Context-Aware I/O: Exploiting Application Context in the Storage Stack
Gopalan Sivathanu, Swaminathan Sundararaman, Kironasgaykar,
Chaitanya Yalamanchili, and Erez Zadok
Stony Brook University

Abstract information-gap across layers have ranged from build-
ing application-extensible OSes [7,14] and brand-new
We propose the concept of Context-Aware 1/O abstractions [12,23,25,30], to more evolutionary ap-
(CAIO), a generic mechanism that enables lower lay-proaches such as applications passing hints [9, 11, 27],
ers of the storage stack such as the disk, to trackpplications implicitly influencing OS behavior [3, 8],
application-dataand application-l/Orelationships. In  and automatically inferring cross-layer information [3,
CAIO, higher-level application context is propagated 32]. However, none of the existing solutions enable con-
along with every 1/O operation, in an end-to-end fash-veying application-dataand application-1/O relation-
ion, across the storage stack. By decoupling the generahips to the storage stack, in an end-to-end fashion (user
tion of such contexts at the higher layers from how theyapplications to the storage hardware).
are used by the lower layers, CAIO provides a simple, |n this paper, we propose the concept @bntext-
yet effective mechanism to encode and propagate appliaware 1/0(CAIO), a simple and generic way for appli-
cation semantics to the storage stack. cations to convey arbitrary information about their I/O
In addition to conveying information about the logi- behavior and relationships, without worrying about how
cal task on behalf of which an I/O is executed, contextthe information will be used by the storage stack. In
also acts a vehicle for tracking application-specific se-CAIO, an application-levetontextis propagated along
mantics at any layer of the storage stack. A large classvith an 1/0 operation across the entire storage stack, in
of such semantics can be learned implicitly by the lay-an end-to-end fashion. An application-level context is
ers, while others can be explicitly associated by way ofrepresented by one or mocentext identifiers For ex-
out-of-band attributes. To demonstrate the usefulnesample, a database application can have a unique identi-
of CAIO, we have designed and evaluated three casefier that it can propagate along with every I/O it gener-
studies that make use of logical contexts to track differ-ates, such that any storage layer can easily group all /O
ent kinds of semantic knowledge, achieving interestinggenerated by the database application.
functionality. In addition to working-set identification, application
1 Introduction contexts glso_ enable a new qlass of functionality that
uses application-1/O relationships, such as easy and flex-
The knowledge about working sets of data used by eacible performance isolation in large-scale distributed-sto
higher-level application is quite useful in the lower lay- age, and access-pattern aware caching and prefetching
ers of the storage stack such as the disk. For examplavithin the storage hardware.
if a RAID system is aware of the data items belong- To make CAIO a generic framework, we decouple
ing to a particular application, it can try to co-locate the generationof application-level information from
all data within the same disk or prefetch them to ahow the information isusedwithin the storage stack.
faster storage, for power-saving and performance purMost hint-based proposals to address the problem of
poses [31,38,39]. From a systems-management peinformation-gap in the past have tied these together. For
spective, identifying the set of hardware componentsxample, in hint-based prefetching systems, the appli-
containing the working set of a critical application is cation provides hints of its future access, but the hints
useful to perform operations such as selective recovare specifically designed with prefetching in mind. The
ery of failed hardware [24]. Disconnected operations inproblem with such function-specific hints is that they
mobile environments [19, 20] can be achieved by pro-require coordination and agreement between the layers
actively prefetching the working sets of running appli- involved. In a multi-vendor setup, such coordination
cations, at any layer. translates into industry-wide consensus on the interface,
In the modern storage stack, working set informa-a standardization process that takes years. In addition,
tion is blurred or even completely unavailable in the such an approach cannot scale in an end-to-end manner
lower layers. Virtualization layers such as RAID, logi- to the multi-layered storage stacks that we have today.
cal volume managers, virtual machine monitors, or even Decoupling the generator and consumer of the context
a network can exist in today’s storage stack, makinginformation leads to an interesting challenge: when the
it hard to preserve application-data relationships acrosapplication could conceivably use more than one possi-
layers. Techniques to address this general problem of thele granularity of grouping I/O, how can it decide which



one to use while being oblivious to how the groupingis2 The Utility of Context-Aware 1/0

interpreted by the lower level? For example, a databasg, his section we describe several usage scenarios that
application can group the I/O requests it generates basgglivate tracking context information in the different
on the database user, session, t.ransacnon, or query Qhvers of the storage stack. Many of these utilities cannot
behalf of which the /0 is issued; but the lower layers e implemented effectively without explicitly propagat-
are oblivious to the granularity of the context. To solve ing application-level contexts. In Sections 8, 9, and 10,

this issue, contexts in CAIO atgerarchical With hi- \ye demonstrate our implementation of the first three us-
erarchical contexts, higher layers can encode mult|pleage scenarios described below.

granularities of grouping, and the lower layers can de-

cide which granularity is the best for the particular func- Working-set Aware Features. ldentifying working
tionality that they provide. sets of data for individual applications at the lower

layers of the storage stack, enables interesting func-

Context acts as a vehicle for tracking semantics at an);ionality Sl_JCh as application_—aware prefetch_ing [271,
layer by way ofimplicit learning. For example, a buffer POWer-savings [_38, 39], selective recovery of failed hard-
cache layer can automatically correlate the blocks read’@'® [24], gnd |mpr0veq data ava_llablllty [31]. We de-
by individual contexts and identify sequential and ran_gcnbgour |mplementat|0n (.)f a d|§k-level worlflng-set
dom streams. This information can be used to fine-tunddentifier and its usefulness in detail under Section 8.

buffer-cache policies. Beyond implicit learning, proper- Adaptive Caching and Prefetching. The efficacy of

ties of 1/0 such as the QoS levels can also be tracked bygaching and prefetching depends on the ability to iden-

contexts by way oexplicit attributes These attributes tify access patterns. Context can enable caching and
can be communicated among specific layers in an outprefetching mechanisms to adapt their policies based on
of-band fashion. For example, the QoS levels of indi-access patterns. Section 9 describes our implementation
vidual contexts can be communicated to a disk schedulesf a context-aware disk-level caching mechanism.

directly without other layers knowing about it. L .
y y 9 Application-Aware Performance Isolation.

