
Automatic Consistency for Disk Storage

Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok
Stony Brook University

Abstract

We make a case for ensuring semantic consistency of
data at the disk-level. With the additional knowledge of
pointers inside a block-based disk, we show that strong
meta-data consistency semantics can be provided by the
disk. Today’s consistency mechanisms operate at the
software-level making disks totally oblivious to the con-
sistent state of the data. Knowledge of consistency at the
disk level enables interesting functionality which can-
not be provided by traditional disks. In this paper we
present a disk-level consistency enforcement mechanism
and evaluate it by a prototype implementation where we
provide consistency transparently underneath the Linux
Ext2 file system. We show that our consistency mech-
anism has small overheads, and the modifications re-
quired at the software-level are minimal.

1 Introduction

A key challenge in persistent data storage on disk is en-
suring theconsistencyof data in the face of crashes. In
many cases, on-disk data is unusable unless it conforms
to certain software-specific invariants that define its con-
sistency. For example, an on-disk B-Tree with dangling
pointers in some of its nodes cannot be used to locate
data items. Similarly, in a file system, a directory point-
ing to invalid or unallocated inodes constitutes a consis-
tency violation.

Given the importance of consistency, most file sys-
tems and other software that manage on-disk storage
incorporate mechanisms to ensure on-disk consistency.
While some techniques involve optimistically updat-
ing on-disk state and thenfixing consistency violations
based on a disk scan (e.g.,fsck), more modern tech-
niques such as journalling [2] or Soft updates [1] involve
constraining updates in such a way that consistency is
enforced. These mechanisms are quite complex; for ex-
ample, modern file systems owe a significant portion of
their complexity to satisfying this requirement.

This traditional approach to managing consistency
entirely at the file system or software is fraught with
two key weaknesses. First, the disk system is com-
pletely oblivious to the consistency of the data it stores,
which constrains the range of functionality it can pro-
vide. For example, today’s block-based disk systems
cannot perform consistent snapshotting of data. Snap-
shotting is a popular and useful feature in the storage

industry, but consistent snapshotting has so far been re-
stricted only to storage systems exporting a richer NFS-
like interface [3]. Similarly, modern storage systems
perform backup and asynchronous remote mirroring [5];
consistency-awareness at the storage level can increase
the utility of these techniques.

A second problem with the current approach to con-
sistency management is that every file system and every
software layer that manages on-disk data is forced to du-
plicate the mechanisms needed to enforce consistency.
This raises the bar for implementing any disk-resident
data structures. Although applications can use generic
transactional libraries, it often requires restructuringthe
application to be aware of transactions and tracking
transaction context across concurrent, asynchronous op-
erations. For example, although the journalling block
device (JBD) layer in Ext3 provides a transactional in-
terface, the Ext3 codebase had to go through a substan-
tial amount of restructuring to actually use JBD [13] and
other journalling file systems in the Linux kernel such
as JFS and ReiserFS do not use JBD and have their own
journalling mechanism.

To address these problems, we presentACE-Disk, an
AutomaticConsistencyEnforcing Disk, a disk system
that preserves the semantic consistency of stored data.
In our approach, the disk system takes responsibility for
consistency management, and thus is empowered to pro-
vide consistency-aware functionality such as snapshot-
ting. Applications simply inform the disk about the rela-
tionship between various blocks that the application al-
ready knows about. Specifically, we advocate using a
Type-Safe Disk(TSD) [10], a disk system that is aware
of the pointer relationship between blocks, to get consis-
tency, with minimal modifications at the software-level.

We present various techniques that a TSD needs to
derive and enforce consistency based on pointer relation-
ships. We show that with minimal changes at the file sys-
tem level toinform the disk about pointers, one can get
the same consistency properties that more complex tech-
niques such as soft updates [1] provide. One of the key
challenges in implementing consistency that is oblivious
to the higher layers is guaranteeing periodic and timely
updates to the disk state; because of inherent asynchrony
in file system updates, a continuous workload at the file
system could lead to the disk state being always incon-
sistent and thus never committed. We present techniques
to bound the interval between commits despite this lim-

1

itation.
We illustrate the efficacy of our approach by imple-

menting disk-level consistency for the Linux Ext2 file
system and obviate the need to run fsck on Ext2 after
crashes.

Overall, we find that our consistency mechanism has
acceptable overheads. For a normal user workload, our
modified Ext2 file system over ACE-disk introduces an
overhead of just 4-5% compared to regular Ext2.

The rest of the paper is structured as follows: Sec-
tion 2 discusses an extended motivation for disk-level
consistency. In Section 3, we discuss some background
and we present the design of our consistency mechanism
in Section 4. In Section 5 we discuss our modifications
to Linux Ext2 to support ACE-disks. We evaluate our
mechanism and the case-studies in Section 6 and discuss
some related work in Section 7.

2 Extended Motivation
Consistency awareness in disks enable useful function-
ality that cannot be provided by traditional disks. In this
secion, we brief a few of those.

Disk-level Snapshotting. When disks can differenti-
ate between consistent and inconsistent states of block
data, they can perform efficient snapshotting or backup
of a consistent state. Performing disk level backup is
in most cases better than software level mechanisms in
terms of performance as the disk can use its internal
knowledge to perform efficient reads and writes [3, 4].
For example, a disk can use its idle time to copy data be-
ing backed up, or the current head position to interleave
I/O while performing background snapshots.

