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Abstract and most complex code bases in the kernel. Further,

We introduce Membrane, a set of changes to the op@e systems are still under active development, and new
ating system to support restartable file systems. Mefiles are introduced quite frequently. For example, Linux
brane allows an operating system to tolerate a brod#gs many established file systems, including ext2 [34],
class of file system failures and does so while remaf%t3 [35], reiserfs [27], and still there is great interast i
ing transparent to running applications; upon failure, th&ext-generation file systems such as Linux ext4 and btrfs.
file system restarts, its state is restored, and pending dgus, file systems are large, complex, and under develop-
plication requests are serviced as if no failure had oébent, the perfect storm for numerous bugs to arise.
curred. Membrane provides transparent recovery throughBecause of the likely presence of flaws in their imple-
a lightweight logging and checkpoint infrastructure, anthentation, it is critical to consider how to recover from
includes novel techniques to improve performance afig system crashes as well. Unfortunately, we cannot di-
correctness of its fault-anticipation and recovery maehifiectly apply previous work from the device-driver litera-
ery. We tested Membrane with ext2, ext3, and VFAUTe to improving file-system fault recovery. File systems,
Through experimentation, we show that Membrane itnlike device drivers, are extremedyatefu) as they man-
duces little performance overhead and can tolerate a wiég@e vast amounts of both in-memory and persistent data;
range of file system crashes. More critically, Membrarigaking matters worse is the fact that file systems spread
does so with little or no change to existing file systerfigch state across many parts of the kernel including the
thus improving robustness to crashes without mandatipgge cache, dynamically-allocated memory, and so forth.

intrusive changes to existing file-system code. On-disk state of the file system also needs to be consis-
. tent upon restart to avoid any damage to the stored data.
1 Introduction Thus, when a file system crashes, a great deal more care is

Operating systems crash. Whether due to softwdRguired to recover while keeping the rest of the OS intact.
bugs [8] or hardware bit-flips [22], the reality is clear: In this paper, we introduc&lembrane an operating
large code bases are brittle and the smallest problensirstem framework to support lightweight, stateful recov-
software implementation or hardware environment camy from file system crashes. During normal operation,
lead the entire monolithic operating system to fail. Membrane logs file system operations, tracks file sys-
Recent research has made great headway in operatiggp objects, and periodically performs lightweight check-
system crash tolerance, particularly in surviving devigwints of file system state. If a file system crash oc-
driver failures [9, 10, 13, 14, 20, 31, 32, 37, 40]. Mangurs, Membrane parks pending requests, cleans up ex-
of these approaches achieve some level of fault toléting state, restarts the file system from the most recent
ance by building &ard wallaround OS subsystems usingheckpoint, and replays the in-memory operation log to
address-space based isolation and microrebooting [2fejtore the state of the file system. Once finished with re-
said drivers upon fault detection. For example, Nooksvery, Membrane begins to service application requests
(and follow-on work with Shadow Drivers) encapsulatégain; applications are unaware of the crash and restart
device drivers in their own protection domain, thus malkexcept for a small performance blip during recovery.
ing it challenging for errant driver code to overwrite data Membrane achieves its performance and robustness
in other parts of the kernel [31, 32]. Other approachédsrough the application of a number of novel mechanisms.
are similar, using variants of microkernel-based architeleor example, @eneric checkpointing mechanignables
tures [7, 13, 37] or virtual machines [10, 20] to isolatw-cost snapshots of file system-state that serve as re-
drivers from the kernel. covery points after a crash with minimal support from ex-
Device drivers are not the only OS subsystem, nor asting file systems. Aage stealingechnique greatly re-
they necessarily where the most important bugs residieices logging overheads of write operations, which would
Many recent studies have shown tfig systemgontain otherwise increase time and space overheads. Finally, an
a large number of bugs [5, 8, 11, 25, 38, 39]. Perhajdricateskip/trust unwind protocdk applied to carefully
this is not surprising, as file systems are one of the largastwind in-kernel threads through both the crashed file



system and kernel proper. This process restores kerhglespecially when used in server environments.
state while preventing further file-system-induced damagewe also classify technigques based on how much system
from taking place. state they are designed to recover after failure. Techisique
Interestingly, file systems already contain many ethat assume the failed component has little in-memory
plicit error checks throughout their code. When triggeresdiate is referred to astateless which is the case with
these checks crash the operating system (e.g., by callingst device driver recovery techniques. Techniques that
panic) after which the file system either becomes unwusn handle components with in-memory and even persis-
able or unmodifiable. Membrane leverages these expligint storage arstateful when recovering from file-system
error checks and invokes recovery instead of crashing fladure, stateful techniques are required.
file system. We believe that this approach will have the We now examine three particular systems as they are
propaedeutic side-effect of encouraging file system devekemplars of three previously explored points in the de-
opers to add a higher degree of integrity checking in ordgign space. Membrane, described in greater detail in sub-
to fail quickly rather than run the risk of further corrupgin sequent sections, represents an exploration into theffourt
the system. If such faults are transient (as many importg@aint in this space, and hence its contribution.
classes of bugs are [21]), crashing and quickly restarting .
is a sensible manner in which to respond to them. 5-1 NO_OKS and Sh_ad_ow_ Drivers )
As performance is critical for file systems, MembranEn€ renaissance in building isolated OS subsystems is
only provides a lightweight fault detection mechanisf@und in Swift et al's work on Nooks and subsequently
and does not place an address-space boundary betwglow drivers [31, 32]. In these works, the authors
the file system and the rest of the kerel. Hence, it $§& memory-management hardware to build an isolation
possible that some types of crashes (e.g., wild writes [®gundary around device drivers; not surprisingly, such
will corrupt kernel data structures and thus prohibit corféchniques incur high overheads [31]. The kerel cost of
plete recovery, an inherent weakness of Membrane’s H0ks (and related approaches) is high, in this one case
chitecture. Users willing to trade performance for reliaPending nearlygx more time in the kernel.
bility could use Membrane on top of stronger protection 1€ subsequent shadow driver work shows how re-
mechanism such as Nooks [31]. covery can be transparently achieved by restarting failed
We evaluated Membrane with the ext2, VFAT, and exgyivers and diyerting clients by passing them_error c_odes
file systems. Through experimentation, we find that Merd related tricks. However, such recovery is relatively
brane enables existing file systems to crash and recovgightforward: only a simple reinitialization must oeccu
from a wide range of fault scenarios (around 50 fault ilefore reintegrating the restarted driver into the OS.

jection experiments). We also find that Membrane has | $  SafeDrive
0 , .
than 29 overhead across a set of file system benchmalge e takes a different approach to fault re-
Membrane achieves these goals with little or no intrusive;.
T ) silience [40]. Instead of address-space based protec-
ness to existing file systems: only 5 lines of code Wefe

. SafeDri t tically add ti into devi
added to make ext2, VFAT, and ext3 restartable. Final é’ﬁgérsa ?Nr?(\e/r? :ﬁ Z?sae:;:?s );r%gesr;?s(iréonjljg ?o :Vr:zﬁ

Membrane improves robustness with complete applic ointer or an out-of-boundsindex variable), SafeDrive en-

tr:gg g;n:h%%re:Cy;igggﬂfgggg;ﬂz ;Jon;juenrlylng file syst Alts a recovery process that restarts the driver and thus
» app ' survives the would-be failure. Because the assertions are

. The rest of this paper IS organized as follows. Se‘%‘(élded in a C-to-C translation pass and the final driver
tion 2 place_s Membrane in the context of-other relleva Bde is produced through the compilation of this code,
work. _Sectlons 3 gnd 4 present the 96.3'9“ and imp afeDrive is lightweight and induces relatively low over-
mentation, resp(_ecnvely_, of Membrane; f'“‘?‘"y' We EVaeads (up to 17% reduced performance in a network
uate Membrane in Section 5 and conclude in Section 6throughput test and 23% higher CPU utilization for the

USB driver [40], Table 6.).
2 Background However, the SafeDrive recovery machinery does not

Before presenting Membrane, we first discuss previoygnle stateful subsystems; as a result the driver will be
systems that have a similar goal of increasing operalip@an initial state after recovery. Thus, while currently
system fault resilience. We classify previous approachggii-suited for a certain class of device drivers, SafeBriv

along two axesoverheacandstatefulness . _recovery cannot be applied directly to file systems.
We classify fault isolation techniques that incur little

overhead agightweight while more costly mechanisms2.3  CuriOS

are classified akeavyweight Heavyweight mechanismsCuriOS, a recent microkernel-based operating system,
are not likely to be adopted by file systems, which haatso aims to be resilient to subsystem failure [7]. It
been tuned for high performance and scalability [15, 3@chieves this end through classic microkernel techniques



In this section, we first outline the high-level goals for
our system. Then, we discuss the nature and types of
faults Membrane will be able to detect and recover from.
Finally, we present the three major pieces of the Mem-

brane system: fault detection, fault anticipation, and re-
Membrané covery.

