I/O for reading these tables.

The read and write requests from file systems reach

SVSDS through the Block IO (BIO) layer in the Linux



kernel. The BIO layer issues I/O requests with the des-

tination block number, callback function (BI END IO),

and the buffers for data transfer, embedded inside the

BIO data structure. To redirect the block requests from

SVSDS to the underlying disk, we add a new data struc-

ture (BACKUP BIO DATA). This structure stores the des-

tination block number, BI END IO, and BI PRIVATE of

the BIO data structure. The BI PRIVATE field is used

by the owner of the BIO request to store private infor-

mation. As I/O request are by default asynchronous

in the Linux kernel, we stored the original contents of

the BIO data structures by replacing the value stored

inside BI PRIVATE to point to our BACKUP BIO DATA

data structure. When I/O requests reach SVSDS, we

replace the destination block number, BI END IO, and

BI PRIVATE in the BIO data structure with the mapped

physical block from the T-TABLE, our callback func-

tion (SVSDS END IO), and the BACKUP BIO DATA re-

spectively. Once the I/O request is completed, the con-

trol reaches our SVSDS END IO function. In this func-

tion, we restore back the original block number and

BI PRIVATE information from the BACKUP BIO DATA

data structure. We then call the BI END IO function

stored in the BACKUP BIO DATA data structure, to notify

the BIO layer that the I/O request is now complete.

We did not make any design changes to the ex-

isting Ext2TSD file system to support SVSDS. The

Ext2TSD is a modified version of the Ext2 file sys-

tem that notifies the pointer relationship to the file sys-

tem through the TSD disk APIs. To enable users to

select files and directories for versioning or enforcing

operation-based constraints, we have added three ioctls

namely: VERSION FILE, MARK FILE READONLY, and

MARK FILE APPENDONLY to the Ext2TSD file system.

All three ioctls take a file descriptor as their argument,

and gets the inode number from the in-memory inode

data structure. Once the Ext2TSD file system has the

inode number of the file, it finds the the logical block

number that correspond to inode number of the file. Fi-

nally, we call the the corresponding disk primitive from

the file system ioctl with logical block number of the in-

ode as the argument. Inside the disk primitive we mark

the file’s blocks for versioning or enforcing operation-

based constraint by performing a breadth first search on

the P-TABLE.

6 Evaluation

We evaluated the performance of our prototype SVSDS

using the Ext2TSD file system [16]. We ran general-

purpose workloads on our prototype and compared them

with unmodified Ext2 file system on a regular disk. This

section is organized as follows: In Section 6.1, we talk

about our test platform, configurations, and procedures.

Section 6.2 analyzes the performance of the SVSDS

framework for an I/O-intensive workload, Postmark [8].

In Sections 6.3 and 6.4 we analyze the performance on

OpenSSH and kernel compile workloads respectively.

6.1 Test infrastructure

We conducted all tests on a 2.8GHz Intel Xeon CPU with

1GB RAM, and a 74GB 10Krpm Ultra-320 SCSI disk.

We used Fedora Core 6 running a vanilla Linux 2.6.15

kernel. To ensure a cold cache, we unmounted all in-

volved file systems between each test. We ran all tests at

least five times and computed 95% confidence intervals

for the mean elapsed, system, user, and wait times using

the Student-t distribution. In each case, the half-widths

of the intervals were less than 5% of the mean. Wait time

is the difference between elapsed time and CPU time,

and is affected by I/O and process scheduling.

Unless otherwise mentioned, the system time over-

heads were mainly caused by the hash table lookups

on T-TABLE during the read and write operations and

also due to P-TABLE lookups during CREATE PTR and

DELETE PTR operations. This CPU overhead is due to

the fact that our prototype is implemented as a pseudo-

device driver that runs on the same CPU as the file sys-

tem. In a real SVSDS setting, the hash table lookups will

be performed by the processor embedded in the disk and

hence will not influence the overheads on the host sys-

tem, but will add to the wait time.

We have compared the overheads of SVSDS using

Ext2TSD against Ext2 on a regular disk. We denote

Ext2TSD on a SVSDS using the name Ext2Ver. The let-

ters md and all are used to denote selective versioning

of meta-data and all data respectively.

6.2 Postmark

Postmark [8] simulates the operation of electronic mail

and news servers. It does so by performing a series of

file system operations such as appends, file reads, direc-

tory lookups, creations, and deletions. This benchmark

uses little CPU but is I/O intensive. We configured Post-

mark to create 3,000 files, between 100–200 kilobytes,

and perform 300,000 transactions.