Remote Mirroring. In enterprise storage systems,
data needs to be updated asynchronously in multiple
read-only mirrors that exist in geographically distributed
storage systems [5]. Each such update must be semanti-
cally consistent. If the disk system knows about consis-
tent states, it can perform updates to the mirrors during
its idle time in an efficient manner.

Preserving Trust Boundaries. In some security in-
frastructures, the disk system and the software system
has different trust characteristics. For example, the soft-
ware layer may not be trusted and security can be en-
forced by the disk [10, 12]. In such systems software-
level enforcement of data consistency may require re-
laxing security policies for an “administrative software
interface”. Disks tracking consistency is useful to pre-
serve trust boundaries in this case.

3 Background
In this section, we discuss the background behind stor-
age software and the importance of pointers in the con-
text of disk storage.

3.1 Overview of File Systems

Several applications need to store data persistently on
secondary storage disks. Storage software such as file
systems and databases provide a generic interface to ac-
cess storage devices and maintain their own structures to
track abstractions. For example, each file system has its
own on-disk layout. In this section, we provide a back-
ground of file systems in general and about the layout of
the Ext2 file system in particular. We also discuss briefly
a few other common storage structures that software use
to manage data on disk.

File systems abstract raw disk blocks into logical en-
tities such as file and directories. To track the set of
blocks that constitute a logical file or directory, a file
system uses various forms ofmeta-data; such meta-data
can be broadly classified into directories, file-specific
meta-data, and structures required for free-space man-
agement. Directories link logical file identifiers to file
specific meta-data. File-specific meta-data contains the
file attributes, and links to the actual data blocks. Allo-
cations structures are bitmaps and free-lists required for
managing disk resources such as free blocks. In com-
mon Unix file systems that follow the semantics of the
Berkeley Fast File System [7], per-file meta-data objects
are calledinodes.

Layout of the Ext2 File System. The Ext2 file sys-
tem which has its roots in Unix FFS, groups together a
fixed number of sequential blocks into a block group and
the file system is managed as a series of block groups.
This is done to keep related blocks together. Each block
group contains a copy of the super block, inode and
block allocation data-structures, and the inode blocks.
The inode table is a contiguous array of blocks in the
block group that contain on-disk inodes. The number of
inodes and their location are statically determined dur-
ing themkfsoperation. Each inode block can contain
several inodes. Each inode inside a block is treated as
anallocatableunit, and bitmaps keeps track of allocated
and free inodes within a block group.

3.2 Pointer Consistency in Storage

Pointers are fundamental means by which storage soft-
ware organize data into logical abstractions. Today’s
block-based disks export a flat array-like abstraction of
fixed size blocks. To manage data in the form of groups
(e.g., a file) and to provide the notion of hierarchy (such
as directories), they need to manage pointers between
blocks. Such pointers are vital entities in storage and
in most cases they impact the accessibility of data. For
example, when an inode block is lost, all data pertain-
ing to the corresponding files become unreachable and
hence inaccessible. More importantly, theconsistency
of these pointers determines to a large extent the seman-

2

tic consistency of the information stored in a disk. For
example, during arename operation in Ext2, a directory
entry (which is a pointer to an inode block) in a directory
block is removed and added in another directory block.
When the system crashes after the removal operation is
done, a file becomes inaccessible even though its data
items are intact. While complex storage software main-
tain strong forms of consistency such as the consistency
between the size field in an inode and the actual file size,
mere pointer consistency is sufficient in most cases. For
example, if all pointers from an inode are consistent, the
size field can be re-constructed by just looking at the set
of pointers. In this work, we focus on ensuring pointer
consistency at the disk level.

3.3 Pointer-Based Interface to Disk
Type-Safe Disks [10] propose an extension to the ex-
isting block-based interface (e.g., SCSI) which enables
higher level software such as the file system to com-
municate pointers to the disk. For example, an Ext2
file system can communicate to the disk, the block
pointers stored in an inode block. In addition, TSDs
also manage free-space on their own thereby freeing
file systems of free-space management. Block alloca-
tions are performed by the disk through an explicitAL -
LOC BLOCK primitive which allocates a block from the
disk-maintained free-block-list and creates a pointer to
it from a reference block. Reference blocks are blocks
with outgoing pointers and every block allocation must
be made in the context of an already allocated reference
block. For example, an Ext2 file system has to allocate a
data block in the context of an inode block or an indirect
block.

Pointers can be created and deleted through theCRE-
ATE PTR andDELETE PTR disk primitives respectively.
TSDs enforce the constraint that all allocated blocks
must have at least one incoming pointer to them (i.e.,
all allocated blocks must be reachable from at least one
other block). When the last incoming pointer to a block
is deleted, the block is automatically garbage collected
by the disk. Therefore, the TSD interface does not have
an explicit primitive for freeing blocks. Predetermined
ROOT BLOCKSare never allocated or freed and can be
used to bootstrap block allocation.

Unlike traditional disks, TSDs have complete infor-
mation about the relationships between blocks and hence
TSDs can differentiate live blocks from dead blocks and
reference blocks from regular data blocks.