Heavyweight Lightweight
Nooks/Shadow[31, 32] | SafeDrive[40]
Stateless| Xen[10], Minix[13, 14] | Singularity[19]
L4[20], Nexus[37]

CuriOS[7]

EROS[29]

Stateful

Table 1: Summary of Approaches. The table performs 3.1 Goals

a categorization of previous approaches that handle OSysubsWe believe there are five major goals for a system that
tem crashes. Approaches that use address spaces or ftdhsy%upports restartable file systems.

checkpoint/restart are too heavyweight; other languagsetl 51t Tolerant: A large range of faults can occur in
approaches may be lighter weight in nature but do not solee tﬂle systems. Failures can be caused by faulty hardware

stateful recovery problem as required by file systems. Binal .
the table marks (with an asterisk) those systems that iategrarld buggy software, _can_be perman_ent or tran_S|ent, and
can corrupt data arbitrarily or be fail-stop. Theeal

well into existing operating systems, and thus do not reqlie ) )
widespread adoption of a new operating system or virtual migstartable file system recovers from all possible faults.

chine to be successful in practice. Lightweight: Performance is important to most users and

(i.e., address-space boundaries between servers) ittt file systems have. had.th(_ei_r performance t.uned over
additional twist: instead of storing session state insid ny years. Thus, adding significant overhead is not a vi-

service, it places such state in an additional protection le alternative: a restartable file system will only be used

main where it can remain safe from a buggy service. Ho\ it has comparable performance to existing file systems.
ever, the added protection is expensive. Frequent kerhggnsparent: We do not expect application developers
crossings, as would be common for file systems in daf8-P€ willing to rewrite or recompile applications for this
intensive environments, would dominate performance. environment. We assume that it is difficult for most appli-
As far as we can discern, CuriOS represents one of &ations to handle unexpected failures in the file system.
few systems that attempt to provide failure resilience fof'€"efore, the restartable environment should be com-

more stateful services such as file systems: other heaR{R{€ly transparent to applications; applications should

weight checkpoint/restart systems also share this pr%t?—t be able to discern that a file-system has crashed.

erty [29]. In the paper there is a brief description of & eneric: A Iarg_e number of commaodity file systems exist
“ext2 implementation”; unfortunately it is difficult to un-2nd €ach has its own strengths and weaknesses. Ideally,
derstand exactly how sophisticated this file service is $€ infrastructure should enable any file system to be made
how much work is required to recover from failures. Ifestartable with little or no changes.

also seems that there is little shared state as is commoli@ntain File-System Consistency: File systems pro-

modern systems (e.g., pages in a page cache). vide different crash consistency guarantees and users typ-
ically choose their file system depending on their require-
2.4 Summary ments. Therefore, the restartable environment should not

We now classify these systems along the two axes of oveltange the existing crash consistency guarantees.

head and statefulness, as shown in Table 1. From the tablélany of these goals are at odds with one another. For
we can see that many systems use methods that are siregmple, higher levels of fault resilience can be achieved
too costly for file systems; placing address-space boundth heavier-weight fault-detection mechanisms. Thus
aries between the OS and the file system greatly increaisedesigning Membrane, we explicitly make the choice
the amount of data copying (or page remapping) that mistfavor performance, transparency, and generality over
occur and thus is untenable. We can also see that fewhe ability to handle a wider range of faults. We believe
lightweight techniques have been developed. Of thogleat heavyweight machinery to detect and recover from
we know of none that work for stateful subsystems sucblatively-rare faults is not acceptable. Finally, altgbu

as file systems. Thus, there is a need for a lightweigMgmbrane should be as generic a framework as possible,
transparent, and stateful approach to fault recovery.  afew file system modifications can be tolerated.

3 Design 3.2 Fault Model

Membrane is designed to transparently restart the affectddedmbrane’s recovery does not attempt to handle all types
file system upon a crash, while applications and the restadffaults. Like most work in subsystem fault detection and
the OS continue to operate normally. A primary challengecovery, Membrane best handles failures thatteas-

in restarting file systems is to correctly manage the st&ientandfail-stop[26, 32, 40].

associated with the file system (e.g., file descriptors,dock Deterministic faults, such as memory corruption, are
in the kernel, and in-memory inodes and directories). challenging to recover from without altering file-system



code. We assume that testing and other standard code-

hardening techniques have eliminated most of these bt 4 “e‘"’c(wz’
. . . . h!
Faults such as a bug that is triggered on a given input . i n
e . success ]
quence could be handled by failing the particular reque sueeess S *
Currently, we return an error (-EI0) to the requests tri¢ """ wowte(4) _|retar) jramees)

; inicti i FD3 FD3 £l Fp3 I FD3
gerlng SUCh qeterr_nlnlsuc faU|t_5’ thUS pre\_/entln_g the sal File position 0 File position 4K §- File position 8K : File pogition ??
fault from being triggered again and again during reco i i

©O[(8) Replay (w1) :4_

ery. Transient faults, on the other hand, are caused by r. D Unwind
conditions and other environmental factors [33]. Thu \_/
our aim is to mainly cope with transient faults, which cau. W Rollback

be cured with recovery and restart. . . . , ,
We feel that manv faults and buas can be caudght WFI ure 1: Membrane Overview. The figure shows a file
y 9 9 l.I) ing created and written to on top of a restartable file sys-

lightweight hardware and software checks. Other sOlik, ™ Halfway through, Membrane creates a checkpoint. After
tions, such as extremely large address spaces [17], cQld checkpoint, the application continues to write to the; fi
help reduce the chances of wild writes causing harm i first succeeds (and returns success to the applicatind) a
hiding kernel objects (“needles”) in a much larger adkhe program issues another write, which leads to a file system
dressable region (“the haystack”). crash. For Membrane to operate correctly, it must (1) unwind

Recovering a stateful file system with Iightweigh‘f‘e curren.tly-executing .write and park the calling thredd)
mechanisms is especially challenging when faults are (2" UP file system objects (not shown), restore state fem t
fail-stop. For example, consider buggy file-system cofjgevious checkpoint, and (3) replay the activity from theremnt

D epoch (i.e., writewl). Once file-system state is restored from
that attempts to overwrite importantkernel data structure, checkpoint and session state is restored, Membranedyan (

If there is a heavyweight address-space boundary betwggBark the unwound calling thread and let it reissue the eyrit
the file system and kernel proper, then such a stray Wiigich (hopefully) will succeed this time. The applicatitosid
can be detected immediately; in effect, the fault becom@gs remain unaware, only perhaps noticing the timing of the
fail-stop. If, in contrast, there is no machinery to detettird write (w2) was a little slow.

stray writes, the fault can cause further silent damage, to

the rest of the kernel before causing a detectable fault;t'i?lns’ Membrane must also remember small amounts of

such a case, it may be difficult to recover from the fault'application—visible state from before the checkpointtsuc
' as file descriptors. Since the purpose of this replay is only

We strongly believe that once a fault is detected in trt1e update file-system state, non-updating operations such

file system, no aspect of the file system should be trust((g]?g:readS do not need to be relaved

no more code should be run in the file system and its ifn- _. played.

memory data structures should not be used Finally, to clean up the parts of the kernel that the buggy
The major drawback of our approach is th.at the bounm? system interacted with in the past, Membrane releases

ary we use is soft: some file system bugs can still cor—e kernel locks and frees memory the file system allo-

cated. All of these steps are transparent to applications

rupt kernel state outside the file system and recovery will | require no changes to file-system code. Applications

not suc_ceed. However, this po§5|b|l|ty eX|_sts EVEN IN SY$d the rest of the OS are unaffected by the fault. Figure 1
tems with hardware boundaries: data is still passed acrgss .