Scheduling algorithms at different levels of the

storage stack can leverage application-level contexts
i scheduling decisions. For example, fair share disk
Yschedulers can enforce fairess based on higher level

Eet |ddentt n‘ler,WﬁrkilDE V\llh'Ch c\)/;\)/erstsels[,);t thte bIo:k—H logical tasks as against OS processes. Application-based
ased storage haraware fayer. Vvor automatically . o, ;rce isolation has been previously explored in the

tracrs :rt\e dat? Worklnlg t_set r_erﬂglred fl?_r an ipphcﬁ'oncontext of a single OS in Resource Containers [5].
contextto run to compietion. This working Set can then - ,.0ts can enable flexible resource isolation in an

be preloaded as gpp.rpprlate in order to IMPTovVe PeTyd-to-end fashion even in distributed storage.
formance and availability, or to enable power optimiza-

tions. The second case study is a context-aware cach@ptimized Data Layout. File systems can use higher
placement algorithm within the disk that automatically level contexts as hints for optimal data placement on
learns which application-level contexts exhibit sequen-disk. Co-locating files and directories created in the
tial streaming access pattern and avoids caching request@me context could be beneficial under certain scenar-
with that context. In our third case-study, we demon-ios to achieve better spatial locality during reads.

strate the use of annotating contexts with attr'bUteslmproved Accounting. Context information associ-

by designing a context-based proportional-share disk;eq with 1/0 operations can greatly help in I/O trace

scheduler. We show the usefulness of all three casesp, oy is. Trace analysis for resource consumption can

s’Fudies using prototypeimplementationswe built for they s more accurate when it makes use of logical con-
Linux kernel, and evaluate various workloads. texts pertaining to precise higher-level tasks. Contexts
can also provide valuable hints about the dependencies

The rest of the paper is organized as follows. In Secf |/0 operations and the causal relationships between

tion 2 we discuss the utility of CAIO by presenting a few them, for trace-based intrusion detection systems [18].
potential applications. We discuss related work in Sec-

tion 3. In Section 4 we present a taxonomy of the various3 Related Work

kinds of contexts in storage. We detail how we general-The idea of tagging requests with identifiers has been
ize the CAIO interface and track semantics in Sections Zexplored in the context of distributed systems for per-
and 6. In Section 7, we describe CAIO design and appliformance debugging, profiling, etc. Pinpoint [10] and

cation support. We present our case studies in Sections@agpie [6] are examples of systems in this category.
9, and 10, and conclude in Section 11. Recently, Thereska et al. proposed applying a similar

We illustrate the generality and power of the con-
text abstraction by prototyping and evaluating three cas
studies. Our first case study is an automatic workin



idea in the context of distributed storage systems mainhHint-based interfaces. Another approach that has
for performance monitoring [33]. All these systems been explored to solve the information gap problem is
look at tagging requests in a causal chain with a cera more evolutionary one; provide specific primitives at
tain identifier so that the entiggathof a logical request the system level that the applications can use to convey
(which may involve multiple physical network hops) information to the operating system. Informed prefetch-
can be tracked. Researchers have also looked at ining [34] is an example of such a system. By enabling the
plicitly inferring this causal knowledge without explicit application to convey information about its future access
tagging [2, 15, 22] but it involves significant complex- pattern, the OS acquires knowledge about the applica-
ity compared to the explicit tagging approach. Thesetion which is used to perform more intelligent prefetch-
systems only operate within the scope of one logical reing. Logical disks [11], which provides an interface for
qguest and are targeted at a specific application. In conthe applications to encode locality hints by creating lists
tact, CAIO allows for a more general expression of ap-of blocks, is another example. Researchers have also
plication level semantics to cater to a wide variety of looked at the flip-side of the problem: provide informa-
applications. tion about the OS to the application so that the applica-
Previous work has also looked at conveyingtion can make intelligent decisions. Infokernel [4], and
application-level grouping through new abstractionsiCTCP [16] are examples in this category.
similar to our notion of context. Perhaps the closest to One commonality between many of these hint-based
our work is the idea of Resource Containers [5], whichapproaches is that the hints are often tied to a specific
allows app]ications to group requests into a resourcé(ind of functionality. In other WOTdS, the information
container which is then treated as a logical principal forbeing transferred is designed with a particular purpose in
the purposes of resource isolation and accounting. Howmind. This in turn limits the flexibility of such a system
ever, similar to the systems discussed above, resourdeecause each new class of functionality may require yet
containers were also built with the specific goal of re-another new primitive to be added to the interface.
source accounting and convey information on one spefpference-based systems. The final class of related
cific kind of grouping. work pertains to approaches that take the extreme view-
Our work on context-aware 1/O also fits into a class point along the axis of being evolutionary and being
of other work on general solutions for bridging the in- |ess intrusive. These systems attempt to achieve cross-
formation gap across system layers. Work in this aredayer awareness, but without explicitly communicating
mainly belongs in three categories: extensible systemst from one layer to another. Gray-box systems [3] is
hint-based interfaces, and implicit techniques to infer in an early example of such an approach. An application
formation or exert control. We discuss each of these.  with “gray-box” knowledge of the operating system at-

_ _ i tempts to implicitly control the operating system behav-
Extensible systems. A common way to bridge the in- 5 by tuning its workload in such a way that it takes

formation gap between applications and the system layge gperating system to a state that results in the desired
ers is to enable the system component to be dynamisgjicy.  Another system built along the same philoso-
_caIIy extensible by the application. Ex_ten3|ble operat-phy is semantically-smart disks [31] in which the stor-
ing systems [7,29] are examples of this approach. By, ge system infers knowledge about the higher layers by

safe execution of application code, the operating systemgefylly observing traffic and correlating them to higher
could allow the application to implement its own poli- |4, g| operations.

cies for traditional operating system tasks. The notion \y/ile being valuable from the viewpoint of being

of extensibility has also been explored at the hardwans-easny deployable and less intrusive, these approaches

level. For example, active disks [1, 28] enable applica+,5ye their own limitations because they are heavily con-
tions to download code into the disk that is run within strained in terms of not changing interfaces. This in

the (,j'Sk controller. Such code _canllmplement ar_bltrarymany cases results in additional complexity making it
filtering of data based on application level predlcates,hard to reason about correctness while also limiting the

and even perform more sophisticated operations such gg,qe of such inferred knowledge to less aggressive ap-
search [21] without actually transferring data out of theplications that can tolerate inaccuracy.

disk subsystem.
All these systems provide a lot of control to the appli- 4 Context Types

cation and in the process, essentially ties the layers to€ontext in storage is quite useful as seen from the kind
gether. Although valuable in certain scenarios, applica-of functionality it enables (described in Section 2). We
tions need to have a reasonably intricate understandingow definecontextas follows: A context in storage is a
of the system in order to use these, thus making themmeference or identification used to group, on some basis,
complex to design. several I/O operations or data



ery time when operations are performed on that domain.

DB Session A Database X Applications have to generate such contexts using a de-

horre terministic method and may maintain persistent states to
Transaction B Tabl e Y l track contexts.
john Non-repeatablecontexts have transient identifiers.
Query C Record Z l For example, if gi d is used as a context identifier to
abc. txt group I/O operations generated by a particular program,
@ (b) © every time the program runs, the identifier becomes dif-

ferent, although the logical context remains the same.
Non-repeatable contexts do not require any state to be
maintained at the application-level.

Figure 1: Examples of how hierarchical contexts can be con-
structed. (a) shows an access-bound context hierarchyn(gh)
(c) show data-bound context hierarchies.