4 Design
Our disk-level consistency mechanism enforces the fol-
lowing constraint: the on-disk version of data should al-
ways be consistent. To accomplish this, we need to dis-
cover semantically consistent groups of blocks and com-

mit them atomically to the disk when they are written by
higher level software such as the file system. All incon-
sistent block updates should be buffered inside the disk
until they become consistent. For example, when a new
file is created, the corresponding directory block and the
inode block have to be updated. When just one of the
writes arrives at the disk it indicates an inconsistent up-
date. In that case, we need to buffer the update until the
second block write also arrives. When both the directory
block and inode block writes have arrived at the disk, we
need to ensure (at the disk level) that both these blocks
are committed atomically to stable storage.

We describe how update dependencies between
blocks can be inferred from pointers in Section 4.1. In
Section 4.2 we present our enhanced pointer interface
that make dependency inference robust. We describe the
consistency enforcement process in Section 4.3 and dis-
cuss a key issue in disk-level consistency enforcement
in 4.4. We finally detail our prototype implementation
of the system in Section 4.5.

4.1 Inferring Dependencies from Pointers
Determining semantic relationships between blocks at
the disk level requires additional information exchange
between the software layer and the disk. Today’s block-
based disks treat all stored information as opaque data
and they do not have knowledge of data semantics. For
example, today’s disks cannot differentiate between a
data and meta-data block in a file system. We lever-
age the idea of Type-Safe Disks (TSDs) [10], to obtain
pointer-relationships between blocks as maintained by
the higher level software.

Pointers at the disk level not only convey structural in-
formation about data items stored on disk, but also they
enable the disk to infer dynamic relationships between
blocks that get updated. For example, a when a new
block a is allocated and a pointer is created to it from
another blockb, botha andb depend on each other. If
the system crashes when just one of the blocks is up-
dated, the disk is left in an inconsistent state. This is
because, if only blocka is updated, it would be pointing
to a block with junk data (not yet written), and if onlyb
is updated, it becomes unreachable as there would be no
incoming pointers to it.

The existing TSD interface consists of primitives for
allocation and pointer operations, as described in Sec-
tion 3. We discuss how each TSD primitive can be used
to infer update dependencies.

Allocation. The allocation primitive internally creates
a pointer to the newly allocated block, in the reference
block passed. This operation relates two blocks: the
newly allocated block and the reference block. Updat-
ing one of the blocks alone clearly leaves the system in
an inconsistent state; hence these two blocks constitute

3

a dependency constraint and they have to be committed
atomically to stable storage.

Pointer Creation. The pointer creation primitive cre-
ates a pointer from any two arbitrary allocated blocks. In
this case, the source blockmustbe written subsequent to
the pointer creation operation to write the new pointer
value in it. However, the destination block need not
necessarily be written, as the it is a previously allocated
block. For example, while creating a new file in the Ext2
file system, a pointer gets created from the directory
block to an already allocated inode block that contains
the inode of the new file. In this case, both these blocks
constitute a dependency. This is because the directory
block has to be updated with the new pointer to the in-
ode block, and the inode block has to be updated with
valid information about the newly created file. Failure to
commit the latter will result in a directory entry pointing
to an invalid inode. As a counter example, if we consider
a common index-based storage structure, a set of index
blocks point to data block. In this case, duplicating an
index block for reliability reasons would result in cre-
ation of new pointers from the duplicated index block
to the existing data blocks. Here only the index block
needs to be written and not the data blocks. Therefore,
the pointer creation primitive provided by TSD does not
convey enough information to decide whether or not the
source and destination blocks constitute a dependency.

Pointer Deletion. A pointer deletion operation deletes
an existing pointer from blocka to blockb. This opera-
tion has a special case: if the deleted pointer is the last
incoming pointer to blockb, we garbage collectb and it
can be re-allocated during future allocation requests. In
both cases, it is clear that blocka has to be written sub-
sequent to this operation for it to reflect the pointer dele-
tion. The destination blockb in the case of garbage col-
lection need not be written. However, it does constitute a
dependency:b must not be re-allocated untila is written.
For example, when the last pointer from an inode block
to a data block is deleted during atruncate operation,
re-allocating the data block to another inode before the
old inode is written could result in a state where the old
inode points to the contents of a different file. In the nor-
mal case of a pointer deletion where garbage collection
does not occur, we cannot infer whether the source and
destination constitute a dependency for the same reason
as explained in the case of pointer creation.

4.2 An Enhanced Pointer Interface
As described in the previous section, the pointer API ex-
ported by a TSD do not always convey enough informa-
tion to make correct inferences in a generic manner. In
this work, we fine-tune the TSD API to make it more
complete in terms of conveying pointer information.