. . . ives an example of how Membrane works during normal
boundaries, and no matter how many integrity checks g .{e

makes, it is possible that bad data is passed across €=System operation and upona file ;ystem crash.
: hus, there are three major pieces in the Membrane de-
boundary and causes problems on the other side.

sign. Firstfault detectiormachinery enables Membrane

3.3 Overview tq detect fault§ qmckly. Seconfhult ant|C|pat|0nmecha-

Th in desi hall for Memb is t nisms record information about current file-system opera-
€ main gesign challeénge for Membrane IS 10 reCovgl, s ang partition operations into distinct epochs. Ripal

flli-_syésltemlsﬁte 'E a I'ghw‘r’f'ght’ :ansparlent :aIT hion. efault recoverysubsystem executes the recovery proto-
anighfevel, Miembrane achieves this goal as 10llows. | 4 clean up and restart the failed file system.

Once a fault has been detected in the file system, Mem-
brane rolls back the state of the file system to a pointh4 Fault Detection
the past that it trusts: this trusted point is a consisteet filThe main aim of fault detection within Membrane is to
system image that was checkpointed to disk. This chede lightweight while catching as many faults as possible.
point serves to divide file-system operations into distinkiembrane uses both hardware and software techniques to
epochs; no file-system operation spans multiple epochgatch faults. The hardware support is simple: null point-
To bring the file system up to date, Membrane rers, divide-by-zero, and many other exceptions are caught
plays the file-system operations that occurred after thg the hardware and routed to the Membrane recovery
checkpoint. In order to correctly interpret some operaubsystem. More expensive hardware machinery, such as



address-space-based isolation, is not used. any pointin time, file system state is comprised of (i) dirty
The software techniques leverage the many checks thages (in memory), (ii) in-memory copies of its meta-data
already exist in file system code. For example, file sysbjects (that have not been copied to its on-disk pages),
tems contain assertions as well as callpémi c() and and (iii) data on the disk. Thus, the file system is in an in-
similar functions. We take advantage of such internal inensistent state until all dirty pages and meta-data object
tegrity checking and transform calls that would crash tlage quiesced to the disk. For correct operation, one needs
system into calls into our recovery engine. An approath ensure that the file system is in a consistent state at the
such as that developed by SafeDrive [40] could be useeginning of the mount process (or the recovery process
to automatically place out-of-bounds pointer and otharthe case of Membrane).
checks in the file system code. Modern file systems take a number of different ap-
Membrane provides further software-based protectipfoaches to the consistency management problem: some
by adding extensive parameter checking on any call frafoup updates into transactions (as in journaling file sys-
the file system into the kernel proper. Thdigihtweight tems [12, 27, 30, 35]); others define clear consistency in-
boundary wrappergrotect the calls between the file systervals and create snapshots (as in shadow-paging file sys-
tem and the kernel and help ensure such routines ags[1, 15, 28]). All such mechanisms periodically create
called with proper arguments, thus preventing file systetheckpoints of the file system in anticipation of a power
from corrupting kernel objects through bad argumentgilure or OS crash. Older file systems do not impose any
Sophisticated tools (e.g., Ballista[18]) could be used tvdering on updates at all (as in Linux ext2 [34] and many
generate many of these wrappers automatically. simpler file systems). In all cases, Membrane must oper-

.. . ate correctly and efficiently.
3.5 Fault Anticipation The mair): chaIIenI Ie wi)t/h checkpointing is to accom-
As with any system that improves reliability, there is a per. 9 b 9

formance and space cost to enabling recovery when afzﬂljll%h itin a lightweight and non-intrusive manner. For

occurs. We refer to this componentfasiit anticipation modern file systems, Membrane can leverage the in-built

Anticipation is pure overhead, paid even when the systé(r)#ma“ng (qr snapshottmg). mechanism to pe_zrlod|cally _
cpeckpomt file system state; as these mechanisms atomi-

IS behavmg_ well, 't. shoulq _be m|n|m|_z.ed to the greatega”y write back data modified within a checkpoint to the
extent possible while retaining the ability to recover.

In Membrane, there are two components of fault antig13k' To track file-system level checkpoints, Membrane

ipation. First, thecheckpointingsubsystem partitions fileOnIy requires that these file systems explicitly notify the

. ) . . beginning and end of the file-system transaction (or snhap-

system operations into differeepochgor transaction$ . :
. : : shot) to it so that it can throw away the log records before
and ensures that the checkpointed image on disk repte- . .
. e checkpoint. Upon a file system crash, Membrane uses
sents a consistent state. Second, updates to data steuctyre .. ) )
. . e file system’s recovery mechanism to go back to the

and other state are tracked with a seirefnemory logs |

7 st known checkpoint and initiate the recovery process.
and parallel stacks The recovery subsystem (descnbeél .
ote that the recovery process uses on-disk data and does

below) utilizes these pieces in tandem to restart the fijle . '
. not depend on the in-memory state of the file system.
system after failure.

File system operations use many core kernel serviceézOr file systems that do not support any con3|ste_nt-
(e.g., locks, memory allocation), are heavily intertwine'a"’jmage.ment SChe.m?‘ eg, EXtZ.)’ Membrane provides
with major kernel subsystems (e.g., the page cache), ghgenenc ,checkp0|nt|.ng_ mechanlsm at the VFS layer.
have application-visible state (e.g., file descriptorgrez Membrane's checkpointing mechanism groups several

ful state-tracking and checkpointing are thus required fﬂb(_e-system qperatlons |nt0_ asingle transa_ctlo_n and com-
enable clean recovery after a fault or crash. mits it atomically to the disk. A transaction is created

by temporarily preventing new operations from entering

3.5.1 Checkpointing into the file system for a small duration in which dirty
Checkpointing is critical because a checkpoint represemnista-data objects are copied back to their on-disk pages
a point in time to which Membrane can safely roll baci&nd all dirty pages are marked copy-on-write. Through
and initiate recovery. We define a checkpoint as a consiepy-on-write support for file-system pages, Membrane
tent boundary between epochs where no operation spengroves performance by allowing file system operations
multiple epochs. By this definition, file-system state atta run concurrently with the checkpoint of theevious
checkpoint is consistent as no file system operations appoch. Membrane associates each page with a check-
in flight. point (or epoch) number to prevent pages dirtied in the

We require such checkpoints for the following reasorurrent epoch from reaching the disk. It is important to
file-system state is constantly modified by operations suabte that the checkpointing mechanism in Membrane is
as writes and deletes and file systems lazily write bairtkplemented at the VFS layer; as a result, it can be lever-
the modified state to improve performance. As a result,ajed by all file system with little or no modifications.



