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ABSTRACT
The file system is one of the most critical components of the
operating system. Almost all applications running in the op-
erating system require file systems to be available for their
proper operation. Though file-system availability is critical
in many cases, very little work has been done on tolerating
file system crashes. In this paper, we propose Membrane, a
set of changes to the operating system to support restartable
file systems. Membrane allows an operating system to tol-
erate a broad class of file system failures and does so while
remaining transparent to running applications; upon failure,
the file system restarts, its state is restored, and pending ap-
plication requests are serviced as if no failure had occurred.
Our initial evaluation of Membrane with ext2 shows that Mem-
brane induces little performance overhead and can toleratea
wide range of file system crashes. More critically, Membrane
does so with few changes to ext2, thus improving robustness to
crashes without mandating intrusive changes to existing file-
system code.

1. INTRODUCTION
Operating systems crash. Whether due to software bugs or
hardware bit-flips, the reality is clear: large code bases are
brittle and the smallest problem in software implementation or
hardware environment can lead the entire monolithic operating
system to fail.

Recent research has made great headway in operating-system
crash tolerance, particularly in surviving device driver fail-
ures [17, 18, 23, 25]. Many of these approaches achieve some
level of fault resilience by building ahard wall around OS
subsystems using address-space based isolation and microre-
booting said drivers upon fault detection [17, 18]. Other ap-
proaches are similar, using variants of microkernel-basedar-
chitectures [2, 23] or virtual machines [5, 9] to isolate drivers
from the kernel.

Device drivers are not the only OS subsystem, nor are they
necessarily where the most important bugs reside. Many re-
cent studies have shown thatfile systemscontain a large num-
ber of bugs [4, 6, 11, 24]. Perhaps this is not surprising, as file
systems are one of the largest and most complex code bases in
the kernel. Further, file systems are still under active develop-
ment, and new ones are introduced quite frequently.

Due to the presence of flaws in file system implementation,
it is critical to consider how to handle their crashes. Unfor-
tunately, two problems prevent us from directly applying pre-
vious work from the device-driver literature to improve file-
system fault tolerance. First, most approaches mentioned above
areheavyweightdue to the high costs of data movement and
page-table manipulation across address-space boundaries. Sec-
ond, file systems, unlike device drivers, are extremelystateful,
as they manage vast amounts of both in-memory and persistent
data; making matters worse is the fact that file systems spread
such state across many parts of the kernel, including the page
cache, dynamically-allocated memory, and locks. Thus, when
a file system crashes (typically by callingpanic()), a great
deal of care is required to recover from the crash while keeping
the rest of the OS intact.

In this paper, we proposeMembrane, an operating system
framework to support lightweight, stateful recovery from file
system crashes. During normal operation, Membrane logs
file system operations and periodically performs lightweight
checkpoints of file system state. If a file system crashes, Mem-
brane parks pending requests, cleans up existing state, restarts
the file system from the most recent checkpoint, and replays
the in-memory operation log to restore the state of the running
file system. Once finished with recovery, Membrane begins to
service on-going application requests again; applications are
kept unaware of the crash and restart except for the small per-
formance blip during recovery.

Membrane does not place an address-space boundary between
the file system and the rest of the kernel. Hence, it is possible
that some types of crashes (e.g., wild writes) will corrupt ker-
nel data structures and thus prohibit Membrane from properly
recovering from a file system crash, an inherent weakness (and
strength!) of Membrane’s architecture. However, we believe
that this approach will have the propaedeutic side-effect of en-
couraging file system developers to add a higher degree of in-
tegrity checking (e.g., via assertions, either by hand or through
automated techniques such as SafeDrive [25]) into their code



in order to fail quickly rather than run the risk of further cor-
rupting the system. If such faults are transient (as many im-
portant classes of bugs are), crashing and quickly restarting is
a sensible course of action.

Membrane, being a lightweight and generic operating system
framework, requires little or no change to existing Linux file
systems. We believe that Membrane can be used to restart
most of the existing file systems. We have prototyped Mem-
brane with the ext2 file system. From our initial evaluation,we
find that Membrane enables ext2 to recover from a wide range
of fault scenarios. We also find that Membrane is relatively
lightweight, adding a small amount of overhead across a set of
file system benchmarks. Membrane achieves these goals with
little or no intrusiveness: only five lines were added to trans-
form ext2 into its restartable counterpart. Finally, Membrane
improves robustness with complete application transparency;
even though the underlying file system has crashed, applica-
tions continue to run.

