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Abstract

We propose the concept of Context-Aware I/O
(CAIO), a generic mechanism that enables lower lay-
ers of the storage stack such as the disk, to track
application-dataand application-I/O relationships. In
CAIO, higher-level application context is propagated
along with every I/O operation, in an end-to-end fash-
ion, across the storage stack. By decoupling the genera-
tion of such contexts at the higher layers from how they
are used by the lower layers, CAIO provides a simple,
yet effective mechanism to encode and propagate appli-
cation semantics to the storage stack.

In addition to conveying information about the logi-
cal task on behalf of which an I/O is executed, context
also acts a vehicle for tracking application-specific se-
mantics at any layer of the storage stack. A large class
of such semantics can be learned implicitly by the lay-
ers, while others can be explicitly associated by way of
out-of-band attributes. To demonstrate the usefulness
of CAIO, we have designed and evaluated three case-
studies that make use of logical contexts to track differ-
ent kinds of semantic knowledge, achieving interesting
functionality.

1 Introduction

The knowledge about working sets of data used by each
higher-level application is quite useful in the lower lay-
ers of the storage stack such as the disk. For example,
if a RAID system is aware of the data items belong-
ing to a particular application, it can try to co-locate
all data within the same disk or prefetch them to a
faster storage, for power-saving and performance pur-
poses [31, 38, 39]. From a systems-management per-
spective, identifying the set of hardware components
containing the working set of a critical application is
useful to perform operations such as selective recov-
ery of failed hardware [24]. Disconnected operations in
mobile environments [19, 20] can be achieved by pro-
actively prefetching the working sets of running appli-
cations, at any layer.

In the modern storage stack, working set informa-
tion is blurred or even completely unavailable in the
lower layers. Virtualization layers such as RAID, logi-
cal volume managers, virtual machine monitors, or even
a network can exist in today’s storage stack, making
it hard to preserve application-data relationships across
layers. Techniques to address this general problem of the

information-gap across layers have ranged from build-
ing application-extensible OSes [7, 14] and brand-new
abstractions [12, 23, 25, 30], to more evolutionary ap-
proaches such as applications passing hints [9, 11, 27],
applications implicitly influencing OS behavior [3, 8],
and automatically inferring cross-layer information [3,
32]. However, none of the existing solutions enable con-
veying application-dataand application-I/O relation-
ships to the storage stack, in an end-to-end fashion (user
applications to the storage hardware).

In this paper, we propose the concept ofContext-
Aware I/O(CAIO), a simple and generic way for appli-
cations to convey arbitrary information about their I/O
behavior and relationships, without worrying about how
the information will be used by the storage stack. In
CAIO, an application-levelcontextis propagated along
with an I/O operation across the entire storage stack, in
an end-to-end fashion. An application-level context is
represented by one or morecontext identifiers. For ex-
ample, a database application can have a unique identi-
fier that it can propagate along with every I/O it gener-
ates, such that any storage layer can easily group all I/O
generated by the database application.

In addition to working-set identification, application
contexts also enable a new class of functionality that
uses application-I/O relationships, such as easy and flex-
ible performance isolation in large-scale distributed stor-
age, and access-pattern aware caching and prefetching
within the storage hardware.

To make CAIO a generic framework, we decouple
the generationof application-level information from
how the information isusedwithin the storage stack.
Most hint-based proposals to address the problem of
information-gap in the past have tied these together. For
example, in hint-based prefetching systems, the appli-
cation provides hints of its future access, but the hints
are specifically designed with prefetching in mind. The
problem with such function-specific hints is that they
require coordination and agreement between the layers
involved. In a multi-vendor setup, such coordination
translates into industry-wide consensus on the interface,
a standardization process that takes years. In addition,
such an approach cannot scale in an end-to-end manner
to the multi-layered storage stacks that we have today.

Decoupling the generator and consumer of the context
information leads to an interesting challenge: when the
application could conceivably use more than one possi-
ble granularity of grouping I/O, how can it decide which



one to use while being oblivious to how the grouping is
interpreted by the lower level? For example, a database
application can group the I/O requests it generates based
on the database user, session, transaction, or query on
behalf of which the I/O is issued; but the lower layers
are oblivious to the granularity of the context. To solve
this issue, contexts in CAIO arehierarchical. With hi-
erarchical contexts, higher layers can encode multiple
granularities of grouping, and the lower layers can de-
cide which granularity is the best for the particular func-
tionality that they provide.

Context acts as a vehicle for tracking semantics at any
layer by way ofimplicit learning. For example, a buffer
cache layer can automatically correlate the blocks read
by individual contexts and identify sequential and ran-
dom streams. This information can be used to fine-tune
buffer-cache policies. Beyond implicit learning, proper-
ties of I/O such as the QoS levels can also be tracked by
contexts by way ofexplicit attributes. These attributes
can be communicated among specific layers in an out-
of-band fashion. For example, the QoS levels of indi-
vidual contexts can be communicated to a disk scheduler
directly without other layers knowing about it.

We illustrate the generality and power of the con-
text abstraction by prototyping and evaluating three case
studies. Our first case study is an automatic working
set identifier,WorkSIDE, which operates at the block-
based storage hardware layer. WorkSIDE automatically
tracks the data working set required for an application
context to run to completion. This working set can then
be preloaded as appropriate in order to improve per-
formance and availability, or to enable power optimiza-
tions. The second case study is a context-aware cache-
placement algorithm within the disk that automatically
learns which application-level contexts exhibit sequen-
tial streaming access pattern and avoids caching requests
with that context. In our third case-study, we demon-
strate the use of annotating contexts with attributes,
by designing a context-based proportional-share disk
scheduler. We show the usefulness of all three case-
studies using prototype implementations we built for the
Linux kernel, and evaluate various workloads.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss the utility of CAIO by presenting a few
potential applications. We discuss related work in Sec-
tion 3. In Section 4 we present a taxonomy of the various
kinds of contexts in storage. We detail how we general-
ize the CAIO interface and track semantics in Sections 5
and 6. In Section 7, we describe CAIO design and appli-
cation support. We present our case studies in Sections 8
9, and 10, and conclude in Section 11.

2 The Utility of Context-Aware I/O
In this section we describe several usage scenarios that
motivate tracking context information in the different
layers of the storage stack. Many of these utilities cannot
be implemented effectively without explicitly propagat-
ing application-level contexts. In Sections 8, 9, and 10,
we demonstrate our implementation of the first three us-
age scenarios described below.