We now describe the types of contexts that are rele® Generalizing the Interface

vant to storage. In this section, we describe how we can cope with arbi-
trary context generation process at the application-Jevel
4.1 Data-bound vs. Access-bound and achieve independence between the generation and

The two primary entities in storage are (a) data, and (b}sage of application-contexts. We also describe how
I/0 operations on data. Contextin storage is mainly usedower layers of the storage stack can extend contexts or
for grouping several such data items or 1/0 operationscorrelate across different context types.

Therefore we classify contextin storage broadly into tWo ;o rarchical Contexts.

types: data-bound and access bound. CAIO interface, the context generation process at the
A contextis said to beata-boundf it can be used o 4ppication-level must not make any assumptions about
group several data items stored on disk, based on somgy,y the lower layers use the context. However, at the
metric. This grouping is independent of the way the gpjication-level, there may be several different ways
data is accessed. For example, a data-bound context cg generate a context, each useful for different kinds of
group all blocks belonging to the same database table qf;nctionality at the lower layers. A single application-
file. Data-bound contexts can group data based on agige context identifier can be used to easily group all
bltrary criteria such as logical abs.tractlong (fllles, direc 4ata required by the application, whereas more fine-
tories, database tables, etc.), owning application or, usefrained context identifiers within an application help
security domains, and so on. Data-bound contexts ca@smmunicate different streams of 1/0 requests gener-
be used to communicate higher-level data-structures tg;qq by sub-components of within same application. For
the disk, and enable functionality such as fault-isolatedexamme, a single DBMS-wide context can be used to
placementin RAID [31]. group all /0 and data that the DBMS manages. This
Access-boundontexts relate operations rather than enaples functionality such as working-set identification
the data pertaining to them. For example, an accessyr the entire DBMS. On the other hand, a per database
bound context can group all block write operations re-sessjon-level context can be used for easy performance
sulting from a single database query. Access-bound conysp|ation between database user sessions. We use the
texts enable new functionality that solely depend on thgerm context granularityto refer to the different possible
characteristics of individual 1/0 requests. The caching\,\,ays to generate contexts within an application.
and prefetching functionality described in Section 2 re-  Therefore, for generalizing the interface without ham-
quires access-bound contexts. pering the kind of functionality it enables, we evolve
Figure 1 shows a few examples of context hierarchiesg context scheme where the application can encode all
Figure 1(a) shows a possible access-bound hierarchy fq§pssible granularities as a single context, passing down
a database application. Figures 1(b) and 1(c) show datgontext hierarchiegfor access-bound and data-bound)
bound context hierarchies that communicate data abrather than a single identifier. For example, a DBMS can
stractions. generate access-bound contexts in granularities such as
sessions, transactions, and individual queries, and data-
4.2 Repeatable vs. Non-Repeatable bound contexts in granularities such as databases, tables,
The lifetime of a context identifier is defined by the ap- and records.
plication that generates it. When a single context iden- Lower layers of the storage stack can use hierarchical
tifier is used every time to refer to a particular logical contexts without making assumptions about what each
context, we call it arepeatablecontext. For example, of the levels in the hierarchy mean. For example, a
when a context is used to group files within an accesseaching layer that wants to classify some context to ex-
control domain, the same identifier has to be reused evelude caching (e.g., sequential contexts) can track the

To achieve generality in the



statistics on sequentiality at each level of the context hiseparately between any two layers that needs to coor-
erarchy, and then choose the highest level that exhibitginate to implement a specific functionality. We de-
homogeneity in the access pattern. Depending on thecribe the design and implementation of a context-based
specific behavior the layer is looking at (e.g., sequentialproportional-share disk scheduler that uses explicit at-
ity, correlated access of the same pieces of data), the defributes, in Section 10.
inition of homogeneity changes. Hierarchical contexts .
enable decoupling the application from worrying about7 CAIO Design
which behavioral properties the lower layers are inter-End-to-end association of context with 1/O requires
ested in; instead the application just conveys its statepassing application-generated context with every 1/O op-
and the lower layers make their independent decisionsration throughout its lifetime. We evolve a framework
on the notion of homogeneity they care about, based othrough which context can be passed from an application
the layers’ own per-context statistics. all the way down to the storage hardware (e.g., a disk).
Note that for a context hierarchy chain in CAIO to In this section, we describe the changes required to the
be meaningful, every context in the chain should qualifystorage stack and user applications, to support contexts.
a logical subset of the access or data domain qualified We propagate contextin the storage stack by means of
by its parent context. For example, a per-query contexcontext objectsA context object contains upto two con-
identifier can be a child of the transaction identifier in text chains, one each for data-bound and access-bound
which the query is a part. However, a context identifiertypes. These context types are based on the discussion
that qualifies the class afl sel ect queriesinaDBMS under Section 4. Context objects also carry information
cannot be a child of any particular transaction identifier,about the repeatability of the context chains. Repeata-

assel ect queries can be part of any transaction. bility is at the granularity of an entire chain and not the
) ) ) individual context identifiers within a chain. The struc-
6 Context: A Vehicle for Semantics ture of a context object is shown in Listing 1.

Context in storage can also be viewed as a vehicle for
tracking layer-specific semantics in the storage stackstruct cai o_context {
Such semantics can be associated with contexts, by two i nt data_bound[ MAX_DATA LEVELS];

methods: (a) implicit learning at the individual layers, int access_bound[ MAX_ACCESS_LEVELS] ;
and (b) annotating contexts with explicit attributes. We short data_levels;
discuss these two methods below in detail. _Sh?r]fl access_| evel's;

in ags;

Implicit Learning. Layers of the storage stack that };

propagate contexts can automatically learm key InformaT_isting 1: Structure of a context object. The fields dhteels

tion about these contexts. For example, a .CaCh'ng Iayeénd accesdevels indicate the number of levels in the data and
can analyze the request stream for a particular contexfccess-bound context chains. Flags contain informatiauab

and classify it as sequential, random, or looping. Suchepeatability and inheritance properties (Section 7.1) thee
information can be useful in implementing interesting context.
policies and optimizations. In sections 8 and 9, we de-
scribe two case-studies that demonstrate the usefulne . .
of automatic learning of semantics based on contextss.;l'l Associating Contexts With I/O
Our first case-study, WorkSIDE, learns correlations be-The CAIO framework contains a user library that ex-
tween data-bound and access-bound contexts to enumegerts routines to construct context objects and add new
ate the working-set of data used by a particular contextlevels of hierarchy to existing context objects. User
In our second case-study, we implement an intelligentapplications can generate context objects through these
on-disk cache layer that learns access-patterns assog¢outines and associate them with I/O operations. Our
ated with contexts to tune caching policies. framework provides three different ways for user appli-
Coplot At Coran untonaltymayequre S80S 8 SS0°BLE <o i 10 opraiens Ty
application-specific information to be associated W'thtexts and (c) context inheritance. We detail each of these
contexts. For example, a context-based proportional- . '
. k mechanisms below.
share disk scheduler needs share proportions to be as-
sociated with levels in the context hierarchy. For thisAn Extended System Call Interface. We have an
purposeout-of-bandmechanisms such asoct| s can  extended system call interface that passes context ob-
be used to annotate context identifiers with functionalityjects along with storage primitives such@sen, r ead,
specific information. Note that these annotations needw i t e, unl i nk, etc. Each of these I/O system calls in-
not be part of the CAIO infrastructure, but can be doneclude an additional argument for the context object. List-




ing 2 shows an usage scenario for the extended systestore contexts in its own structures for its needs, before
call interface. passing them down.