Figure 6 show the performance of Ex2TSD on SVSDS

for Postmark with a versioning interval of 30 seconds.

Postmark deletes all its files at the end of the benchmark,

so no space is occupied at the end of the test. SVSDS

transparently creates versions and thus, consumes stor-

age space which is not visible to the file system. The av-

erage number of versions created during this benchmark

is 27.

For Ext2TSD, system time is observed to be 1.1 times

more, and wait time is 8% lesser that of Ext2. The



 0

 200

 400

 600

 800

 1000

 1200

Ext2Ver(all)Ext2Ver(md)Ext2TSDExt2

E
la

p
s
e
d
 T

im
e
 (

s
e
c
o
n
d
s
)

780.6 768.0 789.7 793.1

Wait
User

System

Ext2 Ext2TSD Ext2Ver(md) Ext2Ver(all)

Elapsed 780.5s 768.0s 789.7s 793.1s

System 36.28s 88.58s 191.71s 191.94s

Wait 741.42s 676.11s 593.80s 597.09s

Space o/h 0MB 0MB 443MB 1879MB

Performance Overhead over Ext2

Elapsed - -1.60 % 1.17% 1.61%

System - 1.44 × 4.28 × 4.29×

Wait - -8.12 % -19.91% -19.47%

Figure 6: Postmark results for SVSDS

increase in the system time is because of the hash ta-

ble lookups during CREATE PTR and DELETE PTR calls.

The decrease in the wait time is because, Ext2TSD does

not take into account future growth of files while allocat-

ing space for files. This decrease in wait time allowed

Ext2TSD to perform slight better than Ext2 file system

on a regular disk, but would have had a more significant

impact in a benchmark with files that grow.

For Ext2Ver(md), elapsed time is observed to have no

overhead, system time is 4 times more and wait time is

20% less than that of Ext2. The increase in system time

is due to the additional hash table lookups to locate en-

tries in the T-TABLE. The decrease in wait time is due to

better spacial locality and increased number of requests

being merged inside the disk. This is because the ran-

dom writes (i.e., writing inode block along with writing

the newly allocated block) were converted to sequential

writes due to copy-on-write in versioning.

For Ext2Ver(all), The system time is 4 times more and

wait time is 20% less that of Ext2. The wait time in

Ext2Ver(all) does not have any observable overhead over

the wait time in Ext2Ver(md). Hence, it is not possible

to explain for the slight increase in the wait time.

6.3 OpenSSH Compile

To show the space overheads of a typical program in-

staller, we compiled the OpenSSH source code. We used

OpenSSH version 4.5, and analyzed the overheads of

Ext2 on a regular disk, Ext2TSD on a TSD, and meta-

data and all data versioning in Ext2TSD on SVSDS

for the untar, configure, and make stages combined.

Since the entire benchmark completed in 60–65 seconds,

we used a 2 second versioning interval to create more

versions of blocks. On an average, 10 versions were

created. This is because the pdflush deamon starts writ-

ing the modified file system blocks to disk after 30 sec-

onds. As a result, the disk does not get any write request

for blocks during the first 30 seconds of the OpenSSH

Compile benchmark. The amount of data generated by

this benchmark was 16MB. The results for the OpenSSH

compilation are shown in Figure 7.

 0

 20

 40

 60

 80

 100

ExtVer(all)ExtVer(md)Ext2TSDExt2

E
la

p
s
e
d
 T

im
e
 (

s
e
c
o
n
d
s
)

60.2 60.5
64.5 64.5

Wait
User

System

Ext2 Ext2TSD Ext2Ver(md) Ext2Ver(all)

Elapsed 60.186s 60.532s 64.520s 64.546s

System 10.027s 10.231s 14.147s 14.025s

Wait 0.187s 0.390s 0.454s 0.634s

Space o/h 0MB 0MB 496KB 15.14MB

Performance Overhead over Ext2

Elapsed - 0.57 % 7.20% 7.21%

System - 2 % 41 % 39%

Wait - 108 % 142% 238%

Figure 7: OpenSSH Compile Results for SVSDS

For Ext2TSD, we recorded a insignificant increase in

elapsed time and system time, and a 108% increase in the

wait time over Ext2. Since the elapsed and system times

are similar, it is not possible to quantify for the increase

in wait time.

For Ext2Ver(md), we recorded a 7% increase in

elapsed time, and a 41% increase in system time over

Ext2. The increase in system time overhead is due to the

additional hash table lookups by SVL to remap the read

and write requests. Ext2Ver(md) consumed 496KB of

additional disk space to store the versions.