Working-set Aware Features. Identifying working
sets of data for individual applications at the lower
layers of the storage stack, enables interesting func-
tionality such as application-aware prefetching [27],
power-savings [38, 39], selective recovery of failed hard-
ware [24], and improved data availability [31]. We de-
scribe our implementation of a disk-level working-set
identifier and its usefulness in detail under Section 8.

Adaptive Caching and Prefetching. The efficacy of
caching and prefetching depends on the ability to iden-
tify access patterns. Context can enable caching and
prefetching mechanisms to adapt their policies based on
access patterns. Section 9 describes our implementation
of a context-aware disk-level caching mechanism.

Application-Aware Performance Isolation.
Scheduling algorithms at different levels of the
storage stack can leverage application-level contexts
in scheduling decisions. For example, fair share disk
schedulers can enforce fairness based on higher level
logical tasks as against OS processes. Application-based
resource isolation has been previously explored in the
context of a single OS in Resource Containers [5].
Contexts can enable flexible resource isolation in an
end-to-end fashion even in distributed storage.

Optimized Data Layout. File systems can use higher
level contexts as hints for optimal data placement on
disk. Co-locating files and directories created in the
same context could be beneficial under certain scenar-
ios to achieve better spatial locality during reads.

Improved Accounting. Context information associ-
ated with I/O operations can greatly help in I/O trace
analysis. Trace analysis for resource consumption can
be more accurate when it makes use of logical con-
texts pertaining to precise higher-level tasks. Contexts
can also provide valuable hints about the dependencies
of I/O operations and the causal relationships between
them, for trace-based intrusion detection systems [18].

3 Related Work
The idea of tagging requests with identifiers has been
explored in the context of distributed systems for per-
formance debugging, profiling, etc. Pinpoint [10] and
Magpie [6] are examples of systems in this category.
Recently, Thereska et al. proposed applying a similar
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idea in the context of distributed storage systems mainly
for performance monitoring [33]. All these systems
look at tagging requests in a causal chain with a cer-
tain identifier so that the entirepathof a logical request
(which may involve multiple physical network hops)
can be tracked. Researchers have also looked at im-
plicitly inferring this causal knowledge without explicit
tagging [2, 15, 22] but it involves significant complex-
ity compared to the explicit tagging approach. These
systems only operate within the scope of one logical re-
quest and are targeted at a specific application. In con-
tact, CAIO allows for a more general expression of ap-
plication level semantics to cater to a wide variety of
applications.

Previous work has also looked at conveying
application-level grouping through new abstractions
similar to our notion of context. Perhaps the closest to
our work is the idea of Resource Containers [5], which
allows applications to group requests into a resource
container which is then treated as a logical principal for
the purposes of resource isolation and accounting. How-
ever, similar to the systems discussed above, resource
containers were also built with the specific goal of re-
source accounting and convey information on one spe-
cific kind of grouping.

Our work on context-aware I/O also fits into a class
of other work on general solutions for bridging the in-
formation gap across system layers. Work in this area
mainly belongs in three categories: extensible systems,
hint-based interfaces, and implicit techniques to infer in-
formation or exert control. We discuss each of these.

Extensible systems. A common way to bridge the in-
formation gap between applications and the system lay-
ers is to enable the system component to be dynami-
cally extensible by the application. Extensible operat-
ing systems [7, 29] are examples of this approach. By
safe execution of application code, the operating system
could allow the application to implement its own poli-
cies for traditional operating system tasks. The notion
of extensibility has also been explored at the hardware
level. For example, active disks [1, 28] enable applica-
tions to download code into the disk that is run within
the disk controller. Such code can implement arbitrary
filtering of data based on application level predicates,
and even perform more sophisticated operations such as
search [21] without actually transferring data out of the
disk subsystem.

All these systems provide a lot of control to the appli-
cation and in the process, essentially ties the layers to-
gether. Although valuable in certain scenarios, applica-
tions need to have a reasonably intricate understanding
of the system in order to use these, thus making them
complex to design.

Hint-based interfaces. Another approach that has
been explored to solve the information gap problem is
a more evolutionary one; provide specific primitives at
the system level that the applications can use to convey
information to the operating system. Informed prefetch-
ing [34] is an example of such a system. By enabling the
application to convey information about its future access
pattern, the OS acquires knowledge about the applica-
tion which is used to perform more intelligent prefetch-
ing. Logical disks [11], which provides an interface for
the applications to encode locality hints by creating lists
of blocks, is another example. Researchers have also
looked at the flip-side of the problem: provide informa-
tion about the OS to the application so that the applica-
tion can make intelligent decisions. Infokernel [4], and
icTCP [16] are examples in this category.

One commonality between many of these hint-based
approaches is that the hints are often tied to a specific
kind of functionality. In other words, the information
being transferred is designed with a particular purpose in
mind. This in turn limits the flexibility of such a system
because each new class of functionality may require yet
another new primitive to be added to the interface.

Inference-based systems. The final class of related
work pertains to approaches that take the extreme view-
point along the axis of being evolutionary and being
less intrusive. These systems attempt to achieve cross-
layer awareness, but without explicitly communicating
it from one layer to another. Gray-box systems [3] is
an early example of such an approach. An application
with “gray-box” knowledge of the operating system at-
tempts to implicitly control the operating system behav-
ior by tuning its workload in such a way that it takes
the operating system to a state that results in the desired
policy. Another system built along the same philoso-
phy is semantically-smart disks [31] in which the stor-
age system infers knowledge about the higher layers by
carefully observing traffic and correlating them to higher
level operations.

While being valuable from the viewpoint of being
easily deployable and less intrusive, these approaches
have their own limitations because they are heavily con-
strained in terms of not changing interfaces. This in
many cases results in additional complexity making it
hard to reason about correctness while also limiting the
usage of such inferred knowledge to less aggressive ap-
plications that can tolerate inaccuracy.

4 Context Types
Context in storage is quite useful as seen from the kind
of functionality it enables (described in Section 2). We
now definecontextas follows:A context in storage is a
reference or identification used to group, on some basis,
several I/O operations or data.
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Figure 1: Examples of how hierarchical contexts can be con-
structed. (a) shows an access-bound context hierarchy. (b)and
(c) show data-bound context hierarchies.

We now describe the types of contexts that are rele-
vant to storage.

4.1 Data-bound vs. Access-bound
The two primary entities in storage are (a) data, and (b)
I/O operations on data. Context in storage is mainly used
for grouping several such data items or I/O operations.
Therefore we classify context in storage broadly into two
types: data-bound and access bound.

A context is said to bedata-boundif it can be used to
group several data items stored on disk, based on some
metric. This grouping is independent of the way the
data is accessed. For example, a data-bound context can
group all blocks belonging to the same database table or
file. Data-bound contexts can group data based on ar-
bitrary criteria such as logical abstractions (files, direc-
tories, database tables, etc.), owning application or user,
security domains, and so on. Data-bound contexts can
be used to communicate higher-level data-structures to
the disk, and enable functionality such as fault-isolated
placement in RAID [31].