3.5.2 Tracking State with Logs and Stacks 3.6 Fault Recovery

Membrane must track changes to various aspects of H’llaefault recoverysubsystem is likely the largest subsys-

system state that transpired after the last checkpoins T M within Membrane. Once a faultis detepted, control is
is accomplished with five different types of logs or Stacﬁgansferred to the recovery subsystem, which _executes the
handling: file system operations, application-visible-sersecovery pr(_)tocol. This protocol has the fOHOW'_ng phases:
sions, mallocs, locks, and execution state. Halt execu.tlon and park th_re:_;xds: M(_ambrane first halts.
) ] ) the execution of threads within the file system. Such “in-
First, an in-memoryperation log (op-logyecords all gight” threads are prevented from further execution within
state-modifying file system operations (such as open) tt file system in order to both prevent further damage
have taken place during the epoch or are currently 4 el as to enable recovery. Late-arriving threads (i.e.,

progress. The op-log records enough information abqbse that try to enter the file system after the crash takes
requests to enable full recovery from a given checkpom&ace) are parked as well.

Membrane also requires a smalkssion log (s-log) Unwind in-flight threads: Crashed and any other in-
The s-log tracks which files are open at the beginning flifjht thread are unwound and brought back to the point
an epoch and the current position of the file pointer. Thehere they are about to enter the file system; Membrane
op-log is not sufficient for this task, as a file may havweses the u-stack to restore register values before each call
been opened in a previous epoch; thus, by reading the e the file system code. During the unwind, any held
log alone, one can only observe reads and writes to vagiebal locks recorded on I-stack are released.
ous file descriptors without the knowledge of which fileSommit dirty pages from previous epoch to stable
such operations refer to. storage: Membrane moves the system to a clean starting

Third, an in-memorymalloc table (m-table)tracks point at the beginning of an epoch; all dirty pages from
heap-allocated memory. Upon failure, the m-table c#f¢ Previous epoch are forcefully committed to disk. This
be consulted to determine which blocks should be freé$tion leaves the on-disk file system in a consistent state.
If failure is infrequent, an implementation could ignor&ote that this step is not needed for file systems that have
memory left allocated by a failed file system; althougif€ir own crash consistency mechanism.

memory would be leaked, it may leak slowly enough ng¢nmount” the file system: Membrane consults the m-
to impact overall system reliability. table and frees all in-memory objects allocated by the the

Fourth. lock . d rel tracked b {'Ie system. The items in the file system buffer cache (e.g.,
ourth, lock acquires and reieases are tracke y(ﬁgdes and directory entries) are also freed. Conceptually

lock St"."Ck (I-§tack) When a Ioc.k IS _acqwreq by a threa he pages from this file system in the page cache are also
executing a file system operation, information about sald o ased mimicking an unmount operation

lock is pushed onto a per-thread I-stack; when the Iock‘ﬁemount" the file system: In this phase, Membrane

releasgd, the information is popped Oﬁ'. Unlike MEMOW,ds the super block of the file system from stable stor-
allocation, the exact order of lock acquires and releases

is critical; by maintaining the lock acquisitions in LIFGE9® and performs all other necessary work to reattach the

: FS to the running system.
order, recovery can release them in the proper orderF%\s gsy

. oll forward: Membrane uses the s-log to restore the ses-
required. Also note that only locks that are global kerne .
o Ions of active processes to the state they were at the last
locks (and hence survive file system crashes) need tosl%%ck oint. It then processes the op-lod. replavs previous
tracked in such a manner; private locks internal to a fifa point. P p-log, replays p

. . gperations as needed and restores the active state of the
system will be cleaned up during recovery and therefor
. . ile system before the crash. Note that Membrane uses
require no such tracking.

the regular VFS interface to restore sessions and to replay
Finally, anunwind stack (u-stacky used to track the |ogs. Hence, Membrane does not require any explicit sup-

execution of code in the file system and kernel. By pUSbort from file systems.

ing register state onto the per-thread u-stack when the W@start execution: Finally, Membrane wakes all parked

system is first called on kernel-to-file-system calls, Mengyreads. Those that were in-flight at the time of the crash

brane records sufficient information to unwind threads %egin execution as if they had not entered the file system:;

ter a failure has been detected in order to enable restaffhgse that arrived after the crash are allowed to enter the
Note that the m-table, |-stack, and u-stack esenpen- file system for the first time, both remaining oblivious of

satory[36]; they are used to compensate for actions thi4ie crash.

have already taken place and must be undone before pyo- .

ceeding with restart. On the other hand, both the op-I Implementatlon

and s-log areestorativein nature; they are used by recovWe now present the implementation of Membrane. We

ery to restore the in-memory state of the file system befdiest describe the operating system (Linux) environment,

continuing execution after restart. and then present each of the main components of Mem-



brane. Much of the functionality of Membrane is encap-

sulated within two components: tleckpoint manager ;“Se System asserztl(l)g BUG(ig pani C(213
(CPM) and therecovery manager (RM)Each of these ubifs 369 36 2
subsystems is implemented as a background thread and  ocfs2 261 531 8
is needed during anticipation (CPM) and recovery (RM). _gbsz igg 68 8
Beyond these threads, Membrane also makes heavy use of }bdz 119 0 0
interpositionto track the state of various in-memory ob- afs 106 38 0
jects and to provide the rest of its functionality. We ran ifs 91 15 6
Membrane with ext2, VFAT, and ext3 file systems. Zﬁg ‘1‘2 185 1112

In implementing the functionality described above, reiserfs 1 109 93
Membrane employs three key techniques to reduce over-  jffs2 1 86 0
heads and make lightweight restart of a stateful file sys- ext2 1 10 6
tems feasible. The techniques arefdgge stealing for g{s 8 ng 12

low-cost operation logging, (iCOW-based checkpoint-

ing: for fast in-memory partitioning of pages acrosg,pe 5. software-based Fault Detectors. The table
epochs using copy-on-write techniques for file systerghgpiCts how many calls each file system makesswer t (),
that do not support transactions, and (@ntrol-flow Bug(), andpani c() routines. The data was gathered simply
captureand skip/trust unwind protocolto halt in-flight by searching for various strings in the source code. A ranige o

threads and properly unwind in-flight execution. file systems and the ext3 journaling devices (jbd and jbde) ar
) included in the micro-study. The study was performed on the
4.1 Linux Background latest stable Linux release (2.6.26.7).

Before delving into the details of Membrane’s implemen-

tation, we first provide some background on the operatitifj€ther the fault was caused by code executing in the file
system in which Membrane was built. Membrane is cusystem module (i.e., by examining the faulting instruction
rently implemented inside Linux 2.6.15. pointer). Note that the kernel already tracks these runtime

Linux provides support for multiple file systems via thEXceptions which are (,:onsidered kernel errors and trig-
VFS interface [16], much like many other operating sy§€rs panic as it doesn’t know how to handle them. We

tems. Thus, the VFS layer presents an ideal point of int@Rly check if these exceptions were generated in the con-

position for a file system framework such as Membrand€Xt of the restartable file system to initiate recoverysthu
feventing kernel panic.

Like many systems [6], Linux file systems cache usB
datain a unified page cache. The page cacheis thustightly o goftware-based Detectors

integrated with file systems and there are frequent Croisfarge number of explicit error checks are extant within

ing@ l?etweer;_thke genﬁ ric(ﬁage_ caﬁhebanifile syjtem C?HS file system code base; we interpose on these macros
h ntfes to d IS d'arkeb an el' |n_t € aAcbgr(?(un (eé(?/egﬁd procedures to detect a broader class of semantically-

when forced to disk by applications). ackgroun %eaningfulfaults. Specifically, we redefine macros such

daemon, known apdf | ush, wakes up, finds old andals BUG(), BUGON() , pani c(), andassert () so

dirty pages, and flushes them to disk. that the file system calls our version of said routines.