Group Contexts. For applications that need to per- Hardware Interface Extensions. To propagate con-
form a several /O operations with a single context ob-texts end-to-end, we extend storage hardware interfaces
ject, we provide a new system call for setting and un-to pass generic context objects along with every 1/O re-
setting contexts into the kernel. The scope of this assoquest. For example, the SCSl/IDfead andwrite
ciation is just the specific thread of execution. There-primitives take context objects. There are a number of
fore applications can first set a context and then issu@roposals in the past that suggest interface extensions to
any number of regular I/O system calls (suchopen  disk systems for communicating higher-level semantic
or r ead), and the corresponding context object will be information [11, 23,25, 30]. We believe that the gener-
associated with every operation. ality of the CAIO interface would make it easier for disk

) vendors to adopt.
Context Inheritance. To support easy usage of con-

texts in cases where the smallest granularity is a proces§ealing with Operation coalescence. Multiple logi-

our framework includes a context inheritance mecha-<ally independent I/O operations may be coalesced into
nism using which any process can setrareritable con-  one at any Iayer in the stack. For example, multiple file

textinto the kernel. All child processes and threads ofWrite operations to the contents of the same file block
such a process will then inherit the same context hierarcould result in a single block I/O at the disk level due to

chy. write buffering. To handle such cases, we support mul-

tiple context objects to be associated with a single lower
int fd: char buf[128]; level 1/0. Layers that receive these contexts must pro-
struct caio context *context: cess them one by one as if they were from different /10

operations.

/+ Allocates and sets top-I|evel databound
* and accessbound identifers as 1 */
context = caio_create_context(1, 1);

Storing Contexts. Repeatable contexts may need to
be stored by layers to implement optimizations that in-
volve tracking context history, or correlating different

/+ Adds a new | evel to the access/data context types. We developedcant ext - st or e in-

« hierarchy with identifier 2 =/ memory data-structure as part of our framework to en-
cai o_add_| evel (context, 2, 2); able easy storage of context hierarchies at any layer of
the storage stack. A context store manages context hier-
/* CAIO systemcall interface */ archy in a tree structure in which each node represents
fd = caio_open("/hone/joe/abc.txt", a context identifier of a specific level in the hierarchy
O_RDONLY, &context); identified by its depth in the tree. Each tree node also in-
err = caio_read(fd, buf, 128, &context); cludes gprivate datafield where information about that

cai o_cl ose(fd, &context); specific chain can be stored. The context-store struc-

Listing 2: Passing contexts from the user-level using théadCA ture provides primitives for common operations such as
extended system call interface. Note that in this case grougadding new chains and updating private data.

context (described in Section 7.1) can be used as well, lsecau . .

a single context object is used for all calls. 7.3 Linux Implementation

We implemented our CAIO framework in the Linux ker-
> . nel 2.6.15. We added new system calls for context-
7. Context Propagation aware file 1/0 operations and implemented a user-level
In CAIO, each layer receives contexts from the layerlibrary for applications to easily use the new system
above and passes it to the layer below after using theroall interface. The new system calls allowed con-
if applicable. Note that a single operation at a particu-text objects to be passed wittpen, read, wite,

lar layer could translate into multiple operations in the pread, pwite, cl ose, nkdir, unlink, rmdi r and
layers below. For example, a file create operation at the eaddi r operations. We modified the following objects
file system level could result in multiple block write re- to add a new field to store contexts. (ask_st ruct
guests to the device driver. Therefore it is each layer'swhich represents a running process or thread. (b)
responsibility to propagate context objects appropiatel buf f er _head which represents a block buffer in mem-
to the layer below. In cases where there are more virtualery. (c) bi o which represents an 1/0 to a block device.
ization layers such as software RAID or logical volume Thebuf f er _head andbi o objects can optionally con-
managers (LVMs), such layers should be aware of contain a list of contexts during operation coalescence.
texts and propagate them below. Any layer can chooseto We implemented the new system calls as wrappers to




the unmodified system call handlers for the operationsnumber of functions. We use our Context-Aware MySq|
The wrapper system calls set the context object in theas an application to evaluate our framework and some of
current task object before calling the unmodified han- the case-studies described in Sections 8 and 9.

dlers. Note that the wrapper calls unset the context upon )

completion of a system call, so that the scope of a passed-5 Evaluation

context would be just that system call. The differentlay-\ye evaluated the overheads associated with passing con-
ers in the OS that service the 1/0 operation use the Congay opjects across the storage stack for all file system
text object from theur rent task objectand propagate herations. In this section we first describe our test setup
it to the correspondinguf f er _head andbi o ObjeCts 5 the details of the experiments we ran. Note that the
appropriately. As the ask_struct object is unique gy described in this section applies to all our bench-

to a .part|cular process or thread, this method works for - « presented under Sections 8 and 9 as well.
multi-process workloads as well.

. . We conducted all tests on a 2.8GHz Xeon with 1GB
For group contexts, we added a new system call whlcrhAM and a 74GB, 10Krpm, Ultra-320 SCSI disk. We
assigns or removes the corresponding context in the Curﬂsed,Fedora Core ,6 runnin;:] a Linux 2.6.15 kernél To
rentt ask_st ruct object. For inheritable contexts, we ' S )

dified thef or k A It h text ob ensure a cold cache, we unmounted all involved file sys-
modilied thet ork-system call to copy the context ob- 4o 5 patween each test. We ran all tests at least five
ject of the parent, to the forked process. We also im-,

| ted th text-store data-struct t fthtimes and computed 95% confidence intervals for the
plemented the context-store data-structure as part otthg, . , elapsed, system, user, and wait times using the

keel so that any layer such as the file system or deViC%tudenté distribution. In each case, the half-widths of

driver can maintain Its own store. _ the intervals were less than 5% of the mean.
Overall, the modifications required to implement the

CAIO framework were small. We added only 350 lines 7 5 1 Experiments

of new kernel code and 150 lines of user-level code. _ _ ) _
In this section we describe the set of experiments and

7.4 Application Support their configurations that we used for evaluating the
The method of generating contexts at the applicationCAIO and the case-studies.

level depends on specific application architectures. Ir]?ostmark For an 1/O-intensive workload. we used

general, if an application can classify its activities into Postmark [37], a popular file system benchmarking tool.