Access-boundcontexts relate operations rather than
the data pertaining to them. For example, an access-
bound context can group all block write operations re-
sulting from a single database query. Access-bound con-
texts enable new functionality that solely depend on the
characteristics of individual I/O requests. The caching
and prefetching functionality described in Section 2 re-
quires access-bound contexts.

Figure 1 shows a few examples of context hierarchies.
Figure 1(a) shows a possible access-bound hierarchy for
a database application. Figures 1(b) and 1(c) show data-
bound context hierarchies that communicate data ab-
stractions.

4.2 Repeatable vs. Non-Repeatable
The lifetime of a context identifier is defined by the ap-
plication that generates it. When a single context iden-
tifier is used every time to refer to a particular logical
context, we call it a repeatablecontext. For example,
when a context is used to group files within an access-
control domain, the same identifier has to be reused ev-

ery time when operations are performed on that domain.
Applications have to generate such contexts using a de-
terministic method and may maintain persistent states to
track contexts.

Non-repeatablecontexts have transient identifiers.
For example, if apid is used as a context identifier to
group I/O operations generated by a particular program,
every time the program runs, the identifier becomes dif-
ferent, although the logical context remains the same.
Non-repeatable contexts do not require any state to be
maintained at the application-level.

5 Generalizing the Interface
In this section, we describe how we can cope with arbi-
trary context generation process at the application-level,
and achieve independence between the generation and
usage of application-contexts. We also describe how
lower layers of the storage stack can extend contexts or
correlate across different context types.

Hierarchical Contexts. To achieve generality in the
CAIO interface, the context generation process at the
application-level must not make any assumptions about
how the lower layers use the context. However, at the
application-level, there may be several different ways
to generate a context, each useful for different kinds of
functionality at the lower layers. A single application-
wide context identifier can be used to easily group all
data required by the application, whereas more fine-
grained context identifiers within an application help
communicate different streams of I/O requests gener-
ated by sub-components of within same application. For
example, a single DBMS-wide context can be used to
group all I/O and data that the DBMS manages. This
enables functionality such as working-set identification
for the entire DBMS. On the other hand, a per database
session-level context can be used for easy performance
isolation between database user sessions. We use the
termcontext granularityto refer to the different possible
ways to generate contexts within an application.

Therefore, for generalizing the interface without ham-
pering the kind of functionality it enables, we evolve
a context scheme where the application can encode all
possible granularities as a single context, passing down
context hierarchies(for access-bound and data-bound)
rather than a single identifier. For example, a DBMS can
generate access-bound contexts in granularities such as
sessions, transactions, and individual queries, and data-
bound contexts in granularities such as databases, tables,
and records.

Lower layers of the storage stack can use hierarchical
contexts without making assumptions about what each
of the levels in the hierarchy mean. For example, a
caching layer that wants to classify some context to ex-
clude caching (e.g., sequential contexts) can track the
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statistics on sequentiality at each level of the context hi-
erarchy, and then choose the highest level that exhibits
homogeneity in the access pattern. Depending on the
specific behavior the layer is looking at (e.g., sequential-
ity, correlated access of the same pieces of data), the def-
inition of homogeneity changes. Hierarchical contexts
enable decoupling the application from worrying about
which behavioral properties the lower layers are inter-
ested in; instead the application just conveys its state,
and the lower layers make their independent decisions
on the notion of homogeneity they care about, based on
the layers’ own per-context statistics.

Note that for a context hierarchy chain in CAIO to
be meaningful, every context in the chain should qualify
a logical subset of the access or data domain qualified
by its parent context. For example, a per-query context
identifier can be a child of the transaction identifier in
which the query is a part. However, a context identifier
that qualifies the class ofall select queries in a DBMS
cannot be a child of any particular transaction identifier,
asselect queries can be part of any transaction.

6 Context: A Vehicle for Semantics

Context in storage can also be viewed as a vehicle for
tracking layer-specific semantics in the storage stack.
Such semantics can be associated with contexts, by two
methods: (a) implicit learning at the individual layers,
and (b) annotating contexts with explicit attributes. We
discuss these two methods below in detail.

Implicit Learning. Layers of the storage stack that
propagate contexts can automatically learn key informa-
tion about these contexts. For example, a caching layer
can analyze the request stream for a particular context
and classify it as sequential, random, or looping. Such
information can be useful in implementing interesting
policies and optimizations. In sections 8 and 9, we de-
scribe two case-studies that demonstrate the usefulness
of automatic learning of semantics based on contexts.
Our first case-study, WorkSIDE, learns correlations be-
tween data-bound and access-bound contexts to enumer-
ate the working-set of data used by a particular context.
In our second case-study, we implement an intelligent
on-disk cache layer that learns access-patterns associ-
ated with contexts to tune caching policies.

Explicit Attributes. Certain functionality may require
application-specific information to be associated with
contexts. For example, a context-based proportional-
share disk scheduler needs share proportions to be as-
sociated with levels in the context hierarchy. For this
purposeout-of-bandmechanisms such asioctls can
be used to annotate context identifiers with functionality
specific information. Note that these annotations need
not be part of the CAIO infrastructure, but can be done

separately between any two layers that needs to coor-
dinate to implement a specific functionality. We de-
scribe the design and implementation of a context-based
proportional-share disk scheduler that uses explicit at-
tributes, in Section 10.

7 CAIO Design
End-to-end association of context with I/O requires
passing application-generated context with every I/O op-
eration throughout its lifetime. We evolve a framework
through which context can be passed from an application
all the way down to the storage hardware (e.g., a disk).
In this section, we describe the changes required to the
storage stack and user applications, to support contexts.

We propagate context in the storage stack by means of
context objects. A context object contains upto two con-
text chains, one each for data-bound and access-bound
types. These context types are based on the discussion
under Section 4. Context objects also carry information
about the repeatability of the context chains. Repeata-
bility is at the granularity of an entire chain and not the
individual context identifiers within a chain. The struc-
ture of a context object is shown in Listing 1.

struct caio_context {
int data_bound[MAX_DATA_LEVELS];
int access_bound[MAX_ACCESS_LEVELS];
short data_levels;
short access_levels;
int flags;

};

Listing 1: Structure of a context object. The fields datalevels
and accesslevels indicate the number of levels in the data and
access-bound context chains. Flags contain information about
repeatability and inheritance properties (Section 7.1) for the
context.