We introduce the notion of asub-blockin a TSD. We
use sub-blocks to formalizeallocatableunits inside a
block, as maintained by the higher-level software. For
example, in Ext2 each inode block can contain several
inodes, each of them allocated and freed at the software
level. Although formalizing these units in a precise man-
ner requires knowledge about the unit size and offsets
inside a block, we just need a rudimentary knowledge
of sub-blocks to infer dependencies. For example, to
decide whether or not a create or delete pointer opera-
tion constitutes a dependency we just need to know if
that pointer points to a sub-block. This intuition is based
on the fact that, to preserve pointer consistency we need
to guarantee two properties: first, no pointer points to
unwritten (junk) units, and second, no allocated units
become unreachable. In our inference mechanism we
make use of additional disk primitives for creating and
deleting pointers to sub-blocks. Note that the disk need
not track information about sub-blocks, but it just needs
to dynamically know sub-block pointer operations by
way of explicit primitives. Higher-level software call the
respective sub-block primitives while creating and delet-
ing pointers to newly allocated or freed sub-blocks. For
example, Ext2 has to call a sub-block pointer creation
primitive to create a pointer between a directory block
and inode block while creating a file. From this we can
infer that the directory and inode blocks form a depen-
dency constraint. The complete specific of the extended
TSD API is mentioned in Section 4.2.

We present an extended pointer interface to TSDs that
captures most cases of dependency inferences. In the
primitives described below, the parametert refers to a
logical timestamp value for the operation. This is to let
the disk know about the temporal ordering of operations
as they are issued by the higher level software. The pur-
pose and usage of this parameter is discussed in detail in
Section 4.3.

1. READ(Blockno): Block read primitive.
2. WRITE(Blockno, t): Block write primitive.
3. ALLOC BLOCK(Ref , t): Allocates a new blocka

from the disk-maintained free-block list and creates
a pointer to it inRef . BothRef anda constitute a
write dependency constraint.

4. CREATE PTR(Src, Dest, t): Creates a new pointer
from Src to Dest. This primitive does not create
any dependency.

5. DELETE PTR(Src, Dest, t): Deletes an existing
pointer fromSrc to Dest. If this is the last in-
coming pointer toDest, Dest is garbage collected
(marked free) and it creates a new dependency be-
tween the write ofSrc and the re-allocation of
Dest.

6. MOVE PTR(Src, Dest, Newsrc, t): Moves the
source block of an existing pointer fromSrc to

4

Newsrc. This operation results in creation of a
new dependency for the writes ofSrc andNewsrc.
This primitive is useful for handle cases such as
a rename operation in a file system, or a B-tree
node split where pointers need to be moved from
one block to another.

7. ALLOC SUB BLOCK(Ref , Target, t): Creates a
new pointer between blockRef and blockTarget.
Target is a block that contains multiple allocat-
able software-level structures as described in Sec-
tion 4.1. This primitive is called when a software-
level structure inTarget is allocated. This disk
does not track these structures. This creates a
new write dependency betweenRef andTarget.
The disk differentiates this primitive from theCRE-
ATE PTR primitive only to infer dependencies.

8. FREE SUB BLOCK PTR(Ref , Target, t): Deletes
an existing pointer betweenRef and Target.
Target is a block that contains multiple allocatable
software-level structures. This primitive is called
when a software-level structure inTarget is freed.
If this operation deletes the last incoming pointer
to blockTarget, Target is garbage collected and
a new dependency is created betweenRef update
and re-allocation ofTarget. If the pointer deleted
is not the last incoming pointer toTarget, a new
dependency is created for the update ofRef and
Target.

4.3 Consistency Enforcement

In this Section we detail how an ACE-disk guarantees
consistent data commits to stable storage. Figure 1
shows the overall architecture of an ACE-disk.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

W
R

IT
E

R
E

A
D

D
E

LE
T

E
_P

T
R

C
R

E
A

T
E

_P
T

R

A
LL

O
C

_B
LO

C
K

M
O

V
E

_P
T

R

A
LL

O
C

_S
U

B
_B

LO
C

K

F
R

E
E

_S
U

B
_B

LO
C

K

S
of

tw
ar

e
D

is
k

Index
Journal Swap GroupIn Place Data

File System / Software Layer

CacheDependency Manager

Figure 1: Architecture of an ACE-disk

An ACE-disk consists of five main components: (1)
dependency buffer, a buffer layer made of high-speed
memory where inconsistent block updates are buffered
until the corresponding dependency becomes consistent;
(2)buffer swap space, a swap area in the disk which is

used to swap out inconsistent buffer data when the cache
is full; (3) journal space, an area on disk which is used
to ensure atomic update of resolved dependencies; (4)
group manager, which tracks the pointer operations and
constructs dependencies;group indexa data-structure
used by the group manager to store disjoint dependen-
cies and the blocks affected by each of those dependen-
cies. The buffer layer acts both as a read and write cache,
and gets invalidated during power down of the disk. All
inconsistent block updates are buffered in the cache to
ensure that the state of data stored in place is always
consistent. The swap space is used when the number
of inconsistent blocks exceed the size of the high speed
buffer memory.

When an ACE-disk infers a dependency during a
pointer operation, it associates agroupobject with that
dependency. This group object contains information
about the set of blocks that are affected by that depen-
dency. We use the termsgroup objectanddependency
group interchangeably in the rest of the paper to refer
to a list of blocks that needs to be committed atomically
to stable storage to ensure consistency. Agroup entry
refers to a member of a group which contains a block
number and the time at which it was added. When a
block is writtenafter it is added to a dependency group,
the corresponding group entry for that block is marked
“ready.” When all entries in a dependency group are
ready, the group is said to beresolved, and all blocks
associated with it can be committed atomically to the
disk.