4.2 Fault Detection These routines are commonly used by kernel program-

There are numerous fault detectors within Membran@€"s when some unexpected event occurs and the code

each of which, when triggered, immediately begins tﬁ:é’mnotproperly handle the exception. For example, Linux

recovery protocol. We describe the detectors Membrafd2 cogle Fhat searches through directories often calls
if directory contents are not as expected; see

currently uses; because they are lightweight, we imagiﬁ )

more will be added over time, particularly as ﬁle-systelf?‘?(t 2_a?d_(; i nk() \t/]vhere I? fgl(:]d s;:_lan through the dhl
developers learn to trust the restart infrastructure. reg:tory ea ;to such a call. ther file system_s,_ such as
reiserfs, routinely calpani c() when an unanticipated

4.2.1 Hardware-based Detectors I/O subsystem failure occurs [25]. Table 2 presents a sum-
The hardware provides the first line of fault detection. Imary of calls present in existing Linux file systems.

our implementation inside Linux on x86 (64-bit) archi- In addition to those checks within file systems, we
tecture, we track the following runtime exceptions: nulhave added a set of checks across the file-system/kernel
pointer exception, invalid operation, general protectidsoundary to help prevent fault propagation into the kernel
fault, alignment fault, divide error (divide by zero), segproper. Overall, we have added roughly 100 checks across
ment not present, and stack segment fault. These exogrious key points in the generic file system and memory
tion conditions are detected by the processor; softwaranagement modules as well as in twenty or so header
fault handlers, when run, inspect system state to determiiies. As these checks are low-cost and relatively easy to



writes simply update the file position correctly. This strat

op-log (naive) op-log (with page stealing) egy works because reads are not replayed (indeed, they
i) 1 0k 0 e ok o] (12t needed) Page Gache have already completed); hence, only the current state of
wrie(E) to bk 1 i the file system, as represented by the last checkpoint and
;v;.;e"bma e o oo current op-log and s-log, must be reconstructed.
s ik 4.3.2 Other Logging and State Tracking
Membrane also interposes at the VFS layer to track all

necessary session state in the s-log. There is little infor-
mation to track here: simply which files are open (with
Figure 2:Page Stealing. The figure depicts the op-log boththe'r pathnames) and the current file position of each file.

with and without page stealing. Without page stealing gefe ~ Membrane also needs. to track memory allocations per-
of the figure), user data quickly fills the log, thus exactiagsh formed by a restartable file system. We added a new allo-
penalties in both time and space overheads. With page stealcation flag,GFP_RESTARTABLE, in Membrane. We also
(right), only a reference to the in-memory page cache ismdet provide a new header file to include in file-system code
with each write; further, only the latest such entry is nektle o appendsFP_RESTARTABLE to all memory allocation
replay the op-log successfully. call. This enables the memory allocation module in the
add, we will continue to “harden” the fiIe-system/kernelinetgnter:éor;i;%rlg the dnterz]cessary per]:flle-system information
interface as our work continues. ! _ an . us prepare or recpvery.
Tracking lock acquisitions is also straightforward. As

4.3 Fault Anticipation we mentioned earlier, locks that are private to the file sys-

We now describe the fault anticipation support within tHEM Wil be. ignored during recovery, and hence need not
current Membrane implementation. We begin by preseﬁ‘@ tracked; only global locks need to be monitored. Thus,

ing our approach to reducing the cost of operation loggitfg1en @ thread is running in the file system, the instru-
via a technique we refer to gmge stealing mented lock function saves the lock information in the

thread'’s private |-stack for the following locks: the gldba

4.3.1 Low-Cost Op-Logging via Page Stealing kernel lock, super-block lock, and the inode lock.
Membrane interposes at the VFS layer in order to recordFinally, Membrane must also track register state across
the necessary information to the op-log about file-systerartain code boundaries to unwind threads properly. To do
operations during an epoch. Thus, for any restartable fiie, Membrane wraps all calls from the kernel into the file
system that is mounted, the VFS layer records an entry fystem; these wrappers push and pop register state, return
each operation that updates the file system state in sadresses, and return values onto and off of the u-stack.
way.

One key challenge of logging is to minimize the amouft3-3 COW-based Checkpointing
of data logged in order to keep interpositioning cosf3ur goal of checkpointing was to find a solution that is
low. A naive implementation (including our first attemptjightweight and works correctly despite the lack of trans-
might log all state-updating operations and their paran@stional machinery in file systems such as Linux ext2,
ters; unfortunately, this approach has a high cost duent@ny UFS implementations, and various FAT file sys-
the overhead of logging write operations. For each writems; these file systems do not include journaling or
to the file system, Membrane has to not only record thghadow paging to naturally partition file system updates
a write took place but also log trdatato the op-log, an into transactions.
expensive operation both in time and space. One could implement a checkpoint using the following

Membrane avoids the need to log this data throughsiawman protocol. First, during an epoch, prevent dirty
novelpage stealingnechanism. Because dirty pages agages from being flushed to disk. Second, at the end of
held in memory before checkpointing, Membrane is agn epoch, checkpoint file-system state by first halting file
sured that the most recent copy of the data is alreaslystem activity and then forcing all dirty pages to disk.
in memory (in the page cache). Thus, when MembraAgthis point, the on-disk state would be consistent. If a
needs to replay the write, it steals the page from the cadte-system failure occurred during the next epoch, Mem-
(before it is removed from the cache by recovery) aritane could rollback the file system to the beginning of
writes the stolen page to disk. In this way, Membraribe epoch, replay logged operations, and thus recover the
avoids the costly logging of user data. Figure 2 shovike system.
how page stealing helps in reducing the size of op-log. The obvious problem with the strawman is perfor-

When two writes to the same block have taken plaaaeance: forcing pages to disk during checkpointing makes
note that only the last write needs to be replayed. Earlgreckpointing slow, which slows applications. Further,




for copy-on-write machinery for kernel pages in Mem-
Epoch 0 Epoch 1 brane; thereby avoiding extensive changes to file systems
Write Ao Block 0 ; chﬂ?iﬁim H Write 810 Block 0 ; UG Fiun | to support COW machinery.
: : : The CPM then allows these pages to be written to disk
<dmw (diny-COW>§ (diny-covwé (by tracking a checkpoint number associated with the
Plockepoch @] 1 blockO,epoch 0] | Plock 0, epochO] page), and the background I/O daempdf(| ush)is free

i ‘d"‘” (‘““y’ to write COW pages to disk at its leisure during the next

 [block 0, epoch 1] + [block 0, epoch 1] L. .
' ' epoch. Checkpointing thus groups the dirty pages from
the previous epoch and allows only said modifications to

be written to disk during the next epoch; newly dirtied
Figure 3:COW-based Checkpointing. The picture shows

In Memory

On Disk

pages are held in memory until the complete flush of the

what happens during COW-based checkpointing. At time=0, BFEVious epoch’s dirty pages.

application writes to block 0 of a file and fills it with the cents ~ There are a number of different policies that can be
“A”. Attime=1, Membrane performs a checkpoint, which sigpnplused to decide when to checkpoint. An ideal policy would
marks the block copy-on-write. Thus, Epoch O is over and a n#ikely consider a number of factors, including the time
epoch begins. At time=2, block O is over-written with the neynce last checkpoint (to minimize recovery time), the

contents “B”; the system catches this overwrite with the CoWumber of dirty blocks (to keep memory pressure low)

machinery and makes a new in-memory page for it. At timezg;1

Membrane decides to flush the previous epoch’s dirty pages I'c])d current levels of CPU and I/O utilization (to perform

checkpointing during relatively-idle times). Our current
policy is simpler, and just uses time (5 secs) and a dirty-
update traffic is bunched together and must happen daleck threshold (40MB) to decide when to checkpoint.
ing the checkpoint, instead of being spread out over tinfeheckpoints are also initiated when an application forces
as is well known, this can reduce 1/0 performance [23].data to disk.