The rest of this paper is organized as follows. Sections 2,
3, and 4 describe the motivation, the challenges in building
restartable file systems, and the design of Membrane respec-
tively. Section 5 and Section 6 discuss the consequence of
having Membrane in the operating system and evaluates Mem-
brane’s robustness and performance. Section 7 places Mem-
brane in the context of other relevant work; finally Section 8
concludes the paper.

2. MOTIVATION
We first motivate the need for restartability in file systems.The
file system is one of the critical components of the operating
system that is responsible for storing and retrieving user,appli-
cation, and OS data from the disk. File systems are also one of
the largest and complex codes in the operating system; for ex-
ample, modern file systems such as Sun’s Zettabyte File Sys-
tem (ZFS) [1], SGI’s XFS [16], and older code bases such as
Sun’s UFS [10] contain nearly 100,000 lines of code [14]. Fur-
ther, file systems are still under active development, and new
ones are introduced quite frequently. For example, Linux has
many established file systems, including ext2 [19], ext3 [20],
reiserfs [13], and still there is great interest in next-generation
file systems such as Linux ext4 [21] and Btrfs [22]. Thus, file
systems are large, complex, and under development: the per-
fect storm for numerous bugs to arise.

Existing file systems only provide data consistency in the pres-
ence of system crashes (power failures or operating system
crashes) through techniques such as journaling [7, 16] and
snapshotting [1]. However, little has been done to tolerate
transient failures in file systems (such as those caused by bugs
in file system code and memory corruption), and to prevent
them from causing total system failures. Recent research on
restarting individual OS component such as device drivers [17,
18, 25] cannot be directly applied to file systems because, un-
like device drivers, file systems are very stateful and spread
their state across many operating system components (e.g.,
in-memory objects, data in page cache, locks, and meta-data
cached in memory) and are fine tuned for performance.

Consequently, when file systems crash (due to a bug in the
file system code), the entire operating system effectively be-

comes useless, as a majority of the applications running in the
operating system depend on the file system for their proper
operation. The currently available solution for handling file
system crashes is to restart the operating system and run re-
covery (or a repair utility such asfsckfor file systems that do
not have any in-built crash consistency mechanism). More-
over, applications that were using the file systems are killed,
making their services unavailable during this period. Thismo-
tivates the need for a restartable framework in the operating
system, to tolerate failures in file systems.

3. CHALLENGES
Building restartable file systems is hard. We now discuss the
challenges in building such a system.

Fault Tolerant. A gamut of faults can occur in file systems.
Failures can be caused due to faulty hardware and/or buggy
software. These failures can be permanent or transient, and
can corrupt data arbitrarily or be fail-stop. Theidealrestartable
file system should recover from all possible faults.

Transparency. File-system failures must be transparent to ap-
plications. Applications should not require any modifications
to work with restartable file systems. Moreover, multiple ap-
plications (or threads) could be modifying the file system state
at the same time and one of them could trigger a crash (through
a bug).

Performance. Since file systems are fine-tuned for perfor-
mance, the infrastructure to restart file systems should have
little or no overhead during regular operations. Also, the re-
covery time should be as small as possible to hide file-system
crashes from applications.

Consistency. Care must be taken to ensure that the on-disk
state of the file system is consistent after recovery. Hence,
infrastructure for creating light-weight recovery pointsshould
be built as most file systems do not have any inbuilt crash con-
sistency mechanism (e.g., only 8 out of 30 on-disk file system
have such feature in Linux 2.6.27). Also, the kernel data struc-
tures (locks, memory, list, etc.) should be kept consistentafter
recovery.

Generic. A large number of commodity file systems exist and
each has its own strengths and weaknesses. The infrastructure
should not be designed for a specific file system. Ideally, the
infrastructure should enable any file system to be transformed
into a restartable file system with little or no changes.

4. DESIGN
In designing Membrane, we explicitly make the choice to fa-
vor performance, transparency, consistency, and generality over
the ability to handle a wider range of faults. Membrane does
not attempt to handle all types of faults. Like most work in
subsystem fault detection and recovery, Membrane best han-
dles failures that aretransientand fail-stop [12, 18, 25]. We
now present the three major pieces in the Membrane design
namely fault detection, fault anticipation, and recovery.