In a simple case, when the first pointer operation hap-
pens in a disk causing a dependency creation between
two blocksa andb, a new dependency groupG is cre-
ated and both the blocks are added to it. When write
requests for botha and b have arrived at the disk, the
dependency groupG is said to beresolvedand all the
blocks in G can be committed atomically to the disk.
However, if another pointer operation happens before
G is resolved introducing a dependency between blocks
b andc, the operationextendsthe existing dependency
group. This is because, one of the blocks in the new de-
pendency (blockb) is already part of an existing depen-
dency. Thus, in this scenario blockc should be added
to groupG as well. Therefore, whenever there is a new
dependency introduced between any two blocksx andy

by way of a pointer operation, one of the following three
actions are taken:

1. If bothx andy are not part of any existing depen-
dencies, a new dependency group is created andx

andy are added to it.
2. If only one ofx or y is associated with an existing

dependency groupG, then both blocks are associ-
ated withG and are marked “not ready.”

3. If both x and y are already associated with the

5

same groupG, then no group action needs to be
taken. However, the entries in the group pertaining
to blocksx andy have to be marked “not ready” as
a new constraint is added between the two blocks.

4. If bothx andy are associated with different groups
G1 andG2, thenG1 andG2 aremerged, and the
entries forx andy are marked “not ready”

As pointer operations construct dependencies be-
tween blocks, higher-level software must ensure that the
pointer management primitives are issued to the diskbe-
fore the source and destination blocks are updated. This
constraint is implicitly enforced for the block allocation
primitive as a block cannot be updated before it is al-
located. However for the pointer creation and deletion
primitives, higher-level software has to ensure that it fol-
lows this ordering rule. For example, when acreate
happens in Ext2, the sub-block pointer creation primitive
has to be issued for the directory and the inode blocks
before the contents of the blocks are updated.

Temporal Ordering of Operations. ACE-disk’s con-
sistency mechanism relies on the temporal relationships
between operations seen at the disk level. For example,
an entry in a dependency group is marked ready when
a write arrives after the dependency creation. However,
in today’s modern operating systems and disks, opera-
tions can be re-ordered at any level. For example, file
systems today predominantly perform asynchronous I/O
where block writes are buffered at the software level and
are flushed to the disk in regular intervals of time. More-
over, modern disk device drivers re-order or merge disk
requests before issuing to the disk for performance rea-
sons. These factors make the temporal ordering of op-
erations that the disk sees completely different from the
order that the higher-level software issued. Therefore,
unless additional ordering information is communicated
from the software-level, the disk cannot obtain the pre-
cise temporal order of operations.

ACE-disk solves this problem by introducing two
constraints on the operations: (a) all pointer primitives
take place synchronously and (b) all operations have as-
sociated logical timestamps. These two constraints en-
able the disk to obtain precise temporal ordering of the
operations. Although synchronous pointer operations
may affect performance, it is mitigated by the fact that
these operations do not result in block I/O inside the
disk, in the critical path. Timestamps in this case are log-
ical. For example they can be a monotonically increas-
ing sequence number. Whenever higher-level software
issues a pointer operation, it has to pass a sequence num-
ber along with it. Similarly when the in-memory copy of
a disk block is updated by the software, a sequence num-
ber has to be associated with the buffer for that block.
Whenever a pointer operation introduces a dependency,

its sequence number is associated with the correspond-
ing group entries. The entries are marked ready only
when a subsequent write arrives with sequence number
greater than the stored one. Note that introducing se-
quence numbers with block I/O operations is simple—
we have modified the Linux kernel to support sequence
numbers along with buffers whenever they are dirtied.
This modification was trivial and required changing just
50 lines of code.

Dependency Commits and Crash Recovery. When a
dependency group is resolved all blocks in the group has
to be committed in place atomically. A power failure
while committing a dependency group should not leave
the in place data in an inconsistent state. ACE-disk uses
a logging mechanism to ensure this. All blocks in a re-
solved groups are first written to a log and synced with
a commit identifier before the in place commit happens.
The log is discarded when the in place commit is com-
plete. After a crash, an ACE-disk checks the log for valid
group data and replays them. The log contains separate
journals for each dependency group and hence each of
them are replayed after the crash to bring the system to
a consistent state.

4.4 Bounding Commit Interval
The amount of data lost during a crash depends on the
interval between the instant a block write arrives at the
disk and the time when it is actually committed to stable
storage. In an ACE-disk, inconsistent block data gets
buffered until the entire dependency group is resolved.
ACE-disk’s mechanism of managing dependency groups
allow extending a group whenever pointer operations
happen from or to a member of the group. Thus, dur-
ing normal operation, a dependency group could poten-
tially get extended repeatedly during a continuous work-
load that performs pointer operations. For example, in
Ext2, for a recursive directory creation workload, the
entire working set would form part of the same depen-
dency group as all blocks branch out from the inode of
the root directory. Moreover, as pointer operations al-
ways precede the block write operations, a dependency
group could never get resolved for a continuous work-
load. This is because before the time when all blocks in
a group are marked ready, the group could be extended
several times with new blocks or new dependencies for
the existing blocks. This results in two problems. First,
large amounts of data may get lost in the event of a crash,
although the on-disk state is consistent. Second, ex-
cessively long dependency groups require buffering of a
large number of blocks and hence impose onerous space
requirements.