7.1 Associating Contexts With I/O
The CAIO framework contains a user library that ex-
ports routines to construct context objects and add new
levels of hierarchy to existing context objects. User
applications can generate context objects through these
routines and associate them with I/O operations. Our
framework provides three different ways for user appli-
cations to associate contexts with I/O operations. They
are, (a) an extended system call interface (b) group con-
texts and (c) context inheritance. We detail each of these
mechanisms below.

An Extended System Call Interface. We have an
extended system call interface that passes context ob-
jects along with storage primitives such asopen, read,
write, unlink, etc. Each of these I/O system calls in-
clude an additional argument for the context object. List-
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ing 2 shows an usage scenario for the extended system
call interface.

Group Contexts. For applications that need to per-
form a several I/O operations with a single context ob-
ject, we provide a new system call for setting and un-
setting contexts into the kernel. The scope of this asso-
ciation is just the specific thread of execution. There-
fore applications can first set a context and then issue
any number of regular I/O system calls (such asopen

or read), and the corresponding context object will be
associated with every operation.

Context Inheritance. To support easy usage of con-
texts in cases where the smallest granularity is a process,
our framework includes a context inheritance mecha-
nism using which any process can set aninheritable con-
text into the kernel. All child processes and threads of
such a process will then inherit the same context hierar-
chy.

int fd; char buf[128];
struct caio_context *context;

/* Allocates and sets top-level databound

* and accessbound identifers as 1 */
context = caio_create_context(1, 1);

/* Adds a new level to the access/data

* hierarchy with identifier 2 */
caio_add_level(context, 2, 2);

/* CAIO system call interface */
fd = caio_open("/home/joe/abc.txt",

O_RDONLY, &context);
err = caio_read(fd, buf, 128, &context);
caio_close(fd, &context);

Listing 2: Passing contexts from the user-level using the CAIO
extended system call interface. Note that in this case group
context (described in Section 7.1) can be used as well, because
a single context object is used for all calls.

7.2 Context Propagation
In CAIO, each layer receives contexts from the layer
above and passes it to the layer below after using them
if applicable. Note that a single operation at a particu-
lar layer could translate into multiple operations in the
layers below. For example, a file create operation at the
file system level could result in multiple block write re-
quests to the device driver. Therefore it is each layer’s
responsibility to propagate context objects appropriately
to the layer below. In cases where there are more virtual-
ization layers such as software RAID or logical volume
managers (LVMs), such layers should be aware of con-
texts and propagate them below. Any layer can choose to

store contexts in its own structures for its needs, before
passing them down.

Hardware Interface Extensions. To propagate con-
texts end-to-end, we extend storage hardware interfaces
to pass generic context objects along with every I/O re-
quest. For example, the SCSI/IDEread and write

primitives take context objects. There are a number of
proposals in the past that suggest interface extensions to
disk systems for communicating higher-level semantic
information [11, 23, 25, 30]. We believe that the gener-
ality of the CAIO interface would make it easier for disk
vendors to adopt.

Dealing with Operation coalescence. Multiple logi-
cally independent I/O operations may be coalesced into
one at any layer in the stack. For example, multiple file
write operations to the contents of the same file block
could result in a single block I/O at the disk level due to
write buffering. To handle such cases, we support mul-
tiple context objects to be associated with a single lower
level I/O. Layers that receive these contexts must pro-
cess them one by one as if they were from different I/O
operations.

Storing Contexts. Repeatable contexts may need to
be stored by layers to implement optimizations that in-
volve tracking context history, or correlating different
context types. We developed acontext-store in-
memory data-structure as part of our framework to en-
able easy storage of context hierarchies at any layer of
the storage stack. A context store manages context hier-
archy in a tree structure in which each node represents
a context identifier of a specific level in the hierarchy
identified by its depth in the tree. Each tree node also in-
cludes aprivate datafield where information about that
specific chain can be stored. The context-store struc-
ture provides primitives for common operations such as
adding new chains and updating private data.

7.3 Linux Implementation
We implemented our CAIO framework in the Linux ker-
nel 2.6.15. We added new system calls for context-
aware file I/O operations and implemented a user-level
library for applications to easily use the new system
call interface. The new system calls allowed con-
text objects to be passed withopen, read, write,
pread, pwrite, close, mkdir, unlink, rmdir and
readdir operations. We modified the following objects
to add a new field to store contexts. (a)task struct

which represents a running process or thread. (b)
buffer head which represents a block buffer in mem-
ory. (c) bio which represents an I/O to a block device.
Thebuffer head andbio objects can optionally con-
tain a list of contexts during operation coalescence.

We implemented the new system calls as wrappers to
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the unmodified system call handlers for the operations.
The wrapper system calls set the context object in the
current task object before calling the unmodified han-
dlers. Note that the wrapper calls unset the context upon
completion of a system call, so that the scope of a passed
context would be just that system call. The different lay-
ers in the OS that service the I/O operation use the con-
text object from thecurrent task object and propagate
it to the correspondingbuffer head andbio objects
appropriately. As thetask struct object is unique
to a particular process or thread, this method works for
multi-process workloads as well.

For group contexts, we added a new system call which
assigns or removes the corresponding context in the cur-
renttask struct object. For inheritable contexts, we
modified thefork system call to copy the context ob-
ject of the parent, to the forked process. We also im-
plemented the context-store data-structure as part of the
kernel so that any layer such as the file system or device
driver can maintain its own store.

Overall, the modifications required to implement the
CAIO framework were small. We added only 350 lines
of new kernel code and 150 lines of user-level code.

7.4 Application Support
The method of generating contexts at the application-
level depends on specific application architectures. In
general, if an application can classify its activities into
distinct logical tasks, and (or) if it can group data it
uses based on some criteria, it can generate contexts in
a meaningful manner. Based on the kind of application,
the granularity and type of contexts it can generate can
vary. Some low level applications such as Unix utilities
(e.g.,ls, cat, etc.) can just provide an interface to the
caller to pass contexts (e,g., command line arguments).
We have modified some basic utility programs such as
cp, cat, andls to accept contexts as command line ar-
guments. This enables a higher level caller application
(e.g., a shell script) to group all its operations under the
same context.

Context-Aware MySql. We have modified the MySql
DBMS [26] with InnoDB [17] as the storage engine,
to generate and propagate contexts at various granulari-
ties. MySql has the notion of database client connections
which can obtain service from the DBMS. Each client
connection gets serviced by a separate MySql thread,
and can run several transactions and queries. We modi-
fied MySql to pass contexts at three granularities in the
form of a hierarchy: connection-level, transaction-level,
and a single query-level. Overall the modifications re-
quired to propagate contexts across the various layers
of MySql and InnoDB were simple. We added only 30
lines of new code and modified 345 lines of existing
code, mostly for passing an additional argument for a

number of functions. We use our Context-Aware MySql
as an application to evaluate our framework and some of
the case-studies described in Sections 8 and 9.