distinct logical tasks, and (or) if it can group data it Postmark stresses the file system by performing a series

;Sriz;rﬁie?u?rnnza?ei ngasre'}%’ (')tncine ?(?:de:;}tg Cc?::taet)i(éig} file system operations such as directory lookups, cre-
g ' bp ations, and deletions on small files.

the granularity and type of contexts it can generate can
vary. Some low level applications such as Unix utilities TPC-C. TPC-C [35] is an On-Line Transaction Pro-
(e.g.,l s, cat, etc.) can just provide an interface to the cessing (OLTP) benchmark that performs small 4 KB
caller to pass contexts (e,g., command line argumentsyandom reads and writes. Two-thirds of the 1/Os are
We have modified some basic utility programs such ageads. We set up TPC-C with 50 warehouses and 20
cp, cat, andl s to accept contexts as command line ar-clients. We compare our context-aware MySq|l running
guments. This enables a higher level caller applicatioron our CAIO framework with regular MySql running
(e.g., a shell script) to group all its operations under theon a vanilla kernel. The metric for evaluating TPC-C
same context. performance is the number of transactions completed

Context-Aware MySql. We have modified the MySql P€' minute (tpmC). We report tpmC numbers for each
DBMS [26] with InnoDB [17] as the storage engine, Pe€nchmark.

to generate and propagate contexts at various granularis

ties. MySql has the notion of database clientconnectiong's'2 Results

which can obtain service from the DBMS. Each client [ == rES
connection gets serviced by a separate MySq| thread, « .. e
and can run several transactions and queries. We modi-; £
fied MySql to pass contexts at three granularities in the
form of a hierarchy: connection-level, transaction-level
and a single query-level. Overall the modifications re- =
quired to propagate contexts across the various layers
of MySql and InnoDB were simple. We added only 30
lines of new code and modified 345 lines of existing
code, mostly for passing an additional argument for a Figure 2: Postmark Results for CAIO Framework
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Regular CAIO 39]. These systems go to great complexity to identify
Response Time (s)  Response Time (s) the subset of data that is currently under use, yet these
Delivery 0.096 0.109 techniques are most often approximate and too coarse-
New Order 0.039 0.064 grained. Being more informed about the application’s
Order Status| 0.033 0.29 access patterns and data abstractions, WorkSIDE can do
Payment 0.000 0.000 a better job at such power optimizations by being more
Stock Level 0.169 0.524 aggressive and more accurate.
Throughput (tpmC) 6713 64.35 Disconnected operation. Another usage scenario for

Table 1: Average response time for TPC-C Benchmark  \\orkSIDE is when the user wants to preload the work-

Figure 2 shows the overheads of our CAIO frame-ing set for a specific application context in local stor-
work for Postmark for two different number of opera- age for disconnected operation, say, in a mobile envi-
tions. As seen from the figure the overall elapsed timeronment. This enables Coda-like hoarding [19], but can
overheads were small (2% to 4%) compared to regulabe much more accurate, fine-grained and automated. For
I/0. This overhead is mainly because of the additionalexample, if the user works only on a specific build target

user-to-kernel copies for communicating context objectdn a large body of source code, just the subset of source
from applications. files (and the metadata) needed for the target can be au-

tomatically preloaded to local storage.
TPC-C Results. The TPC benchmark results for reg- ¢ yev to WorkSIDE is its ability to correlate a re-
ular MySQL and our mod|f.|ed conte>.<t-aware MySQL peatable access context with the data context it accesses.
ran over the CAIO kemel is shown in Table 1. The WOorkSIDE achieves this by associating with each node
workload loads tables into a Mysql server at start-up and)¢ 1ha access context hierarchy, the aggregated set of
runs a mix of queries on these tables for a user definegata items that are accessed by that context. Seman-
time. We configured the benchmark to run with five 4. o44reqation of such data is possible because data-
warehouses and created two client connectionwhich ragy, 4 contexts are hierarchical in nature conveying data
queries on all five warehouses f.or ten minutes. AS Seeflpqiractions in several granularities (such as files or di-
from throughput and response time numbers, Overheadr%:ctories). Tracking working set at an aggregated level
of the CAIO framework is quite small. enables much simpler and reliable tracking of repeata-
8 Case Study: WorkSIDE bility. For instance, if an application touches different
parts of a file in its different runs, block-level tracking
may not find much of a repeatability, whereas tracking
Flt the file-level would indicate the pattern. Since the data
dontext hierarchy essentially contains information of the
entire data abstraction tree, it can track this information
at various granularities, and decide on which granularity
provides the best trade-off between the amount of data
to be preloaded and ensuring completeness for the ap-
plication.

Our first case study is the automatiforking Set
IDEntifier (WorkSIDB. WorkSIDE that uses both
access-bound and data-bound contexts to automatical
infer the minimum set of data items required to be avail-
able in order for an application (or a specific instance of
an application) to run to completion. This ability to ac-
curately identify working sets of application contexts at
a fine grained level has various kinds of applications.

Performance. The working set of the application can .
be preloaded into a much faster but smaller memory hi-8'1 Design

erarchy (e.g., a flash storage layer that provides abouto determine the working set of a higher level logical
100x better random access read performance), thus etask, WorkSIDE has to track history of both data-bound
sentially shielding the application from performance and access-bound contexts for every task. We designed
variability due to disk access. WOorkSIDE as an on-disk mechanism to demonstrate its
working as part of the firmware of a high-end block-
based RAID storage system. WorkSIDE can potentially
exist at any layer of the storage stack such as the file sys-
tem or the device driver. Through our design, we show
that even in the lowest layer of the storage stack (the stor-
age hardware), working set identification can be done to
an acceptable level of accuracy, through context-aware
Power Savings. Many recent systems have looked at I/O.

saving power by switching off a subset of disks in a For WorkSIDE to correctly determine the working set
large RAID array in such a way that applications can still of data for a given access-bound context, the higher ap-
function properly without the switched-off disks [38, plication has to pass data contexts to communicate the

Availability. WorkSIDE enables fault-isolated place-
ment of application working sets enabling truly graceful
degradation during multiple disk failures similar to D-
GRAID [31]. While D-GRAID could just co-locate files
or directories, WorkSIDE can co-locate higher-level ap-
plication working-sets within failure domains.



semantic organization of data. This can relate to on+eceiving a block I/0O request with a access-bound con-
disk structures such as B-trees, database tables, files, atekt, WorkSIDE can map the corresponding block num-
directories. In this section, we first detail how access-ber to any level of abstraction in the data-bound hierar-
bound contexts can be associated with correspondinghy by just traversing through the parent back-pointers
data-bound contexts. We then discuss a few policiesn each node in the data context tree.

that can be adopted to determine the granularity of the In the next section, we describe how this infrastruc-
working set of a given context. Lastly, we present ourture is augmented with association policies to deter-
prototype implementation of WorkSIDE. mine the optimal granularity of associating a data-bound

. . working set for a given access-bound context.
8.1.1 Associating Access with Data

WOorkSIDE maintains two context stores (described in8'1'2 Working Set Identification

Section 7) to track access-bound and data-bound coreentifying the working set for a given node in the
texts respectively. Each store has context trees to repaccess-bound context tree involves associating that ACN
resent the hierarchy. We call tree nodes in the acceswith one or more DCNs. Therefore every ACN in the ac-
and data stores aAccess-Context Nod€ACNs) and  cess store contains pointers to one or more DCNSs.