Bounding the interval between dependency commits
is challenging particularly at the disk level because the
disk has no knowledge about intermediate versions of

6

block data that are known to the higher-level software.
This is because most higher-level software buffer writes
and hence the versions of block data that reach the disk
could be a small subset of total number of versions that
the software knows about. For example, if a file is cre-
ated in Ext2, an inode block is modified. Before the
inode block write is issued to the disk, if another file
is created whose inode is in the same block, the disk
sees only the version of the block updated with both in-
odes. Therefore, the disk cannot spawn a new depen-
dency group during a pointer operation for a block, when
the existing group containing a block has reached a time
threshold.

Blocking pointer operations at the disk level until an
existing dependency is committed could be a solution
to the bounding problem, but requires radical modifica-
tions to the higher-level software to support it. This is
because software such as file systems perform locking
of data-structures at an operation level. When a pointer
operation blocks, the file system could sleep after grab-
bing a lock on the data-structure which reside on a block
that needs to be committed for some dependency to re-
solve. This could result in a deadlock as the block con-
taining the data-structure cannot be committed until the
operation in execution completes.

An ACE disk solves this problem by having new er-
ror modes for pointer creation operations. The allocation
and pointer management primitives could optionally re-
turn one of the following errors to the higher-level soft-
ware: SYNC BOTH, SYNC SRC, or SYNC DEST. As the
names indicate, the disk can fail a pointer operation and
choose to request the higher level software to write the
source, destination, or both blocks associated with that
operation. Upon receiving one of these errors the soft-
ware should issue a write of the current version of the
corresponding blocks, and then retry the pointer opera-
tion. At the disk level, whenever a dependency group is
unresolved beyond a time threshold it isfrozen. When-
ever new dependencies are created for a block that is al-
ready part of a frozen group and in an “not ready” state,
the disk returns one of three errors mentioned above, de-
pending on whether the block is the source, destination,
or when both the source and destination blocks exist in
frozen groups in “not ready” state. This way of forc-
ing the software to commit the intermediate version of
the data helps the disk to spawn new dependency groups
for blocks that are already ready in a frozen group. An
ACE-disk ensures that at a block is never part of more
than two groups at a time, the older of which is frozen.
This is done by ensuring that a group is not frozen un-
til all blocks in the group are not part of any other
frozen group. This method ensures commit of depen-
dency groups in tune with the block write interval of the
higher level software. We verified the correctness of our

User Applications

File Systems

Regular Block Interface

Disk / RAID

Regular Block Interface

Block Driver

ACE−disk Interface K
E

R
N

E
L

U
S

E
R

ACE−Disk Pseudo−device Driver

Figure 2: Implementation Architecture

bounding solution by implementing this in the Ext2 file
system. Each every case, the commit interval of the de-
pendency groups were in tune with that of the software
level write-back interval.

4.5 Implementation

We implemented a prototype ACE-disk as a pseudo-
device driver in the Linux kernel 2.6.15 that stacks on
top of an existing disk block driver. The pseudo device
driver layer receives all block requests, and redirects the
common read and write requests to the lower level de-
vice driver after the required processing. The additional
primitives required for operations such as block alloca-
tion and pointer management are implemented as driver
ioctls. The architecture of our implementation frame-
work is shown in Figure 2

To enable sequence numbers with block I/O requests,
we added a new field to the buffer header object and the
request token object in the Linux kernel. Whenever a
buffer is marked dirty, we generate a sequence number
and update it in the buffer header. When a write is is-
sued for a buffer, the sequence number is carried over
to therequest object and hence available to the ACE-
disk pseudo-device driver. Sequence numbers are gen-
erated by an atomic increment of a counter value. The
same counter value is used during pointer operations and
modifying buffers.

Our prototype ACE-disk contained 6900 lines of ker-
nel code of which 3060 lines of code were reused from
the existing TSD prototype.

7

4.6 Limitations of Pointer-driven Consis-
tency

While the update dependency information conveyed by
pointers is quite rich and as we show, sufficient to en-
force consistency, it has some limitations when com-
pared to the more general notion of transactional con-
sistency. Specifically, the dependency information con-
veyed by pointers is limited to a pair of blocks; e.g. if
a pointer is created between two blocks, the two blocks
will be updated atomically. However, our mechanism
cannot support atomic commits of an arbitrary group of
blocks. For example, on creation of a new directory (i.e.
mkdir) in ext2, a pointer is created from the parent di-
rectory block to the inode of the child directory, and the
inode initialized. Then a new block is allocated for the
child directory and a pointer created between the child
inode and the child directory’s new data block. With a
transactional system, these three blocks will be commit-
ted atomically. But in our case, the first pointer creation
and the initialized inode could be committed before the
second pointer creation. As a result, a directory inode
may end up with a state where it has no blocks at all,
which is an apparent violation of consistency.

However, we argue that this consistency problem falls
under a class ofonline-patchableconsistency violations.
For example, just by looking at the initialized directory
inode with no pointers, it is unambiguous that a crash
happened just before the new directory’s block got allo-
cated, so it’s safe to immediately allocate a new block
for the directory and assign it to the inode. Note that in
contrast, a more “real” consistency problem would be a
directory pointing to the wrong inode, perhaps a regu-
lar file inode, where it is not obvious what the correct
state should be. Pointer consistency could lead to such
transient online-patchable consistency violations the vi-
olation is readily and unambiguously identifiable and the
fix for that is obvious as well. Most importantly, the fix
to such a violation islocal, in that it does not require
looking at the global state of the file system. We believe
that the pointer-derived consistency semantics is thus a
useful and simpler counterpart to the more general trans-
actional consistency.