4.1 Fault Detection
The goal of fault detection within Membrane is to be
lightweight while catching as many faults as possible. Mem-
brane uses both hardware and software techniques to catch
faults. The hardware support is simple: null pointers and other
exceptions are caught by the hardware and routed to the Mem-
brane recovery subsystem.



The software techniques leverage the checks that already exist
in file system code. For example, file systems contain asser-
tions, calls topanic(), and similar functions. We take ad-
vantage of such internal integrity checking and modify these
functions and macros to call into our recovery engine instead
of crashing the system. Membrane provides further protection
by adding extensive parameter checking on calls from the file
system into the kernel.

4.2 Fault Anticipation
Anticipation is the overhead incurred even when the system is
behaving well; it should be minimized to the greatest extent
possible while retaining the ability to recover.

In Membrane, there are two components of fault anticipation.
First, thecheckpointingsubsystem partitions file system oper-
ations into differenttransactionsand ensures that the check-
pointed image on disk represents a consistent state. Second,
updates to data structures and other state are tracked with aset
of in-memory logsandper thread stacks. The recovery subsys-
tem utilizes these pieces in tandem to recover the file system
after failure.

Checkpointing and state-tracking are central to the manage-
ment of file system state. File system operations use many core
kernel services (e.g., memory allocation), are heavily inter-
twined with kernel subsystems (e.g., the page cache), and have
application-visible state (e.g., file descriptors). Careful state-
tracking and checkpointing is thus required to enable cleanre-
covery after a fault.

4.2.1 Checkpointing
Checkpointing is critical because a checkpoint defines a point
in time to which Membrane can roll back and thus initiate re-
covery. A checkpoint also represents a consistent boundary
where no file system operation is in flight.

Checkpointing must integrate with the file system’s own con-
sistency management scheme. Modern file systems take a
number of different approaches such as journaling [7, 16]) and
snapshotting [1]); some file systems such as ext2 do not im-
pose any ordering on updates. In all cases, Membrane must
operate correctly and efficiently.

4.2.2 Tracking State with Logs and Stacks
Membrane must track changes to various aspects of file system
state that transpired after the last checkpoint. This is accom-
plished with five different types of logs or stacks that handle
file system operations, application-visible sessions, mallocs,
locks, and execution state.

First, an in-memoryoperation logrecords file system opera-
tions that have taken place during the epoch or are currently
in progress together with relevant information. Second, Mem-
brane maintains a smallsession logthat tracks open files at the
beginning of an epoch along with their file position. Third,
an in-memorymalloc tabletracks heap-allocated memory so
that upon failure, it can determine which blocks should be
freed. Fourth, lock acquired and released are tracked by the
lock stack. When a lock is acquired/released by a thread ex-
ecuting a file system operation, information about the lock is

pushed/popped to a per-thread stack. Finally, anunwind stack
pushes register state during kernel-to-file system calls onto the
per-thread stack to track the execution of code in the file sys-
tem and kernel. Thus, by using these data structures, Mem-
brane tracks the file system state after the last checkpoint.

4.3 Fault Recovery
Once a fault is detected, control is transferred to the recov-
ery subsystem, which executes the recovery protocol. The six
steps in the recovery protocol are described below.

First, Membrane halts the execution of threads within the file
system as well as late-arriving threads to prevent further dam-
age. Second, the crashed thread and all other in-flight threads
are unwound and brought back to a point such that they appear
to be just about to enter the file system call they are making.
Third, Membrane moves the system to a clean starting point
at the beginning of an epoch, and commits any dirty pages
from the previous epoch to disk. Fourth, Membrane frees any
operating system state corresponding to the file system and re-
leases any in-memory file-system objects by simulating an un-
mount operation; Membrane then mimics the mount operation
to recreate state for the restarted file system. Fifth, Membrane
reopens sessions of active processes and replays operations af-
ter the last checkpoint to restore the file system to the state
it was before crashing. Finally, Membrane wakes all parked
threads which will behave as if a crash never occurred.

We have implemented a prototype of Membrane in the Linux
2.6.15 kernel. This prototype includes the features described
above including fault detection, checkpointing, state tracking,
and recovery.