Our lightweight checkpointing solution instead takes
advantage of the page-table support provided by mgé4 Fault Recovery
ern hardware to partition pages into different epochd/e now describe the last piece of our implementation
Specifically, by using the protection features provided hyhich performs fault recovery. Most of the protocol is
the page table, the CPM implementscapy-on-write- implemented by the recovery manager (RM), which runs
based checkpoirtb partition pages into different epochsas a separate thread. The most intricate part of recovery
This COW-based checkpoint is simply a lightweight waig how Membrane gains control of threads after a fault oc-
for Membrane to partition updates to disk into differerdurs in the file system and the unwind protocol that takes
epochs. Figure 3 shows an example on how COW-bag#dce as a result. We describe this component of recovery
checkpointing works. first.

We now present the details of the checkpoint imple-
mentation. First, at the time of a checkpoint, the chec#-4.1 Gaining Control with Control-Flow Capture
point manager (CPM) thread wakes and indicates to fhie first problem encountered by recovery is how to gain
session manag€SM) that it intends to checkpoint. Thecontrol of threads already executing within the file sys-
SM parks new VFS operations and waits for in-flight ogem. The fault that occurred (in a given thread) may have
erations to complete; when finished, the SM wakes thedt the file system in a corrupt or unusable state; thus, we
CPM so that it can proceed. would like to stop all other threads executing in the file

The CPM then walks the lists of dirty objects in theystem as quickly as possible to avoid any further execu-
file system, starting at the superblock, and finds the ditipn within the now-untrusted file system.
pages of the file system. The CPM marks these kerneMembrane, through the RM, achieves this goal by im-
pagescopy-on-write further updates to such a page wilmediately marking all code pages of the file system as
induce a copy-on-write fault and thus direct subsequamin-executable and thus ensnaring other threads with a
writes to a new copy of the page. Note that the copy-aechnique that we refer aontrol-flow capture When a
write machinery is present in many systems, to suppdntead that is already within the file system next executes
(among other things) fast address-space copying duranginstruction, a trap is generated by the hardware; Mem-
process creation. This machinery is either implementbthne handles the trap and then takes appropriate action
within a particular subsystem (e.g., file systems such tasunwind the execution of the thread so that recovery
ext3cow [24], WAFL [15] manually create and track theican proceed after all these threads have been unwound.
COW pages) or inbuilt in the kernel for application pagebile systems in Membrane are inserted as loadable ker-
To our knowledge, copy-on-write machinery is not avaikel modules, this ensures that the file system code is in
able for kernel pages. Hence, we explicitly added suppardKB page and not part of a large kernel page which

disk, and thus commits block 0 (with “A” in it) to disk.



could potentially be shared among different kernel mod-
ules. Hence, it is straightforward to transparently idignti 4o 575 openi seanip
code pages of file systems. release fd

2 | open_namei() cleanup
release namei data

4.4.2 Intertwined Execution and

The Skip/Trust Unwind Protocol sys_open() blockprepare_write() cleanup

Unfortunately, unwinding a thread is challenging, as tt do_sys_open) ! ® ey
file system interacts with the kernel in a tightly-couple filp_open() o
fashion. Thus, it is not uncommon for the file system f °"5f§*2f‘£f;‘(’)
call into the kernel, which in turn calls into the file systern ext2_create()
and so forth. We call such execution paifigrtwined ext2_addiink()

Intertwined code puts Membrane into a difficult pos exﬁ;g,:ez:z;x'tzgteo:T' fault ==~ membrane
tion. Ideally, Membrane would like to unwind the exect | ext2_get_block() &—— fault ——— membrane

tion of the thread to the beginning of the first kernel-tc

file-system call as described above. However, the fact tiggure 4: The Skip/Trust Unwind Protocol.  The fig-
(non-file-system) kernel code has run complicates the uime depicts the call path from thepen() system call through
winding; kernel state wilhotbe cleaned up during recov-the ext2 file system. The first sequence of calls (through

ery, and thus any state modifications made by the kerd&F-cr eat e()) are in the generic (trusted) kernel; then the
must be undone before restart. (untrusted) ext2 routines are called; then ext2 calls batk the

. : rnel to prepare to write a page, which in turn may call back
For example, assume that the file system code is e?n 0 ext2 to get a block to write to. Assume a fault occurs &t th

cutmg_ (€.g., in functiorf 1() ) and calls into the kemel_last level in the stack; Membrane catches the fault, andsskip
(functionk1()); the kernel then updates kernel-state ighcy to the last trusted kernel routine, mimicking a failed c
some way (e.g., allocates memory or grabs locks) and thgaxt 2_get _bl ock() ; this routine then runs its normal fail-
calls back into the file system (functidr2( ) ); finally, ure recovery (marked by the circled “3” in the diagram), and
f2() returnstdk1() whichreturnstd 1() which com- then tries to return again. Membrane’s control-flow captora-
pletes. The tricky case arises whieRd( ) crashes; if we chinery catches this and theskipsback all the way to the last
simply unwound execution naively, the state modific4usted kernel codevf s_cr eat ), thus mimicking a failed call

tions made while in the kernel would be left intact, anf® €t 2-cr eat e() . The rest of the code unwinds with Mem-
the kernel could quickly become unusable. brane’s interference, executing various cleanup code glire

. way (as indicated by the circled 2 and 1).
To overcome this challenge, Membrane employs a care-

ful skip/trust unwind protocolThe protocokkipsoverfile erly. Thus, both when the file system is first entered as
system code butuststhe kernel code to behave reasorell as any time the kernel calls into the file system, wrap-
able in response to a failure and thus manage kernel sfgé functions push register state onto the u-stack; the val-
correctly. Membrane coerces such behavior by carefulgs are subsequently popped off on return, or used to skip
arranging the return value on the stack, mimicking an dtack through the stack during unwind.

ror return from thg failed file-system routine to the kerneb:‘4_3 Other Recovery Functions

the kernel code is then allowed to run and clean up a:al.é,I

t .
sees fit. We found that the Linux kernel did a good job of ere are many other aspects of recovery which we do not

. A : discuss in detail here for sake of space. For example, the
checking return values from the file-system function a :
. X . - must orchestrate the entire recovery protocol, ensur-
in handling error conditions. In places where it did not

(12 such instances), we explicitly added code to do tné; that once threads are unwound (as described above),
required check ' e rest of the recovery protocol to unmount the file sys-

In th le ab h he fault is d q tem, free various objects, remount it, restore sessiorts, an
n the example above, when the fault is detecte HQpIay file system operations recorded in the logs, is car-

f20), M_embrane places an error code in th_e aPProPHaq out. Finally, after recovery, RM allows the file system
ate location on the stack and returns control |mmed|atq begin servicing new requests

tok1() . This trusted kernel code is then allowed to ex-

ecute, hopefully freeing any resources that it no longérd.4 Correctness of Recovery

needs (e.g., memory, locks) before returning control We now discuss the correctness of our recovery mecha-

f1().Whenthereturntd1() is attempted, the control-nism. Membrane throws away the corrupted in-memory

flow capture machinery again kicks into place and enablstate of the file system immediately after the crash. Since

Membrane to unwind the remainder of the stack. A refaults are fail-stop in Membrane, on-disk data is never cor-

example from Linux is shown in Figure 4. rupted. We also prevent any new operation from being is-
Throughout this process, the u-stack is used to captstead to the file system while recovery is being performed.