Data Context Node$DCNSs) respectively. Note that, ! )
greatest-Common-Preflx Mode. We  designed

as data-bound context is mainly used to communicat KSIDE d diff des f
the semantic structure of data, it need not necessarily b}_[)Vor to operate under two different modes for

passed by the higher-level application for every I/O re—ChOOS‘ing the appropriate DCN for a given ACN. In the

quest. For example, if a DBMS uses thabl e and first (and simple) mode, which we call th@reatest

record abstractions as data-bound contexts, it mayCommon Prefix(GCP) mode, WorkSIDE maintains

pass the context hierarchy only when such abstractiongtmr?St one DC’\; per:CC,\ll\I. \r/]Vhenever tf;ﬁrekis an th/O
are created (e.g., a table creation) or updated (e.g., ane.WIt ekczntext_ 0 r?n , the r?qtcjjesr;[ locf glé;n;] er
record insertion). For example, the DBMS need not paséS ooked upin tNEBDTABLE -to n t € lea

data-bound contexts for evesel ect query. To han- to Wh_'Ch the _b|0Ck n_umber IS as;ouated. The leaf
dle this condition, WorkSIDE may have to map access-DCN is associated with the ACN if the ACN did not

bound contexts accompanying a block 1/0O request Withnrewously haye a DC.N associated, I.f not, the greatest
a pre-existing data-bound context hierarchy. common prefix node in the tree (starting from the root)

The following are the contents of a DCN: (a) A con- g’é&he. new Iea{ SCN gnd ttr?e prewotust,)ly issopltalted
text identifier. (b) The number of blocks in the entire is computed (using the parent back-pointers)

sub-tree with the node as root. (c) A list of block num- and ass?c&atgd .W"T tthe A.CN' t;he V\l;o:klng-stett_ls
bers associated with the context (if it is a leaf node). Ey-—cnumerated by Just traversing the sub-tree starting
ery time a block /O has an accompanying data-bound™©™ the associated DCN. This method of enumerating
context chain, the corresponding block number is adde he working set for an ACN ensures completeness,

to the leaf DCN of the chain. (d) A list of pointers to its ut under some scenarios there could be a S|gn|f_|cant
child nodes. (e) A back-pointer to its parent node. Thisnumber of falsely associated blocks. For example, if an

. . . access contextl reads files/ hone/ j ohn/ pl an. t xt

is used to increment the number of blocks in every par- nd /home/ i ohn/ brivate/list txt the GCP

ent along the chain when there is a new addition to a leaf omerjohn/private/iist. txt, .

node method of association would include the entire contents
: of / hone/ j ohn/ in the working set ofA. A variant

While adding a_node (o the tree, we enforce $ire of the GCP mode mitigates this problem under some
gle parentconstraint, where every node must have at

most one parent. When there is a context chain asseacenarios by tracking the longest depth to traverse while
P ' P ehumerating blocks, along with the ACN. With this, the

that violates this condition, we truncate the chain after . 2 )
; . o working set of A would just include files up to depth

the spurious node while adding it to the tree. In almos . .

. evel 3 ( hone/ j ohn/ pri vat e).

all common cases, this would not affect the accuracy o

the data-bound context tree, as most data-abstractions @ulti-DCN Mode. In the second mode, which we

ready follow this rule. For example, a single block can-call the Multi-DCN mode WorkSIDE tracks a list of

not belong to more than one file (except in rare case®CNs per ACN. Every ACN has a list of duplicate elim-

such as hardlinks in Ext2). inated pointers to parent DCNs. To enumerate the work-
WorkSIDE also maintains a hash tabdnTABLE, to  ing set for a given ACN, the following procedure is

map block numbers to the corresponding leaf nodes irused: for each DCN associated, all blocks belonging

the data context tree. TIEDTABLE is used to lookup to their immediate children are included. For exam-

the data context for any block when an 1/O request to itple, if an ACN B reads fileg hore/ j ohn/ pl an. t xt

does not have an associated data-bound context. Upa@and / hone/j ohn/private/list.txt, DCNs for



/ home/ j ohn and/ hore/ j ohn/ pri vat e will be asso- Module # Directories #Files # Blocks (4k)
ciated with B. While enumerating the working set of Ext2 14 315 1149
B, all files (not sub-directories) undehone/ j ohn and Ext3 14 328 1452
/ hone/ j ohn/ pri vat e will be included. Therefore, the | ReiserFs 14 328 1432
multi-DCN mode of association provides more accuratg NTFs 14 320 1769
identification of working sets. However, this method Table 2: Compilation Working Set Statistics

needs to track more information per ACN. In the proce- s . ' .
: . e modified the Linux Ext2 file system to associate a
dure described above, we choose the hierarchy one leve

above the leaf DCN for every block access. HowevergeneriC “common® cor_wtext which can be @nterpreted _by
the number of such levels can be configurable based op Y layer as one that is not associated with any particu-
specific system and workload requirements [Ar access-bound context. We call our modified Ext2 file

WorkSIDE can also track information required for system, Ex2C.
both GCP and multi-DCN modes simultaneously (ev-8.3 Evaluation

ery ACN can have both the list of parent DCNs and a,
single GCP node). Based on the kind of usage scenaritVe evaluated the correctness and performance of our

for the working set, enumeration process can be decidefr0totyP€ implementation of WorkSIDE. For correct-
dynamically to choose the optimal granularity. ness we used a Linux kernel module build process, and

for performance, we used the Postmark benchmark de-
8.2 Prefetching for Power Savings scribed under Section 7.