For Ext2Ver(all), we recorded a 7% increase in

elapsed time, and a 39% increase in system time over

Ext2. Ext2Ver(all) consumes 15MB of additional space

to store the versions. The overhead of storing versions

is 95%. From this benchmark, we can clearly see that

the versioning all data inside the disk is not very useful,

especially for program installers.



6.4 Kernel Compile

To simulate a CPU-intensive user workload, we com-

piled the Linux kernel source code. We used a vanilla

Linux 2.6.15 kernel and analyzed the overheads of

Ext2TSD on a TSD and Ext2TSD on SVSDS with ver-

sioning of all blocks and selective versioning of meta-

data blocks against regular Ext2, for the untar, make

oldconfig, and make operations combined. We used

30 second versioning interval and 78 versions were cre-

ated during this benchmark. The results are shown in

Figure 8.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Ext2Ver(all)Ext2Ver(md)Ext2TSDExt2

E
la

p
s
e

d
 T

im
e

 (
s
e

c
o
n
d
s
)

2467.2 2460.8 2470.6 2486.3

Wait
User

System

Ext2 Ext2TSD Ext2Ver(md) Ext2Ver(all)

Elapsed 2467s 2461s 2471s 2468s

System 162s 167s 169s 177s

Wait 72.1s 54.7s 68.0s 71.6s

Space o/h 0MB 0MB 51MB 181MB

Performance Overhead over Ext2

Elapsed - -0.26 % 0.13% 0.77%

System - 3.6% 4.7% 10%

Wait - -24% -5.6% -0.8%

Figure 8: Kernel Compile results for SVSDS.

For Ext2TSD, elapsed time is observed to be the same,

system time overhead is 4% lower and wait time is lower

by 24% than that of Ext2. The decrease in the wait time

is because Ext2TSD does not consider future growth of

files while allocating new blocks.

For Ext2Ver(md), elapsed time is observed to be the

same, system time overhead is 5%, and wait time is lower

by 6% than that of Ext2. The increase in wait time in re-

lation to ext2TSD is due to versioning meta-data blocks

which affect the locality of the stored files. The space

overhead of versioning meta-data blocks is 51 MB.

For Ext2Ver(all), elapsed time is observed to be indis-

tinguishable, system time overhead is 10% higher than

that of Ext2. The increase in system time is due to the ad-

ditional hash table lookups required for storing the map-

ping information in the V-TABLE. The space overhead of

versioning all blocks is 181 MB.

7 Related Work

SVSDS borrows ideas from many of the previous works.

The idea of versioning at the granularity of files has been

explored in many file systems [6, 10, 12, 15, 19]. These

file systems maintain previous versions of files primarily

to help users to recover from their mistakes. The main

advantage of SVSDS over these systems is that, it is de-

coupled from the client operating system. This helps in

protecting the versioned data, even in the event of an in-

trusion or an operating system compromise. The virtu-

alization of disk address space has been implemented in

several systems [3, 7, 9, 13, 21]. For example, the Log-

ical disk [3] separated the file-system implementation

from the disk characteristics by providing a logical view

of the block device. The Storage Virtualization Layer

in SVSDS is analogous to their logical disk layer. The

operation-based constraints in SVSDS is a scaled down

version of access control mechanisms. We now compare

and contrast SVSDS with other disk-level data protection

systems: S4 [20], TRAP [23], and Peabody [7].

The Self-Securing Storage System (S4) is an object-

based disk that internally audits all requests that arrive

at the disk. It protects data in compromised systems by

combining log-structuring with journal-based meta-data

versioning to prevent intruders from tampering or per-

manently deleting the data stored on the disk. SVSDS

on the other hand, is a block-based disk that protect data

by transparently versioning blocks inside the disk. The

guarantees provided by S4 hold true only during the win-

dow of time in which it versions the data. When the disk

runs out of storage space, S4 stops versioning data un-

til the cleaner thread can free up space for versioning

to continue. As S4 is designed to aid in intrusion di-

agnosis and recovery, it does not provide any flexibility

to users to version files (i.e, objects) inside the disk. In

contrast, SVSDS allows users to select files and direc-

tories for versioning inside the disk. The disadvantage

with S4 is that, it does not provide any protection mech-

anism to prevent modifications to stored data during in-

trusions and always depends on the versioned data to re-

cover from intrusions. In contrast, SVSDS attempts to

prevent modifications to stored data during intrusions by

enforcing operation-based constraints on system and log

files.