the necessary state to enable Membrane to unwind prdpe file-system state is then reverted to the last known
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checkpoint (which is guaranteed to be consistent). Next,
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Membrane avoids non-deterministic replay of com-findentry  pageaddress Gx
symlink null-pointer 0 X X

pletgd write operations th_rough page stealing. While T€fmdir null-pointer 0%y

playing completed operations, Membrane reads the finamptydir  pageaddress Gx v
; ki bcach

version of the page from th_e page cache anq re—execut@}ﬁn;?mtjnk ﬂﬁogﬁ‘;a;gage o y

the write operation by copying the data from it. As a re-readpage mpageeadpage | o x /

sult, write operations while being replayed will end up .. c - cion Fautt

-—2%0o0o0®a%o%Ln%

M

successfully completed op-logs are replayed to restore the 3. E . g E . g ¢ .
file-system state to the crash time. Finally, the unwound 52 2| 8582|8592
. T E ® TS ® TS ®©
processes are allowed to execute again. o855 0858|2838
Non-determinism could arise while replaying the com-ex> Function Fault PP P 20| 2202
pleted operations. The order recorded in op-logs need ngteate null-pointer oxX X X[ 0xx x[dyyy
create markinodedirty | 0 X X X 0 XX X | dyvV/+V
be the same as the order executed by the scheduler. Tmﬁ_tepage wiitefull_page | 0 x v/v/*| d s x| dv/v/ v/
new execution order could potentially pose a problen‘]gvrlt?pages W"tli)ullﬁ-pag? 0 X x Vo d syt g\/\/\/
while replaying completed write operations as applicamgyr dinstantiate el ISl ISR I A
tions could have observed the modified state kgé) be-  getblock  mapbh 0 X X xx x| dyv v
fore the crash. On the other hand, operations that modifﬁ‘;‘:\';e ’;‘;"ng:;dd’ess ox Sl e ‘ yéé
the file-system state (such as create, unlink, etc.) woulgktpage waitpagelocked | 0 x v/ x X x| dvvy
not be a problem as conflicting operations are resolved b?ﬂtpa@e reactachepage | 0 x /X XV x| dvyy
he fil t th h locki ookup iget 0 X4/ X X+ x| dy/ vV
the file system through locking. addnondir  dinstantiate 0X X X ev V| dv VvV
X Xy X | dvV VAV
x Xy x| dyyy
x XV x| dyvyy
X Xy X | dvV vV
X XX X | dy/ VAV
X ex X | dyvV
v XV V] dVV/V

+ t+

<
S5
2
=Y
=3
<

S5
&

boundal Membrane
with the same final version no matter what order theereate null-pointer o % o xx x| d VARV
in_fli i eate dinstantiate 0X X X 0 XX X | dyv/+V
are executed. Lastly, as the in flight operations have nd\jgritepage blkwrite.fullpagel 0 x x v*| d s x| d/ v
returned back to the application, Membrane allows thenkdir dLinstantiate oxyv x| dsy V| dvvy
H P rmdir null-pointer 0 X4 X o XV dvV VYV
scheduler to execute them in arbitrary order. lookup find alias oxy x|l daev avvy
5 E | . getentry shbread 0 X4 X 0 X+ X | dy
getblock mapbh 00X X/ 0o x x| dV VAV
va uatlon removeentries markbufferdirty | o x x /| d sx | dv/V/V
We now evaluate Membrane in the following three catewriteiinode  markbufferdirty | o x x v*| d s/ /| dv/
. . cleatinode  isbadinode oxX X/ d sy V| dvvVV
gories: transparency, performance, angl gengrahty. All €Xgetdentry  dalloc.anon ox xve| ot xx x| dv/ v/
periments were performed on a machine with a 2.2 GHzeadpage mpageeadpage | 0 x v/ V| 0 x| dVVV

Opteron processor, two 80GB WDC disks, and 2GB 0f,,q runction Faut e vl I
memory running Linux 2.6.15. We evaluated Membranereate null-pointer OXX X | 00Xy x| dv/
; ¢ getblk_handle bbresult 0X X X d sx/* dv vV
using ext_2, VFAT, and _ext3. The_z ext3 file syst_em WaSi 0w link  nd.setlink oxxvi| devy|dvvy
mounted in data journaling mode in all the experiments. mkdir dinstantiate oxx x| dsyv | dyyvy
symlink null-pointer 0X X X d xv x| dv vV
readpage mpageadpage | 0 X X /| d X V| dvV/VV
51 Transparency addnondir  dinstantiate oxy x| 0xy x| dvvy

g te bl i i d
We employ fault injection to analyze the transparency of PR Bieorparentie | o y x| De y Vi yyy
fered by Membrane in hiding file system crashes from aprewblock  dquotaliocblk | 0 x+/ x | 0 x+/ x| dy/ v/
P : : ddi ll-poi a| d

plications. The goal of these experiments is to show thgf2 ™t qulpointer SRl I j\Q d yyy
inability of current systems in hiding faults from applica- freeinode  cleainode ox X x| 0xy x| dyyy
tion and how using Membrane can avoid them. newinode - null-pointer ox Vx| i xx VI dVVY

Our injection study is quite targeted; we identify placeRable 3: Fault Study. The table shows the results of fault
in the file system code where faults may cause troubigections on the behavior of Linux ext2, VFAT and ext3. Each
and inject faults there, and observe the result. Thesw presents the results of a single experiment, and thenwosu
faults represent transient errors from three different cofghow (in left-to-right order): which routine the fault wagjected
ponents: il memory (e . kapadoeanon).diks 112 ' 19 o et bt dtect Pt

. | 1on, Wi 1 Y W I
(e.g., writefull_page, stbread), and kernel-proper (e'g'ter the fault, and whether the file system was usable. Various

cleacinode, iget). In all, we injected 47 faults in d'ﬁer's mbols are used to condense the presentation. For datectio

ent code paths in three file systems. We believe that magy ornel oops; “G”: general protection fault; “i": inval id

more faults could be injected to highlight the same issugpcode; “d”: fault detected, say by an assertion. For applic
Table 3 presents the results of our study. The captitioh behavior, “x”: application killed by the OS; /": appli-

explains how to interpret the data in the table. In all exation continued operation correctly; “s”: operation faitl but

periments, the operating system was always usable afteplication ran successfully (silent failure); “e”: appiation

fault injection (not shown in the table). We now discugdn and returned an error. Footnotes$:- file system usable, but
our major observations and conclusions un-unmountable® - late oops or fault, e.g., after an error code
' was returned.
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Benchmar ethM gthf extSM gxt3+ VFATM VFbAT+ ext2 ext2+ | ext3 ext3+ | VFAT VFAT+
emborane embrane embrane Benchmar Membran Membrang Membrane

Seq.read | 178 178 178 178 177 177 Sort 1422 1426 1521 1525] 1465 146.8

Seq. write | 255 25 563  56.8 185 = 202 OpenSSH | 285 289 | 287 291 | 30.1 30.8

Rand. read 163.2 163.5163.2 163.2 163.5 163.6 PostMark | 469 472 | 4782 484.1| 431 43.8

Rand. writg  20.3 20.5 65.5 65.5 18.9 18.9

create 34.1 34.1 33.9 34.8 324 34.0

delete 20.0 20.1 18.6 18.y 20.8 21.0 Table 5: Macrobenchmarks. The table presents the per-

Table 4:Microbenchmarks. This table compares the exdormance (in seconds) of different benchmarks running dh bo
cution time (in seconds) for various benchmarks for restale Standard and restartable versions of ext2, VFAT, and extg& T
versions of ext2, ext3, VFAT (on Membrane) against theirleeg SO't benchmark (CPU intensive) sorts roughly 100MB of text u
versions on the unmodified kernel. Sequential read/writegtaing the command-line sort utility. For the OpenSSH benctmar
KB at a time to a 1-GB file. Random reads/writes are 4 KB(&PU+l/O intensive), we measure the time to copy, untar-con
a time to 100 MB of a 1-GB file. Create/delete copies/remofiggre, and make the OpenSSH 4.51 source code. PostMark (I/O

1000 files each of size 1MB to/from the file system respegtivaiensive) parameters are: 3000 files (sizes 4KB to 4MB)0B00
All workloads use a cold file-system cache. transactions, and 50/50 read/append and create/deletselia

First, we analyzed the vanilla versions of the file sysables, one can see that the performance overheads of our
tems on standard Linux kernel as our base case. Thepmstotype are quite minimal; in all cases, the overheads
sults are shown in the leftmost result column in Table @ere between 0% and 2%.