We developed an on-disk prefetching tool that useskernel Modules Build. Our goal during this test was
WorkSIDE to enumerate the working set of access-to evaluate the correctness of the working set identifi-
bound contexts and prefetch them into a faster storcation mechanism of WorkSIDE. We untarred a vanilla
age. For prefetching, we tracked the repeatability of theLinux 2.6.15 kernel on our Ext2C file system mounted
working set of each ACN, and for repeatable ACNs, weover our WorkSIDE pseudo-device driver. We did this
prefetch and serve the entire working set from the fastethrough a shell that has an inheritable access-bound con-
storage medium. text set (described under Section 7.1), with depth one.
To evaluate our working-set aware prefetcher, weWe then remounted the file system to eliminate cache
compiled several modules in the Linux kernel source,effects and compiled the source-code of a few file sys-
and e2f spr ogs package [36], with inheritable con- tems (Ext2, Ext3, Reiserfs, and Ntfs) undertlse¢ sub-
texts. We found that once working-sets were identi-directory of the kernel source. While compiling each file
fied by WorkSIDE and prefetched into RAM by our system, we used different shells with different second-
prefetcher, there were no requests sent to the disk duttevel inheritable contexts set. We initialized the build
ing the compile workload. Therefore, working-set awareprocess throughrtake i nst al | ” separately at the be-
prefetching of data enables turning off disk drives (andginning, and remounted the file system after each com-
hence save power) in the case of repeatable workloadspilation. We ran this test over WorkSIDE for both GCP
) and multi-DCN modes of operation.
8.2.1 Implementation Under the GCP mode, we noticed that the working
We implemented a prototype of WorkSIDE and our sets of every single file system compilation was iden-
prefetching tool as a pseudo-device driver in Linux ker-tified as a the root of the kernel source tree. This is
nel 2.6.15 that stacks on top of an existing disk blockbecause, a file system module compilation would refer
driver. The pseudo-device driver receives all block re-to files under ncl ude/ andfs/ and hence the great-
guests, and redirects the common read and write reest common prefix node becomes the root of the kernel
guests to the lower level device driver, after storing con-source.
text information that needs to be tracked. Our prototype When we ran the test under the multi-DCN mode, we
of WorkSIDE included both the GCP and multi-DCN saw WorkSIDE identify separate working sets for each
modes of associating data-bound contexts. It containsf the file system compilation contexts. Table 2 shows
3020 lines of new kernel code. the total number of directories, files, and blocks associ-
For testing WorkSIDE, we also modified the VFS ated with the working set of each compilation. We iden-
layer of the Linux kernel to encode the pathname of thetified these by dumping the entire access-bound context
entity being operated (file or directory) along with every tree of WorkSIDE and their associated DCNs. In each
lower level I/O request. File system meta-data blockscompilation context, the generated object files were also
such as super blocks, bitmaps and directory blocks havincluded in the working set as the same inheritable con-
to be dealt with separately, as they may not particularlytext was passed for write operations as well.
belong to a specific application. To handle such blocks, We also used the Multi-DCN mode of WorkSIDE
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20 Ut e generated by two Qiﬁe_rent application_s, mak.in.g it harder
7 System mm— to implement application-aware caching policies.
it 170.5 173.1 175.9 In this section we design and evalu@entext-Aware
g T Cache(cA-cachg, an on-disk caching mechanism that
g wor differentiates independent 1/O streams using logical con-
8 sof texts and tunes its caching policies based on individual
0 — — w— access patterns.

Figure 3: Postmark Results for WorkSIDE (200 Sub- 9.1 Design

directories, 20,000 Files, and 200,000 Transactions.).isTh yyq designedA-cacheas an on-disk LRU write-through

shoyvs thg ov_erheads a;sociated with the process of Workingtfache layer. The goal afA-cacheis to identify se-

set identification at the disk-level. . : . . .
guential streams of 1/0 and disable caching their data,

to calculate the working-sets for kernel compilation 35 mostly sequential /0O streams do not benefit from

with make al I noconfi g andnmake allyesconfig.  read caching. As we are interested in the access-patterns

For compilation usingmake allnoconfig the size  to tune the caching policy, this application uses access-

of the working-set came out to 32.6MB. Fomke bound contexts.

al I yesconfi g, the working-set size was 3GB. As the

objectfiles during compilation are created from the saméA‘rCh'te_Cture' _CA'CaChe consists of a set of
context, they were included in the working-set. dynamically-built context trees and an LRU cache.
Each tree represents a group of hierarchical contexts

Postmark. To evaluate the performance overheads ofwith the same root context. Each node represents
WorkSIDE, we used an I/O-intensive benchmark, Postthe hierarchical context specified by the path from
mark. We ran our modified Postmark that passes conthe root of the tree to that node. Context trees are
text objects with each 1/0O request, over WorkSIDE in created or updated on each read request that specifies an
its two modes, and compared it with regular Postmarkaccess-bound context.

Egrlinv?/eoﬂstgg Sariggi:‘irggl S)I(St; a';i;g‘%?g;ﬁéﬂ':oasﬁ lassification of Contexts. Each node in the tree con-

for WorkSIDE evaluation, we used our modified Ext2C NS the following information about a particular con-

file system. Figure 3 shows the overheads of WorkSIDEteXt (a) the inferred access-pattern for the particular
compared to regular disks. context, (b) the block number for the last read 1/O re-

WorkSIDE under the GCP mode of operation had anquest required to track sequentiality, and (c) two coun-
. . fers that track the number of successive sequential and
elapsed time overhead of 1.5% compared to regular disk.

The overhead mainly consists of system time (12%)r.an.OIOm read requests in the past. Acpntext nodeis ini-
tialized as random-access upon creation. Based on the

caused because of updating context trees and trackqgst read request and the current request, either the se-

greatest common prefixes. Under the multi-DCN mode : o
of operation the elapsed time overhead was 3.7% COmguenu_al or the random counter is incremented and the
) other is reset. When the values of the counters exceed

1 04 | i -
pared to a regular disk, caused by a 20% increase in sys threshold the node is classified as sequential or ran-

tem time. The increase in overheads compared to Gch . e

. . dom as appropriate. Note that an already classified node
mode is because under the multi-DCN mode, WorkSIDE - .

?ould be re-classified when its access pattern changes.

Upon receiving any read request, the counters in all
nodes that are part of the current context are updated and
She nodes are re-classified if needed. We call the num-
ber of sequential read request required for classifying a
9 Case Study: CA-Cache node as sequential, theequential threshold The se-
gfuential threshold is configurable, and can range some-
where between 10 and 100. A sequential-access node is

rse-classified as random upon a single out-of-order read.

has to track multiple data nodes per access-node. |
WOorkSIDE is implemented in a real disk, tracking con-
text trees would be done by the disk firmware and henc
would not incur the host CPU overheads.