5. DISCUSSION
The major negative of the Membrane approach is that, without
address-space-based protection, file system faults may corrupt
other components of the system. If the file system corrupts
other kernel data or code or data that resides on disk, Mem-
brane will not be able to recover the system. Thus, an im-
portant factor in Membrane’s success will be minimizing the
latency between when a fault occurs and when it is detected.

An assumption we make is that kernel code is trusted to work
properly, even when the file system code fails and returns an
error. We found that this is true in most of the cases across
the kernel proper code. But in twenty or so places, we found
that kernel proper did not check the return value from the file
system and additional code was added to clean up the kernel
state and propagate the error back to the callee.

A potential limitation of our implementation is that, in some
scenarios, a file system restart can be visible to applications.
For instance, when a file is created, the file system assigns it
a specific inode number which an application may query (e.g.,
rsync and similar tools may use this low-level number for
backup and archival purposes). If a crash occurs before the
end of the epoch, Membrane will replay the file create; during
replay, the file system may assign a different inode number to
the file (based on in-memory state). In this case, the applica-
tion would possess what it thinks is the inode number of the
file, but what may be in fact either unallocated or allocated to
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create mark_inode_dirty(∅) o × × × d
√ √ √

free_inode mark_buffer_dirty(bad) o × × × d
√ √ √

readdir page_address(bad) G × × × d
√ √ √

add_nondir d_instantiate(bad) o × × × d
√ √ √

symlink null-pointer exception o × × × d
√ √ √

readpages mpage_readpages(bad)o × √√
d
√ √ √

Table 1: Fault Study. The table shows the results of some fault
injections on the behavior of Linux ext2. Each row represents a fault
injection experiment, and the columns show (in left-to-right order):
routine the fault was injected into, the exact nature of the fault, fault
detection and its affect on the application, and file system.Symbols
used to condense the presentation are as follows: “o”: kernel oops
was triggered; “G”: general protection fault occurred; “d”: fault
was successfully detected. An “×” or “

√
” implies a no or yes to the

question.

a different file. Thus, to guarantee that the user-visible inode
number is valid, an application must sync the file system state
after the create operation.

On the brighter side, we believe Membrane will encourage
two positive fault-detection behaviors among file-system de-
velopers. First, we believe that quick-fixbug patchingwill
become more prevalent. Imagine a scenario where an impor-
tant customer has a workload that is causing the file system to
occasionally corrupt data, thus reducing the reliability of the
system. After some diagnosis, the development team discov-
ers the location of the bug in the code, but unfortunately there
is no easy fix. With the Membrane infrastructure, the devel-
opers may be able to transform the corruption into a fail-stop
crash. By installing a quick patch that crashes the code instead
of allowing further corruption to continue, the deploymentcan
operate correctly while a longer-term fix is developed. Even
more interestingly, if such problems can be detected but would
require extensive code restructuring to fix, then a patch maybe
the best possible permanent solution. As Tom West said: not
all problems worth solving are worth solving well [8].

Second, with Membrane, file-system developers will see sig-
nificant benefits to putting integrity checks into their code.
Some of these lightweight checks could be automated (as was
nicely done by SafeDrive [25]), but we believe that developers
will be able to place much richer checks as they have a deep
knowledge about expectations at various locations. For exam-
ple, developers understand the exact meaning of a directory
entry and can signal a problem if one has gone awry; automat-
ing such a check is a great deal more complicated [3]. The
motivation to check for violations is low in current file sys-
tems since their is little recourse when a problem is detected.
The ability to recover from the problem in Membrane gives
greater motivation.

6. EVALUATION
We evaluated Membrane in terms of transparency and perfor-
mance. All experiments were performed on Linux 2.6.15 on a
machine with a 2.2 GHz Opteron processor, 1GB of memory
and 2 80 GB Hitachi 7200 rpm disks.

Benchmark ext2 ext2+Membrane
OpenSSH 57.7s 62.3s
PostMark 21.0s 25.0s
Sort (100 Mb) 143.0s 145.0s

Table 2: Performance. The table presents the performance
of a number of benchmarks (in seconds) running on both standard
ext2 as well as ext2 within the Membrane framework. PostMark
parameters are: 100 files, 1000 transactions, file sizes of 160k to
4MB, and 50/50 read/append and create/delete biases.