5 Case Study: Ext2ACE

We modified the Ext2TSD file system [10] to support
ACE-disks. Ext2TSD is a modified version of Ext2 that
support the Type-Safe Disks interface. Ext2TSD does
not manage free-space on its own; instead it uses the
allocation and delete pointer primitives of TSDs to allo-
cate and free data. It also uses disk primitives for creat-
ing and deleting pointers between directory blocks, in-
ode blocks, indirect blocks, and data blocks. Ext2TSD
already conforms to the constraint that pointer opera-

tions have to be issued before modifying the contents
of the corresponding source and destination blocks.

To modify Ext2TSD to Ext2ACE, we had to change
the following:

Use sequence numbers. We modified Ext2TSD to as-
sociate sequence numbers with every pointer operation
and block write I/O. We included a new atomic counter
value in the in-memory super block of Ext2 and use this
counter as the sequence number. Whenever a buffer is
marked dirty by the file system (inodes, directories, indi-
rect blocks), the timestamp field of the buffer is updated
with the new sequence number.

Handle new error modes. We handled the error
modes returned by ACE-disk during pointer operations
(described in Section 4.4). The block allocation and
pointer management calls in Ext2TSD are modified to
handle sync requests from the disk. When a pointer op-
eration results in an error, the file system writes the cur-
rent version of the corresponding blocks to the disk, and
retries the pointer operation.

Handle rename dependency. We used the
MOVE POINTER disk primitive during rename op-
eration. This is because arename of a file could delete
an entry from a directory blockold and create it in
another directory blocknew. The pointer betweennew

and inode block of the file to be renamed has to be
updated to point from blocknew instead ofold. Note
that blocksold andnew has to be updated atomically as
a crash while just one of them is updated could result in
loss of the file. TheMOVE POINTERprimitive creates a
new dependency between the two source blocks for the
move.

Change inode update mechanism. The Ext2 file sys-
tem adopts a special policy to update inode blocks. An
Ext2 inode block can contain several inodes and each in-
ode is treated as an allocatable unit. Whenever an inode
needs to be written to the disk, the contents of that par-
ticular inode is alone updated and not the other inodes in
that block, even though the in-memory copy of the other
inodes of the other inodes are dirty. This update mech-
anism confuses an ACE-disk as it operates at the granu-
larity of an entire block. When a block write arrives at
the disk, an ACE-disk assumes that the content of that
write reflects the entire state of the in-memory copy of
that block when it was modified. Therefore this update
mechanism can make an ACE-disk to erroneously re-
solve dependencies. We therefore modified the inode
update mechanism of Ext2 such that it commits the in-
memory state of all inodes in a given inode block when
it is written to the disk.

Use sub-block primitives. We used the AL -
LOC SUB BLOCK and FREE SUB BLOCK primitives

8

while creating and deleting pointers between the
directory blocks and inode blocks. Therefore, new
dependencies get created between the parent directory
block and the child inode block during theCREATE,
MKDIR, UNLINK andRMDIR operations.

Overall, the amount of changes required to port
Ext2TSD to Ext2ACE was minimal. We just added 530
lines of new code and modified 160 lines of existing
code.

6 Evaluation
We evaluated the performance of our prototype ACE-
disk using Ext2ACE. We ran both a general purpose
workload and a micro-benchmarks on our implemen-
tation and compared it with a regular Ext2 and Ext3
file systems running on a normal disk. We compared
our system with Ext3 because it is a journalling file
system that provides similar consistency guarantees as
ACE-disk at the software level. For all benchmarks we
used Ext3 in its default journalling mode (ordered writes
mode). In this mode file meta-data alone is journalled
and it is written to the journal only after the correspond-
ing data blocks are written directly in place.

As our prototype ACE-disk is implemented as a soft-
ware layer, it uses the CPU and memory of the host sys-
tem which are shared by the file system and other soft-
ware. In a real environment, the portion of code that ex-
ists in our pseudo-device driver would go inside the disk,
and hence it will be using isolated resources associated
with the disk. Therefore, the CPU overheads that we
see in our benchmark results are not fully representative
of the overheads in a real environment. Similarly, the
pointer management disk primitives are implemented as
software levelioctls and hence factors like bus latency
and other hardware-related issues are not shown by our
benchmark results.

We conducted all tests on a 2.8GHz Xeon with 1GB
RAM, and a 74GB, 10Krpm, Ultra-320 SCSI disk. We
used Fedora Core 4, running a vanilla Linux 2.6.15 ker-
nel. To ensure a cold cache, we unmounted all involved
file systems between each test. We ran all tests at least
five times and computed 95% confidence intervals for
the mean elapsed, system, user, and wait times using the
Student-t distribution. In each case, the half-widths of
the intervals were less than 5% of the mean. Wait time is
the elapsed time less CPU time used and consists mostly
of I/O, but process scheduling can also affect it.