7.5 Evaluation

We evaluated the overheads associated with passing con-
text objects across the storage stack for all file system
operations. In this section we first describe our test setup
and the details of the experiments we ran. Note that the
setup described in this section applies to all our bench-
marks presented under Sections 8 and 9 as well.

We conducted all tests on a 2.8GHz Xeon with 1GB
RAM, and a 74GB, 10Krpm, Ultra-320 SCSI disk. We
used Fedora Core 6, running a Linux 2.6.15 kernel. To
ensure a cold cache, we unmounted all involved file sys-
tems between each test. We ran all tests at least five
times and computed 95% confidence intervals for the
mean elapsed, system, user, and wait times using the
Student-t distribution. In each case, the half-widths of
the intervals were less than 5% of the mean.

7.5.1 Experiments

In this section we describe the set of experiments and
their configurations that we used for evaluating the
CAIO and the case-studies.

Postmark. For an I/O-intensive workload, we used
Postmark [37], a popular file system benchmarking tool.
Postmark stresses the file system by performing a series
of file system operations such as directory lookups, cre-
ations, and deletions on small files.

TPC-C. TPC-C [35] is an On-Line Transaction Pro-
cessing (OLTP) benchmark that performs small 4 KB
random reads and writes. Two-thirds of the I/Os are
reads. We set up TPC-C with 50 warehouses and 20
clients. We compare our context-aware MySql running
on our CAIO framework with regular MySql running
on a vanilla kernel. The metric for evaluating TPC-C
performance is the number of transactions completed
per minute (tpmC). We report tpmC numbers for each
benchmark.

7.5.2 Results
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Figure 2: Postmark Results for CAIO Framework
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Regular CAIO

Response Time (s) Response Time (s)

Delivery 0.096 0.109

New Order 0.039 0.064

Order Status 0.033 0.29

Payment 0.000 0.000

Stock Level 0.169 0.524

Throughput (tpmC) 67.13 64.35

Table 1: Average response time for TPC-C Benchmark

Figure 2 shows the overheads of our CAIO frame-
work for Postmark for two different number of opera-
tions. As seen from the figure the overall elapsed time
overheads were small (2% to 4%) compared to regular
I/O. This overhead is mainly because of the additional
user-to-kernel copies for communicating context objects
from applications.

TPC-C Results. The TPC benchmark results for reg-
ular MySQL and our modified context-aware MySQL
ran over the CAIO kernel is shown in Table 1. The
workload loads tables into a Mysql server at start-up and
runs a mix of queries on these tables for a user defined
time. We configured the benchmark to run with five
warehouses and created two client connection which ran
queries on all five warehouses for ten minutes. As seen
from throughput and response time numbers, overheads
of the CAIO framework is quite small.

8 Case Study: WorkSIDE
Our first case study is the automaticWork ing Set
IDEntifier (WorkSIDE). WorkSIDE that uses both
access-bound and data-bound contexts to automatically
infer the minimum set of data items required to be avail-
able in order for an application (or a specific instance of
an application) to run to completion. This ability to ac-
curately identify working sets of application contexts at
a fine grained level has various kinds of applications.

Performance. The working set of the application can
be preloaded into a much faster but smaller memory hi-
erarchy (e.g., a flash storage layer that provides about
100x better random access read performance), thus es-
sentially shielding the application from performance
variability due to disk access.

Availability. WorkSIDE enables fault-isolated place-
ment of application working sets enabling truly graceful
degradation during multiple disk failures similar to D-
GRAID [31]. While D-GRAID could just co-locate files
or directories, WorkSIDE can co-locate higher-level ap-
plication working-sets within failure domains.

Power Savings. Many recent systems have looked at
saving power by switching off a subset of disks in a
large RAID array in such a way that applications can still
function properly without the switched-off disks [38,

39]. These systems go to great complexity to identify
the subset of data that is currently under use, yet these
techniques are most often approximate and too coarse-
grained. Being more informed about the application’s
access patterns and data abstractions, WorkSIDE can do
a better job at such power optimizations by being more
aggressive and more accurate.

Disconnected operation. Another usage scenario for
WorkSIDE is when the user wants to preload the work-
ing set for a specific application context in local stor-
age for disconnected operation, say, in a mobile envi-
ronment. This enables Coda-like hoarding [19], but can
be much more accurate, fine-grained and automated. For
example, if the user works only on a specific build target
in a large body of source code, just the subset of source
files (and the metadata) needed for the target can be au-
tomatically preloaded to local storage.

The key to WorkSIDE is its ability to correlate a re-
peatable access context with the data context it accesses.
WorkSIDE achieves this by associating with each node
of the access context hierarchy, the aggregated set of
data items that are accessed by that context. Seman-
tic aggregation of such data is possible because data-
bound contexts are hierarchical in nature conveying data
abstractions in several granularities (such as files or di-
rectories). Tracking working set at an aggregated level
enables much simpler and reliable tracking of repeata-
bility. For instance, if an application touches different
parts of a file in its different runs, block-level tracking
may not find much of a repeatability, whereas tracking
at the file-level would indicate the pattern. Since the data
context hierarchy essentially contains information of the
entire data abstraction tree, it can track this information
at various granularities, and decide on which granularity
provides the best trade-off between the amount of data
to be preloaded and ensuring completeness for the ap-
plication.

8.1 Design
To determine the working set of a higher level logical
task, WorkSIDE has to track history of both data-bound
and access-bound contexts for every task. We designed
WorkSIDE as an on-disk mechanism to demonstrate its
working as part of the firmware of a high-end block-
based RAID storage system. WorkSIDE can potentially
exist at any layer of the storage stack such as the file sys-
tem or the device driver. Through our design, we show
that even in the lowest layer of the storage stack (the stor-
age hardware), working set identification can be done to
an acceptable level of accuracy, through context-aware
I/O.

For WorkSIDE to correctly determine the working set
of data for a given access-bound context, the higher ap-
plication has to pass data contexts to communicate the
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semantic organization of data. This can relate to on-
disk structures such as B-trees, database tables, files, and
directories. In this section, we first detail how access-
bound contexts can be associated with corresponding
data-bound contexts. We then discuss a few policies
that can be adopted to determine the granularity of the
working set of a given context. Lastly, we present our
prototype implementation of WorkSIDE.