We observed that Linux does a poor job in recovering

from the injected faults; most faults (around 91%) trig-22%@| Recovery) | Open | Recovery) | Log | Recovery

« " . . . (MB) | time (ms)| | Sessions$ time (ms) Records| time (ms)
gered a kernel “oops” and the application (i.e., the pro=715 12.9 200 114 K 15.3
cess performing the file system operation that triggered2o 13.2 400 14.6 10K 16.8
the fault) was always killed. Moreover, in one-third of the 40 16.1 800 22.0 100K 25.2
cases, the file system was left unusable, thus requiringa @ b) ©)
reboot and repairféck). Table 6: Recovery Time. Tables a, b, and ¢ show re-

Second, we analyzed the usefulness of fault detectfYery time as a function of dirty pages (at checkpointpgs-|
without recovery by hardening the kernel and file-systeffd oglog respectively. Dirty faaggs arett(.:reaktledcs)ly C(t)p?mg .
boundary through parameter checks. The second redifip: OPen sessions are created by getting handles to filig.

| d d by +b d f Table 3 sh h records are generated by reading and seeking to arbitratada
column (denoted by . oundary) of Table 3 shows the fiside multiple files. The recovery time was 8.6ms when @éth
sults. Although assertions detect the bad argument pasgghs were empty.

to the kernel proper function, in the majority of the cases,

the returned error code was not handled properly (or prdp€covery Time. Beyond baseline performance under no
agated) by the file system. The application was aMa%ashes, we Were.mterested in studylng the performance
killed and the file system was left inconsistent, unusabff, Meémbrane during recovery. Specifically, how long
or both. does it take Membrane to recover from a fault? This met-
Finally, we focused on file systems surrounded lﬂp is particularly important as high recovery times may

Membrane. The results of the experiments are shoRfi noticed by applications. _

in the rightmost column of Table 3; faults were handled, W& measured the recovery time in a controlled environ-
applications did not notice faults, and the file system rB1€nt by varying the amount of state kept by Membrane
mained in a consistent and usable state. and found that the recovery time grows sub-linearly with

In summary, even in a limited and controlled set of fauff® @mount of state and is only a few milliseconds in all
injection experiments, we can easily realize the usefsindd€ cases. Table 6 shows the result of varying the amount
of Membrane in recovering from file system crashes. fif St&te in the s-log, op-log and the number of dirty pages
a standard or hardened environment, a file system crdfGn the previous checkpoint.

is almost always visible to the user and the process perYVe also ran microbenchmarks and forcefully crashed

forming the operation is killed. Membrane, on detecting®2: €Xt3, and VFAT file systems during execution

file system crash, transparently restarts the file system adneasure the impact in application throughput inside
leaves it in a consistent and usable state. Membrane. Figure 5 shows the results for performing re-

covery during the random-read microbenchmark for the
5.2 Performance ext2 file system. From the figure, we can see that Mem-
To evaluate the performance of Membrane, we run a serigane restarts the file system within 10ms from the point
of both microbenchmark and macrobenchmark workloadfcrash. Subsequent read operations are slower than the
where ext2, VFAT, and ext3 are run in a standard enviroregular case because the indirect blocks, that were cached
ment and within the Membrane framework. by the file system, are thrown away at recovery time in
Tables 4 and 5 show the results of our microbenchmarlar current prototype and have to be read back again after
and macrobenchmark experiments respectively. From tieeovery (as shown in the graph).
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—— Average Response Time

— Response Time to notify the beginning and the end of transactions to the
Indirect Blocks checkpoint manager, which could then discard the opera-
tion logs of the committed transactions. All of the addi-
tions were straightforward, including adding a new header
file to propagate th€-P_RESTARTABLE flag and code
to write back the free block/inode/cluster count when the
HHHHHHW wri t e_super method of the file system was called. No
s s a1 s modification (or deletions) of existing code were required
Elapsed time (s) in any of the file systems.
Figure 5:Recovery Overhead. The figure shows the over- In summary, Membrane represents a generic approach
head of restarting ext2 while running random-read micratfen to achieve file system restartability; existing file systems
mark. The x axis represents the overall elapsed time of the wan work with Membrane with minimal changes of adding
crobenchmark in seconds. The primary y axis contains the exfew lines of code.
ecution time per read operation as observed by the appbaoati
in milliseconds. A file-system crash was triggered at 3453 ay Conclusions
result the total elapsed time increased from 66.5s to 67The.
secondary y axis contains the number of indirect blocks t®ad
the ext2 file system from the disk per second.
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File systems fail. With Membrane, failure is transformed
from a show-stopping event into a small performance is-
sue. The benefits are many: Membrane enables file-
In summary, both micro and macrobenchmarks shaystem developers to ship file systems sooner, as small
that the fault anticipation in Membrane almost comes fg[jgs will not cause massive user headaches. Membrane
free. Even in the event of a file system crash, Membragnilarly enables customers to install new file systems,
restarts the file system within a few milliseconds. knowing that it won’t bring down their entire operation.
Membrane further encourages developers to harden

5.3 Generality their code and catch bugs as soon as possible. This fringe
We chose ext2, VFAT, and ext3 to evaluate the generalifynefit will likely lead to more bugs being triggered in the

of our approach. ext2 and VFAT were chosen for theg g (and handled by Membrane, hopefully); if so, diag-
lack of crash consistency machinery and for their Com,s;ic information could be captured and shipped back to
pletely different on-disk layout. ext3 was selected fqpg geveloper, further improving file system robustness.
|t_s journaling machinery that provides better crash con-\yse jive in an age of imperfection, and software imper-
sistency guarantees than ext2. Table 7 shows the ced§ion seems a fact of life rather than a temporary state
changes required in each file system. of affairs. With Membrane, we can learn to embrace that
imperfection, instead of fearing it. Bugs will still arise,

;'('fzsyStem Adﬁed MOdc;f'ed but those that are rare and hard to reproduce will remain
VEAT 5 0 where they belong, automatically “fixed” by a system that
ext3 1 0 can tolerate them.
JBD 4 0

Individual File-system Changes 7 ACkﬂOWledg ments
Components Angeghe%(gg;f?;d Xmig he'\cAkopdc;;ir:d We thank the anonymous reviewers and Dushyanth Ngrayanan
ES 1929 30 2979 64 (our shepherd) for their feedback and comments, which have
MM 779 5 867 15 substantially improved the content and presentation &f plai-
Arch 0 0 733 4 per. We also thank Haryadi Gunawi for his insightful comnsent
Headers 522 6 552 6 This material is based upon work supported by the National
Module 238 0 238 0 Science Foundation under the following grants: CCF-062148
Total 3468 | 41 5369 | 89 CNS-0509474, CNS-0834392, CCF-0811697, CCF-0811697,

Kemel Changes CCF-0937959, as well as by generous donations from NetApp,

Table 7:Implementation Complexity. The table presents SUn Microsystems, and Google. . .

the code changes required to transform a ext2, VFAT, exi8, an Any opinions, findings, and conclusions or recommendations

vanilla Linux 2.6.15 x8654 kernel into their restartable counter-expressed in this material are those of the authors and do not
parts. Most of the modified lines indicate places where \@nilnecessarily reflect the views of NSF or other institutions.

kernel did not check/handle errors propagated by the filéesys

As our changes were non-intrusive in nature, none of e)g'stiReferenceS

code was removed from the kernel. [1] Jeff Bonwick and Bill Moore. ZFS: The Last Word in File Sys
) tems. http://opensolaris.org/os/community/zfs/ddsslast.pdf,
From the table, we can see that the file system spe- 2007.
i ; ; i~[2] George Candea and Armando Fox. Crash-Only Softwarelhka
.CIfIC changes reqwred to work Wlth,Membrane are min Ninth Workshop on Hot Topics in Operating Systems (HotOS 1X)
imal. For ext3, we also added 4 lines of code to JBD Lihue, Hawaii, May 2003.
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