Timely Recovery to any Point-in-time (TRAP) is a

disk array architecture that provides data recovery in

three different modes. The three modes are: TRAP-1

that takes snapshots at periodic time intervals; TRAP-

3 that provides timely recovery to any point in time at

the block device level (this mode is popularly known as

Continuous Data Protection in storage); TRAP-4 is sim-

ilar to RAID-5, where a log of the parities is kept for

each block write. The disadvantage with this system is



that, it cannot provide TRAP-2 (data protection at the

file-level) as their block-based disk lacks semantic infor-

mation about the data stored in the disk blocks. Hence,

TRAP ends up versioning all the blocks. TRAP-1 is

similar to our current implementation where an adminis-

trator can choose a particular interval to version blocks.

We have implemented TRAP-2, or file-level versioning

inside the disk as SVSDS has semantic information about

blocks stored on the disk through pointers. TRAP-3 is

similar to the mode in SVSDS where the time between

creating versions is set to zero. Since SVSDS runs on

a local disk, it cannot implement the TRAP-4 level of

versioning.

Peabody is a network block storage device, that vir-

tualizes the disk space to provide the illusion of a sin-

gle large disk to the clients. It maintains a centralized

repository of sectors and tries to reduce the space utiliza-

tion by coalescing blocks across multiple virtual disks

that contain the same data. This is done to improve the

cache utilization and to reduce the total amount of stor-

age space. Peabody versions data by maintaining write

logs and transaction logs. The write logs stores the pre-

vious contents of blocks before they are overwritten, and

the transaction logs contain information about when the

block was written, location of the block, and the con-

tent hashes of the blocks. The disadvantage with this ap-

proach is that it cannot selectively versions blocks inside

the disk.

8 Conclusions

Data protection against attackers with OS root privileges

is fundamentally a hard problem. While there are nu-

merous security mechanisms that can protect data under

various threat scenarios, only very few of them can be ef-

fective when the OS is compromised. In view of the fact

that it is virtually impossible to eliminate all vulnerabil-

ities in the OS, it is useful to explore how best we can

recover from damages once a vulnerability exploit has

been detected. In this paper, we have taken this direc-

tion and explored how a disk-level recovery mechanism

can be implemented, while still allowing flexible policies

in tune with the higher-level abstractions of data. We

have also shown how the disk system can enforce simple

constraints that can effectively protect key executables

and log files. Our solution that combines the advantages

of a software and a hardware-level mechanism proves to

be an effective choice against alternative methods. Our

evaluation of our prototype implementation of SVSDS

shows that performance overheads are negligible for nor-

mal user workloads.

Future Work . Our current design supports reverting

the entire disk state to an older version. In future, we

plan to work on supporting more fine-grained recovery

policies to revert specific files or directories to their older

versions. SVSDS in its current form, relies on the admin-

istrator to detect an intrusion and revert back to a previ-

ously known safe state. We plan to build a storage-based

intrusion detection system [14] inside SVSDS. Our sys-

tem would do better than the system developed by Pen-

nington et al. [14] as we also have data dependencies

conveyed through pointers. We also plan to explore more

operation-based constraints that can be supported at the

disk-level.

9 Acknowledgments

We like to thank the anonymous reviewers for their help-

ful comments. We thank Sean Callanan and Avishay

Traeger for their feedback about the project. We would

also like to thank the following people for their com-

ments and suggestions on the work: Radu Sion, Rob

Johnson, Radu Grosu, Alexander Mohr, and the mem-

bers of our research group (File systems and Storage Lab

at Stony Brook).

This work was partially made possible by NSF CA-

REER EIA-0133589 and NSF CCR-0310493 awards.

References

[1] B. Berliner and J. Polk. Concurrent Versions Sys-

tem (CVS). www.cvshome.org, 2001.

[2] CollabNet, Inc. Subversion. http://subversion.

tigris.org, 2004.

[3] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh.

The logical disk: A new approach to improving file

systems. In Proceedings of the 19th ACM Sym-

posium on Operating Systems Principles (SOSP

’03), Bolton Landing, NY, October 2003. ACM

SIGOPS.

[4] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Bridging the information gap in

storage protocol stacks. In Proceedings of the An-

nual USENIX Technical Conference, pages 177–

190, Monterey, CA, June 2002. USENIX Associ-

ation.

[5] G. R. Ganger. Blurring the Line Between OSes and

Storage Devices. Technical Report CMU-CS-01-

166, CMU, December 2001.