8.1.1 Associating Access with Data
WorkSIDE maintains two context stores (described in
Section 7) to track access-bound and data-bound con-
texts respectively. Each store has context trees to rep-
resent the hierarchy. We call tree nodes in the access
and data stores asAccess-Context Nodes(ACNs) and
Data Context Nodes(DCNs) respectively. Note that,
as data-bound context is mainly used to communicate
the semantic structure of data, it need not necessarily be
passed by the higher-level application for every I/O re-
quest. For example, if a DBMS uses thetable and
record abstractions as data-bound contexts, it may
pass the context hierarchy only when such abstractions
are created (e.g., a table creation) or updated (e.g., a new
record insertion). For example, the DBMS need not pass
data-bound contexts for everyselect query. To han-
dle this condition, WorkSIDE may have to map access-
bound contexts accompanying a block I/O request with
a pre-existing data-bound context hierarchy.

The following are the contents of a DCN: (a) A con-
text identifier. (b) The number of blocks in the entire
sub-tree with the node as root. (c) A list of block num-
bers associated with the context (if it is a leaf node). Ev-
ery time a block I/O has an accompanying data-bound
context chain, the corresponding block number is added
to the leaf DCN of the chain. (d) A list of pointers to its
child nodes. (e) A back-pointer to its parent node. This
is used to increment the number of blocks in every par-
ent along the chain when there is a new addition to a leaf
node.

While adding a node to the tree, we enforce thesin-
gle parentconstraint, where every node must have at
most one parent. When there is a context chain passed,
that violates this condition, we truncate the chain after
the spurious node while adding it to the tree. In almost
all common cases, this would not affect the accuracy of
the data-bound context tree, as most data-abstractions al-
ready follow this rule. For example, a single block can-
not belong to more than one file (except in rare cases
such as hardlinks in Ext2).

WorkSIDE also maintains a hash table,BDTABLE, to
map block numbers to the corresponding leaf nodes in
the data context tree. TheBDTABLE is used to lookup
the data context for any block when an I/O request to it
does not have an associated data-bound context. Upon

receiving a block I/O request with a access-bound con-
text, WorkSIDE can map the corresponding block num-
ber to any level of abstraction in the data-bound hierar-
chy by just traversing through the parent back-pointers
in each node in the data context tree.

In the next section, we describe how this infrastruc-
ture is augmented with association policies to deter-
mine the optimal granularity of associating a data-bound
working set for a given access-bound context.

8.1.2 Working Set Identification
Identifying the working set for a given node in the
access-bound context tree involves associating that ACN
with one or more DCNs. Therefore every ACN in the ac-
cess store contains pointers to one or more DCNs.

Greatest-Common-Prefix Mode. We designed
WorkSIDE to operate under two different modes for
choosing the appropriate DCN for a given ACN. In the
first (and simple) mode, which we call theGreatest
Common Prefix(GCP) mode, WorkSIDE maintains
utmost one DCN per ACN. Whenever there is an I/O
in the context of an ACN, the request block number
is looked up in theBDTABLE to find the leaf DCN
to which the block number is associated. The leaf
DCN is associated with the ACN if the ACN did not
previously have a DCN associated. If not, the greatest
common prefix node in the tree (starting from the root)
for the new leaf DCN and the previously associated
DCN is computed (using the parent back-pointers)
and associated with the ACN. The working-set is
enumerated by just traversing the sub-tree starting
from the associated DCN. This method of enumerating
the working set for an ACN ensures completeness,
but under some scenarios there could be a significant
number of falsely associated blocks. For example, if an
access contextA reads files/home/john/plan.txt
and /home/john/private/list.txt, the GCP
method of association would include the entire contents
of /home/john/ in the working set ofA. A variant
of the GCP mode mitigates this problem under some
scenarios by tracking the longest depth to traverse while
enumerating blocks, along with the ACN. With this, the
working set ofA would just include files up to depth
level 3 (/home/john/private).

Multi-DCN Mode. In the second mode, which we
call the Multi-DCN mode, WorkSIDE tracks a list of
DCNs per ACN. Every ACN has a list of duplicate elim-
inated pointers to parent DCNs. To enumerate the work-
ing set for a given ACN, the following procedure is
used: for each DCN associated, all blocks belonging
to their immediate children are included. For exam-
ple, if an ACNB reads files/home/john/plan.txt
and /home/john/private/list.txt, DCNs for
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/home/john and/home/john/private will be asso-
ciated withB. While enumerating the working set of
B, all files (not sub-directories) under/home/john and
/home/john/privatewill be included. Therefore, the
multi-DCN mode of association provides more accurate
identification of working sets. However, this method
needs to track more information per ACN. In the proce-
dure described above, we choose the hierarchy one level
above the leaf DCN for every block access. However,
the number of such levels can be configurable based on
specific system and workload requirements.

WorkSIDE can also track information required for
both GCP and multi-DCN modes simultaneously (ev-
ery ACN can have both the list of parent DCNs and a
single GCP node). Based on the kind of usage scenario
for the working set, enumeration process can be decided
dynamically to choose the optimal granularity.

8.2 Prefetching for Power Savings
We developed an on-disk prefetching tool that uses
WorkSIDE to enumerate the working set of access-
bound contexts and prefetch them into a faster stor-
age. For prefetching, we tracked the repeatability of the
working set of each ACN, and for repeatable ACNs, we
prefetch and serve the entire working set from the faster
storage medium.

To evaluate our working-set aware prefetcher, we
compiled several modules in the Linux kernel source,
ande2fsprogs package [36], with inheritable con-
texts. We found that once working-sets were identi-
fied by WorkSIDE and prefetched into RAM by our
prefetcher, there were no requests sent to the disk dur-
ing the compile workload. Therefore, working-set aware
prefetching of data enables turning off disk drives (and
hence save power) in the case of repeatable workloads.

8.2.1 Implementation
We implemented a prototype of WorkSIDE and our
prefetching tool as a pseudo-device driver in Linux ker-
nel 2.6.15 that stacks on top of an existing disk block
driver. The pseudo-device driver receives all block re-
quests, and redirects the common read and write re-
quests to the lower level device driver, after storing con-
text information that needs to be tracked. Our prototype
of WorkSIDE included both the GCP and multi-DCN
modes of associating data-bound contexts. It contains
3020 lines of new kernel code.

For testing WorkSIDE, we also modified the VFS
layer of the Linux kernel to encode the pathname of the
entity being operated (file or directory) along with every
lower level I/O request. File system meta-data blocks
such as super blocks, bitmaps and directory blocks have
to be dealt with separately, as they may not particularly
belong to a specific application. To handle such blocks,

Module # Directories # Files # Blocks (4k)

Ext2 14 315 1149

Ext3 14 328 1452

ReiserFS 14 328 1432

NTFS 14 320 1769

Table 2: Compilation Working Set Statistics

we modified the Linux Ext2 file system to associate a
generic “common” context which can be interpreted by
any layer as one that is not associated with any particu-
lar access-bound context. We call our modified Ext2 file
system, Ext2C.