Transparency. To analyze the ability of Membrane to hide
file system crashes from applications, we systematically inject
faults in the file system code where faults may cause trouble.
Table 1 presents the results of our study, the caption explains
how to interpret the raw data one sees in the table. Due to lack
of space, we only show the results of a few representative fault
injections. We injected a total of 15 faults, the results of which
are similar to the ones shown here.

We begin our analysis with vanilla ext2, the results of which
are shown in the leftmost result column. We can see that in all
the cases, an unhandled exception such as “oops” is generated
within the file system. This results in the application being
killed, frequently leaving the file system inconsistent and/or
unusable. A complete reboot is required to fix the system.

In our second set of fault injections, we analyze ext2 with
Membrane, which also includes stateful restart of file system.
We find that Membrane is able to detect all the errors that we
injected. Upon detection, Membrane transparently restarts the
file system while the applications keep running normally. Fur-
ther, Membrane is able to keep the file system in a consistent
and usable state.

Performance. To measure performance, we ran a series of
workloads on both standard ext2 as well as ext2 with Mem-
brane. Table 2 shows the results of our experiments. From the
table, we can see that the performance overheads of our un-
tuned prototype are quite minimal. We expect that with further
effort, the small overheads observed here could be reduced no-
ticeably.

In summary, our initial evaluation suggests that Membrane is
fault resilient, lightweight and transparent. Further, inthe cur-
rent prototype for ext2, we made only a minor modification
to the file system (5 lines of code for flushing super blocks at
checkpoints) suggesting that Membrane infrastructure could
be generic and not tailored for a specific file system.

7. RELATED WORK
We now discuss three previous systems that have the simi-
lar goal of increasing operating system fault resilience. First,
the restarting of OS subsystems was started by Swift et al.’s
work on Nooks, followed by shadow drivers [17, 18]. The
authors use memory-management hardware to build an iso-
lation boundary around device drivers; not surprisingly, such
techniques incur high overheads [17]. The subsequent shadow
driver work shows how recovery can be transparently achieved
by restarting failed drivers and diverting clients by passing
them error codes and related tricks. However, such recoveryis
relatively straightforward: only a simple reinitialization must



occur before reintegrating the restarted driver into the OS.

Second, SafeDrive takes a completely different approach to
fault resilience [25]. Instead of address-space based protec-
tion, SafeDrive automatically adds assertions in the device
driver code. Because the assertions are added in a C-to-C
translation pass and the final driver code is produced through
the compilation of this code, SafeDrive is lightweight and in-
duces relatively low overheads. However, the SafeDrive re-
covery machinery does not handle stateful subsystems and
the recovery is not transparent to applications. Thus, while
currently well-suited for a certain class of device drivers,
SafeDrive recovery cannot be applied directly to file systems.

Finally, CuriOS, a microkernel-based operating system, also
aims to be resilient to subsystem failure [2]. It achieves this
end through address-space boundaries between servers along
with storing session state in an additional protection domain.
Frequent kernel crossings (an expensive operation) are com-
mon for file systems in data-intensive environments and would
dominate performance. CuriOS also represents one of the few
systems that attempt to provide failure resilience for morestate-
ful services such as file systems; other heavyweight check-
point/restart systems also share this property [15]. In thepaper
there is a brief description of an “ext2 implementation”; unfor-
tunately, it is difficult to understand how sophisticated this file
service is or how much work is required to recover from the
failure of such a service.

In summary, we see that few lightweight techniques have been
developed. Of those, we know of none that work for stateful
subsystems such as file systems.

8. CONCLUSIONS
File systems fail. With Membrane, failure is transformed from
a show-stopping event into a small performance issue. The
benefits are many. Membrane enables file-system developers
to ship file systems sooner, as small bugs will not cause mas-
sive user headaches. Membrane similarly enables customers
to install new file systems with knowledge that it won’t bring
down their entire operation. Bugs will still arise, but those that
are rare and hard to reproduce will remain where they belong,
automatically “fixed” by a system that can tolerate them.

Future work. We wish to employ the Membrane framework
for different file systems including other simple ones like VFAT
and more complex journaling file systems like ext3, JFS, and
ReiserFS. An interesting aspect of journaling file systems is
the fact that they are designed to group file operations into
transactions and Membrane can leverage it to checkpoint file
system state.

We also wish to carefully evaluate the robustness and perfor-
mance of Membrane. This includes comprehensive fault in-
jection tests and detailed characterization of the performance
overheads and restart delay as perceived by applications.
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