[6] D. K. Gifford, R. M. Needham, and M. D.

Schroeder. The Cedar File System. Communica-

tions of the ACM, 31(3):288–298, 1988.

[7] C. B. Morrey III and D. Grunwald. Peabody: The

time travelling disk. In Proceedings of the 20 th



IEEE/11 th NASA Goddard Conference on Mass

Storage Systems and Technologies (MSS’03), pages

241–253. IEEE Computer Society, 2003.

[8] J. Katcher. PostMark: A new filesystem bench-

mark. Technical Report TR3022, Network Ap-

pliance, 1997. www.netapp.com/tech_library/3022.

html.

[9] E. K. Lee and C. A. Thekkath. Petal: Distributed

virtual disks. In Proceedings of the Seventh Inter-

national Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS-7), pages 84–92, Cambridge, MA, 1996.

[10] K. McCoy. VMS File System Internals. Digital

Press, 1990.

[11] M. Mesnier, G. R. Ganger, and E. Riedel. Object

based storage. IEEE Communications Magazine,

41, August 2003. ieeexplore.ieee.org.

[12] K. Muniswamy-Reddy, C. P. Wright, A. Himmer,

and E. Zadok. A Versatile and User-Oriented Ver-

sioning File System. In Proceedings of the Third

USENIX Conference on File and Storage Technolo-

gies (FAST 2004), pages 115–128, San Francisco,

CA, March/April 2004. USENIX Association.

[13] D. Patterson, G. Gibson, and R. Katz. A case for

redundant arrays of inexpensive disks (RAID). In

Proceedings of the ACM SIGMOD, pages 109–116,

June 1988.

[14] A. Pennington, J. Strunk, J. Griffin, C. Soules,

G. Goodson, and G. Ganger. Storage-based intru-

sion detection: Watching storage activity for suspi-

cious behavior. In Proceedings of the 12th USENIX

Security Symposium, pages 137–152, Washington,

DC, August 2003.

[15] D. J. Santry, M. J. Feeley, N. C. Hutchinson, and

A. C. Veitch. Elephant: The file system that never

forgets. In Proceedings of the IEEE Workshop on

Hot Topics in Operating Systems (HOTOS), pages

2–7, Rio Rica, AZ, March 1999.

[16] G. Sivathanu, S. Sundararaman, and E. Zadok.

Type-safe disks. In Proceedings of the 7th Sym-

posium on Operating Systems Design and Imple-

mentation (OSDI 2006), pages 15–28, Seattle, WA,

November 2006. ACM SIGOPS.

[17] M. Sivathanu, L. N. Bairavasundaram, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Life or

death at block-level. In Proceedings of the 6th Sym-

posium on Operating Systems Design and Imple-

mentation (OSDI 2004), pages 379–394, San Fran-

cisco, CA, December 2004. ACM SIGOPS.

[18] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. Improving

storage system availability with D-GRAID. In

Proceedings of the Third USENIX Conference on

File and Storage Technologies (FAST 2004), pages

15–30, San Francisco, CA, March/April 2004.

USENIX Association.

[19] Craig A. N. Soules, Garth R. Goodson, John D.

Strunk, and Gregory R. Ganger. Metadata effi-

ciency in versioning file systems. In Proceedings of

the Second USENIX Conference on File and Stor-

age Technologies (FAST ’03), pages 43–58, San

Francisco, CA, March 2003. USENIX Association.

[20] J. D. Strunk, G. R. Goodson, M. L. Schein-

holtz, C. A. N. Soules, and G. R. Ganger. Self-

securing storage: Protecting data in compromised

systems. In Proceedings of the 4th Usenix Sympo-

sium on Operating System Design and Implemen-

tation (OSDI ’00), pages 165–180, San Diego, CA,

October 2000. USENIX Association.

[21] D. Teigland and H. Mauelshagen. Volume man-

agers in linux. In Proceedings of the Annual

USENIX Technical Conference, FREENIX Track,

pages 185–197, Boston, MA, June 2001. USENIX

Association.

[22] Walter F. Tichy. RCS — a system for ver-

sion control. Software: Practice and Experience,

15(7):637–654, 1985.

[23] Q. Yang, W. Xiao, and J. Ren. TRAP-array: A

disk array architecture providing timely recovery

to any point-in-time. In Proceedings of the 33rd

Annual International Symposium on Computer Ar-

chitecture (ISCA ’06), pages 289–301. IEEE Com-

puter Society, 2006.