Modern large-scale storage systems have hundreds
gigabytes of built-in main memory [13], primarily for
caching purposes. However, today’s storage system
cannot adapt their caching policies based on application€aching Methodology. Our classification scheme al-
level workloads or data semantics, as they lack informalows for different hierarchy levels in the same context
tion about higher level semantics. This is caused by arthain to be classified differently. For example, two sub-
excessively simple disk interface [12, 31]. Application- contexts that are part of the same parent may be doing se-
aware caching policies have been found to be quite usequential I/O in their own levels. However, since the 1/0
fulin the context of OS level caches [9]. Yet today’s disk from the sub-contexts could be received interleaved, the
systems cannot even separate independent 1/O strearparentwould be classified as randooa-cachedoes not
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0 R with 4,200,000 records each, and ran random and se-
O random quential query logs simultaneously. The tables were ap-
e Q 0 proximately 233MB in size. The sequential query log
contained asel ect * query on the table. For a ran-
dom workload, we selected a subset of the records at
e a 0 Q e @ random and issued select queries based on their record
Figure 4: Context tree used for CA-cache micro-benchmark.IDS. To show the benefits of caching random streams

After our micro-benchmark, CA-cache classified the grayedalone, we repeated the random query log ten times. We
nodes as sequential and the rest as random. also ran the sequential log in a loop till the random work-

require context identifiers to be repeatable. Therefore, {°@d completed. We determined the throughput of the
contains a mechanism to automatically forget context§@ndom workload (number of queries executed per sec-

based on a timeout. We periodically purge context tre?nd) While the sequential workload was running in par-

entries that represent inactive contexts (without any re!l€l- It was 266.13 queries per second without selective
quests) beyond a time threshold. cac_hlng, Wh_lle it was 614.15 queries per second with se-
lective caching.

9.2 Implementation

We implemented a prototype of our on-disk cachingl0 Case-study: CA-schedule

mechanism as a pseudo-device driver in the Linux ) )
2 6.15 kernel similar to WorkSIDE. We maintain the 10 demonstrate the usage of contexts in scenarios that

context trees in memory and an asynchronous kerngi€duire application-specific information, we designed
thread wakes up periodically to purge timed out con-2 proportional-share disk schedulem-schedule, that

text entries. If the block is present in the LRU cache,US€S logical contexts to identify tasks and insulate their

the pseudo-device driver services the request from th@erformance. Individual contexts are annotated by their
cache, thereby avoiding a request to the lower level. othresource share allocations. These annotations are made
erwise, the request is directed to the lower level and théhough an out-of-band channel between the applications
cache is updated on completion of the request, if the rend the disk scheduler.

guest belongs to a random-access context. ] . . ]
Design. cA-schedule is a time-slice based

Read Micro-benchmark. To evaluatecA-cache we  proportional-share disk scheduler that uses resource
ran a micro-benchmark that generates synthetic randorghare allocations associated with individual logical con-
and sequential read workloads simultaneously and calexts, to make scheduling decisions. The share values
culated the overall throughput of the random workload.tgr each logical context has to be preset by an offline
We compared the throughput results@-cachewith  communication channel between the applications and
a vanilla LRU cache layer which treats all contextsthe disk scheduler.ca-schedule decides the next I/O
equally. Bothca-cacheand vanilla LRU cache used request to be scheduled, based on the share proportion
4MB of cache (1,024 4KB pages) for this benchmark. assigned for the particular logical context and the time
We ran a user program that generates workloadgach context has consumezh-schedule ensures that a
shown in Figure 4. The user program has four executiorparticular context is given the proportion of disk-time
contexts (threads), A, B, C, and D which use their ownwhich is at leastequal to its share value, provided the
files for I/0. Thread A reads a 4GB file sequentially with context has enough /O traffic to make use of it.
context{1-2-5} (see Figure 4). Thread B reads a 4GB CA-schedule maintains several request queues based

file sequentially, but it uses contex{$-3-7} and {1-3- . . o
8} for alternate reads. Thread C is identical to thread-" the granularity of proportions needed. If the min

B, but it uses context$1-4-9} and {1-4-10}. Thread imum granul_anty of a proportion idl/n, then cA
) . . schedule maintains request queuesA-schedule uses
D reads random locations from a 4GB file using context . . .
equal time-slices to service each of thesequeues.

{1-2-6}. For thread D, we use a random number genera

tor that repeats itself every 1,024 reads. The threads rurﬁ| owever, based on the share value of a context, its re-

. . . . _guests are striped across several queues. For example,
until any one of the sequential threads exits after readmg?f the value ofn is 10. and the share level for context

4GB of data. In our experiment, the tthUthUt of theA is 1/2 then the requests from that context are striped
random workload when run under the vanilla LRU cache . . .
across five different queues exclusively. If we assume

was 0.098 MB per second, whereas with-cache the there are five other contexts each with share lgyeD,

throughputwas 7.71 MB/Sec. this mechanism will ensure that the requests of context
MySQL Micro-benchmark. For this benchmark, We A will be serviced five times for every single time any
created two identical tableseQ and RAND in MySQL other context is serviced.
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Run 1 (Ops) Run 2 (Ops) Run 3 (Ops)
context A (1/8) Null 193k (144k) 142k (108K)
context B (5/8) 861k (861Kk) 728k (718Kk) 540k (538Kk)
context C (2/8) Null Null 298k (215k)

itis used, we enable the layers to be independent of each
other while still enabling arbitrary grouping information

to be conveyed across the storage stack. We have shown
through two case studies that contexts are a simple and

Table 3: Read micro-benchmark for CA-schedule: Each col-general abstraction to convey application information.

umn in the table presents the total number of 4KB reads per
formed in a five minute interval. The values specified in lsace
is the ideal number of reads that should have been performe
based on the share-level for that context. Each row indgate
a particular context run in parallel with other contexts imatt

Future Work.
é)f CAIO, especially those that require annotating con-
text identifiers with semantic information (at any spe-
cific layer) by offline methods as described in Section 5.

We plan to explore more applications

column. A “Null” value in a column indicates that the process References

for that context was not run in parallel. [1]

Implementation. We implementedca-schedule by
modifying the existing fair-share scheduler in the Linux
kernel version 2.6.15, popularly called as Complete Fair
Queuing (CFQ) scheduler. We modified CFQ to per- [2]
form proportional-share scheduling by having a constant
number of queues based on the valuax@ind to stripe
requests on the corresponding queues, based on associ-
ated contexts. The modification was quite simple: we [3]
modified 40 lines of existing code and added 120 lines

of new code to the scheduler.

Evaluation. To verify the correctness afA-schedule, [4]
we ran a read workload. We assumed three different
contexts A, B, and C for all tests with share valugs,
5/8,and2/8 respectively. We ran 10 identical processes
for each context, each performing several 4KB random
reads on their own file. We calculated the total num-
ber of reads completed by the threads of each context
every minute. Using this, we measured the percentage
slowdown experienced by each context as other contexts
were run in parallel and compared it with each context’s [6]
share allocation.

Table 3 shows the number of operations completed
by each of the contexts when run together with other
contexts. Overall the total the slowdown experienced by [7]
each context is proportional to the share allocation.

(5]

11 Conclusions

As Butler Lampson said, interface design is one of the
most complex aspects of system design, while also be- [8]
ing the most important. Interface designers have tradi-
tionally embraced the philosophy of minimalism—hide

as much information about the layers as possible, so that
the layers can innovate and evolve independently. This [9]
approach, despite all its merits, has the downside of ob-
scuring what a layer knows about its inputs, thus limiting
functionality. At the other extreme, some systems have[10
explored how to completely tie the layers together, by
having extensible layers or exposing detailed informa-
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