8.3 Evaluation
We evaluated the correctness and performance of our
prototype implementation of WorkSIDE. For correct-
ness we used a Linux kernel module build process, and
for performance, we used the Postmark benchmark de-
scribed under Section 7.

Kernel Modules Build. Our goal during this test was
to evaluate the correctness of the working set identifi-
cation mechanism of WorkSIDE. We untarred a vanilla
Linux 2.6.15 kernel on our Ext2C file system mounted
over our WorkSIDE pseudo-device driver. We did this
through a shell that has an inheritable access-bound con-
text set (described under Section 7.1), with depth one.
We then remounted the file system to eliminate cache
effects and compiled the source-code of a few file sys-
tems (Ext2, Ext3, Reiserfs, and Ntfs) under thefs/ sub-
directory of the kernel source. While compiling each file
system, we used different shells with different second-
level inheritable contexts set. We initialized the build
process through “make install” separately at the be-
ginning, and remounted the file system after each com-
pilation. We ran this test over WorkSIDE for both GCP
and multi-DCN modes of operation.

Under the GCP mode, we noticed that the working
sets of every single file system compilation was iden-
tified as a the root of the kernel source tree. This is
because, a file system module compilation would refer
to files underinclude/ andfs/ and hence the great-
est common prefix node becomes the root of the kernel
source.

When we ran the test under the multi-DCN mode, we
saw WorkSIDE identify separate working sets for each
of the file system compilation contexts. Table 2 shows
the total number of directories, files, and blocks associ-
ated with the working set of each compilation. We iden-
tified these by dumping the entire access-bound context
tree of WorkSIDE and their associated DCNs. In each
compilation context, the generated object files were also
included in the working set as the same inheritable con-
text was passed for write operations as well.

We also used the Multi-DCN mode of WorkSIDE
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Figure 3: Postmark Results for WorkSIDE (200 Sub-
directories, 20,000 Files, and 200,000 Transactions.). This
shows the overheads associated with the process of working-
set identification at the disk-level.

to calculate the working-sets for kernel compilation
with make allnoconfig andmake allyesconfig.
For compilation usingmake allnoconfig, the size
of the working-set came out to 32.6MB. Formake
allyesconfig, the working-set size was 3GB. As the
object files during compilation are created from the same
context, they were included in the working-set.

Postmark. To evaluate the performance overheads of
WorkSIDE, we used an I/O-intensive benchmark, Post-
mark. We ran our modified Postmark that passes con-
text objects with each I/O request, over WorkSIDE in
its two modes, and compared it with regular Postmark
running on top of a normal disk. For the regular Post-
mark we used unmodified Ext2 as the file system and
for WorkSIDE evaluation, we used our modified Ext2C
file system. Figure 3 shows the overheads of WorkSIDE
compared to regular disks.

WorkSIDE under the GCP mode of operation had an
elapsed time overhead of 1.5% compared to regular disk.
The overhead mainly consists of system time (12%)
caused because of updating context trees and tracking
greatest common prefixes. Under the multi-DCN mode
of operation the elapsed time overhead was 3.7% com-
pared to a regular disk, caused by a 20% increase in sys-
tem time. The increase in overheads compared to GCP
mode is because under the multi-DCN mode, WorkSIDE
has to track multiple data nodes per access-node. If
WorkSIDE is implemented in a real disk, tracking con-
text trees would be done by the disk firmware and hence
would not incur the host CPU overheads.

9 Case Study: CA-Cache
Modern large-scale storage systems have hundreds of
gigabytes of built-in main memory [13], primarily for
caching purposes. However, today’s storage systems
cannot adapt their caching policies based on application-
level workloads or data semantics, as they lack informa-
tion about higher level semantics. This is caused by an
excessively simple disk interface [12, 31]. Application-
aware caching policies have been found to be quite use-
ful in the context of OS level caches [9]. Yet today’s disk
systems cannot even separate independent I/O streams

generated by two different applications, making it harder
to implement application-aware caching policies.

In this section we design and evaluateContext-Aware
Cache(CA-cache), an on-disk caching mechanism that
differentiates independent I/O streams using logical con-
texts and tunes its caching policies based on individual
access patterns.

9.1 Design
We designedCA-cacheas an on-disk LRU write-through
cache layer. The goal ofCA-cache is to identify se-
quential streams of I/O and disable caching their data,
as mostly sequential I/O streams do not benefit from
read caching. As we are interested in the access-patterns
to tune the caching policy, this application uses access-
bound contexts.

Architecture. CA-cache consists of a set of
dynamically-built context trees and an LRU cache.
Each tree represents a group of hierarchical contexts
with the same root context. Each node represents
the hierarchical context specified by the path from
the root of the tree to that node. Context trees are
created or updated on each read request that specifies an
access-bound context.

Classification of Contexts. Each node in the tree con-
tains the following information about a particular con-
text: (a) the inferred access-pattern for the particular
context, (b) the block number for the last read I/O re-
quest required to track sequentiality, and (c) two coun-
ters that track the number of successive sequential and
random read requests in the past. A context node is ini-
tialized as random-access upon creation. Based on the
last read request and the current request, either the se-
quential or the random counter is incremented and the
other is reset. When the values of the counters exceed
a threshold, the node is classified as sequential or ran-
dom as appropriate. Note that an already classified node
could be re-classified when its access pattern changes.
Upon receiving any read request, the counters in all
nodes that are part of the current context are updated and
the nodes are re-classified if needed. We call the num-
ber of sequential read request required for classifying a
node as sequential, thesequential threshold. The se-
quential threshold is configurable, and can range some-
where between 10 and 100. A sequential-access node is
re-classified as random upon a single out-of-order read.

Caching Methodology. Our classification scheme al-
lows for different hierarchy levels in the same context
chain to be classified differently. For example, two sub-
contexts that are part of the same parent may be doing se-
quential I/O in their own levels. However, since the I/O
from the sub-contexts could be received interleaved, the
parent would be classified as random.CA-cachedoes not
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Figure 4: Context tree used for CA-cache micro-benchmark.
After our micro-benchmark, CA-cache classified the grayed
nodes as sequential and the rest as random.

require context identifiers to be repeatable. Therefore, it
contains a mechanism to automatically forget contexts
based on a timeout. We periodically purge context tree
entries that represent inactive contexts (without any re-
quests) beyond a time threshold.

9.2 Implementation
We implemented a prototype of our on-disk caching
mechanism as a pseudo-device driver in the Linux
2.6.15 kernel similar to WorkSIDE. We maintain the
context trees in memory and an asynchronous kernel
thread wakes up periodically to purge timed out con-
text entries. If the block is present in the LRU cache,
the pseudo-device driver services the request from the
cache, thereby avoiding a request to the lower level. Oth-
erwise, the request is directed to the lower level and the
cache is updated on completion of the request, if the re-
quest belongs to a random-access context.

Read Micro-benchmark. To evaluateCA-cache, we
ran a micro-benchmark that generates synthetic random
and sequential read workloads simultaneously and cal-
culated the overall throughput of the random workload.
We compared the throughput results ofCA-cachewith
a vanilla LRU cache layer which treats all contexts
equally. BothCA-cacheand vanilla LRU cache used
4MB of cache (1,024 4KB pages) for this benchmark.

We ran a user program that generates workloads
shown in Figure 4. The user program has four execution
contexts (threads), A, B, C, and D which use their own
files for I/O. Thread A reads a 4GB file sequentially with
context{1-2-5} (see Figure 4). Thread B reads a 4GB
file sequentially, but it uses contexts{1-3-7} and{1-3-
8} for alternate reads. Thread C is identical to thread
B, but it uses contexts{1-4-9} and{1-4-10}. Thread
D reads random locations from a 4GB file using context
{1-2-6}. For thread D, we use a random number genera-
tor that repeats itself every 1,024 reads. The threads run
until any one of the sequential threads exits after reading
4GB of data. In our experiment, the throughput of the
random workload when run under the vanilla LRU cache
was 0.098 MB per second, whereas withCA-cache, the
throughput was 7.71 MB/Sec.

MySQL Micro-benchmark. For this benchmark, We
created two identical tablesSEQ andRAND in MySQL

with 4,200,000 records each, and ran random and se-
quential query logs simultaneously. The tables were ap-
proximately 233MB in size. The sequential query log
contained aselect * query on the table. For a ran-
dom workload, we selected a subset of the records at
random and issued select queries based on their record
IDs. To show the benefits of caching random streams
alone, we repeated the random query log ten times. We
also ran the sequential log in a loop till the random work-
load completed. We determined the throughput of the
random workload (number of queries executed per sec-
ond) while the sequential workload was running in par-
allel. It was 266.13 queries per second without selective
caching, while it was 614.15 queries per second with se-
lective caching.

10 Case-study: CA-schedule

To demonstrate the usage of contexts in scenarios that
require application-specific information, we designed
a proportional-share disk scheduler,CA-schedule, that
uses logical contexts to identify tasks and insulate their
performance. Individual contexts are annotated by their
resource share allocations. These annotations are made
though an out-of-band channel between the applications
and the disk scheduler.

Design. CA-schedule is a time-slice based
proportional-share disk scheduler that uses resource
share allocations associated with individual logical con-
texts, to make scheduling decisions. The share values
for each logical context has to be preset by an offline
communication channel between the applications and
the disk scheduler.CA-schedule decides the next I/O
request to be scheduled, based on the share proportion
assigned for the particular logical context and the time
each context has consumed.CA-schedule ensures that a
particular context is given the proportion of disk-time
which is at leastequal to its share value, provided the
context has enough I/O traffic to make use of it.

CA-schedule maintains several request queues based
on the granularity of proportions needed. If the min-
imum granularity of a proportion is1/n, then CA-
schedule maintainsn request queues.CA-schedule uses
equal time-slices to service each of thesen queues.
However, based on the share value of a context, its re-
quests are striped across several queues. For example,
if the value ofn is 10, and the share level for context
A is 1/2 then the requests from that context are striped
across five different queues exclusively. If we assume
there are five other contexts each with share level1/10,
this mechanism will ensure that the requests of context
A will be serviced five times for every single time any
other context is serviced.
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Run 1 (Ops) Run 2 (Ops) Run 3 (Ops)

context A (1/8) Null 193k (144k) 142k (108k)

context B (5/8) 861k (861k) 728k (718k) 540k (538k)

context C (2/8) Null Null 298k (215k)

Table 3: Read micro-benchmark for CA-schedule: Each col-
umn in the table presents the total number of 4KB reads per-
formed in a five minute interval. The values specified in braces
is the ideal number of reads that should have been performed
based on the share-level for that context. Each row indicates
a particular context run in parallel with other contexts in that
column. A “Null” value in a column indicates that the process
for that context was not run in parallel.

Implementation. We implementedCA-schedule by
modifying the existing fair-share scheduler in the Linux
kernel version 2.6.15, popularly called as Complete Fair
Queuing (CFQ) scheduler. We modified CFQ to per-
form proportional-share scheduling by having a constant
number of queues based on the value ofn and to stripe
requests on the corresponding queues, based on associ-
ated contexts. The modification was quite simple: we
modified 40 lines of existing code and added 120 lines
of new code to the scheduler.

Evaluation. To verify the correctness ofCA-schedule,
we ran a read workload. We assumed three different
contexts A, B, and C for all tests with share values1/8,
5/8, and2/8 respectively. We ran 10 identical processes
for each context, each performing several 4KB random
reads on their own file. We calculated the total num-
ber of reads completed by the threads of each context
every minute. Using this, we measured the percentage
slowdown experienced by each context as other contexts
were run in parallel and compared it with each context’s
share allocation.

Table 3 shows the number of operations completed
by each of the contexts when run together with other
contexts. Overall the total the slowdown experienced by
each context is proportional to the share allocation.

11 Conclusions
As Butler Lampson said, interface design is one of the
most complex aspects of system design, while also be-
ing the most important. Interface designers have tradi-
tionally embraced the philosophy of minimalism—hide
as much information about the layers as possible, so that
the layers can innovate and evolve independently. This
approach, despite all its merits, has the downside of ob-
scuring what a layer knows about its inputs, thus limiting
functionality. At the other extreme, some systems have
explored how to completely tie the layers together, by
having extensible layers or exposing detailed informa-
tion about the inner semantics of a layer. What we pro-
posed in this paper is a middle-ground where we send a
small amount of information across layers, but by mak-
ing the generation of the information separate from how

it is used, we enable the layers to be independent of each
other while still enabling arbitrary grouping information
to be conveyed across the storage stack. We have shown
through two case studies that contexts are a simple and
general abstraction to convey application information.

Future Work. We plan to explore more applications
of CAIO, especially those that require annotating con-
text identifiers with semantic information (at any spe-
cific layer) by offline methods as described in Section 5.
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