For all benchmarks we included the file system un-
mount time in our calculation. This is because ACE-disk
commits dependency groups asynchronously using sep-
arate kernel threads, and a file system unmount proce-
dure blocks until all outstanding threads have completed
their commit operation. This is relevant even for normal
Ext2 and Ext3 as they commit all outstanding dirty data

during an unmount.
For an I/O-intensive workload, we used Post-

mark [14], a popular file system benchmarking tool. We
compiled OpenSSH version 4.5 to generate a relatively
CPU-intensive workload. To isolate the overheads of in-
dividual meta-data operations in a file system, we tested
the create and unlink operations. In most of the
benchmark results, the increased CPU time is caused by
the dependency manager which tracks dependencies for
every block-write I/O and for the pointer operations.

6.1 Postmark Results

Postmark stresses the file system by performing a se-
ries of file system operations such as directory lookups,
creations, and deletions on small files. A large number
of small files is common in electronic mail and news
servers where multiple users are randomly modifying
small files. We configured Postmark to create 30,000
files whose sizes ranging from 512 bytes to 10 KB, and
perform 250,000 operations in 200 directories. This
workload particularly stresses the ACE-disk as a large
number of dependencies get created and resolved dur-
ing the meta-data operations. The time taken for the
Postmark benchmark for Ext2, Ext3, and Ext2ACE are
shown in Figure 3.

 0

 100

 200

 300

 400

 500

 600

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

197.5

533.4

275.3

Wait
User

System

Figure 3: Postmark Results

Ext2ACE on top of ACE-disk had an elapsed time
overhead of 40% compared to regular Ext2 on a normal
disk. Although the system time increase is 2.6 times rel-
atively, this has not contributed much to the elapsed time
overhead. As mentioned earlier, this overhead is be-
cause of dependency tracking during every block write
and pointer operations. The wait time increase (32%) is
predominantly because all blocks are written out twice
in the case of an ACE-disk to ensure atomic commits
of dependency groups. All block data is written out to
the journal first and after the journal is synced, in-place
commits happen. Ext3 ran almost twice as slow as Ext2
because of its ordered journalling mode. Ext2ACE is
faster than Ext3 in this case because ACE-disk journals
both data and meta-data blocks and for a small file work-

9

load such as Postmark, random writes get converted to
sequential ones. The in-place commit of data in ACE-
disk happens in an asynchronous manner.

6.2 OpenSSH Compile Results

To simulate a relatively CPU-intensive user workload,
we compiled the OpenSSH source code. We used
OpenSSH version 4.5, and analyzed the overheads of
Ext3 and Ext2ACE for theuntar, configure, and
make stages combined. These operations in combina-
tion constitute a significant amount of CPU and I/O op-
erations. The results for OpenSSH compilation is shown
in Figure 4.

 0

 10

 20

 30

 40

 50

 60

 70

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

58.3 58.7
61.1Wait

User
System

Figure 4: Openssh Compile Results

The times taken by Ext2 and Ext3 for the compila-
tion workload are almost similar. This is because this
is a mostly CPU-intensive workload. Ext2ACE had an
elapsed time overhead of 5% compared to Ext2 and
Ext3. This is because of the increase in wait time (1
sec vs. 3.4 secs). The increase in wait time is caused
by the CPU context switches between the main compi-
lation process and the asynchronous dependency com-
mit threads of ACE-disk. Since this is a CPU-intensive
workload, the context switch time is more pronounced
than Postmark. In a real environment, as the depen-
dency commits are performed inside the disk, this con-
text switch overhead would not be seen. The system time
overhead is not significant for Ext2ACE in this case be-
cause there are relatively few I/O operations that require
processing to track dependencies.

6.3 Micro-Benchmarks

We ran two micro-benchmarks to obtain the overheads
of thecreate andunlink file system operations. We
evaluated these two operations because both of them ex-
ercise the ACE-disk’s dependency trackers and consis-
tency enforcement mechanism. For the create workload,
we created 500 directories with 1,000 files each total-
ing to 500,000 files. For the unlink workload, we re-
moved all created files and directories. The results of the
create andunlink workloads are shown in Figures 5

and 6, respectively.

 0

 50

 100

 150

 200

 250

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
) 211.8 215.2 217.6

Wait
User

System

Figure 5: Create Micro-Benchmark Results

 0

 50

 100

 150

 200

 250

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
) 216.6 217.6 219.2

Wait
User

System

Figure 6: Unlink Micro-Benchmark Results

For thecreate workload, Ext2ACE had an overhead
2.7% compared to Ext2. This is mostly caused by the
increase in wait time due to the additional I/O operations
writing out block data twice for ensuring atomicity in
block commits. For theunlink workload the results of
Ext2ACE is similar to Ext2 and Ext3 asunlink results
in smaller number of writes than creates, because freed
blocks are not written to the disk.

Overall ACE-disks have small overheads for normal
user workloads. When the workload is highly I/O-
intensive, more information needs to be tracked by the
disk to manage dependencies. This results in more CPU
time which is mitigated by the fact that the disk uses its
own isolated CPU in a real environment.

7 Related Work

Consistency mechanisms for file systems have been ex-
plored extensively. Early file systems such as FFS [7] re-
lied on a global scan of disk metadata to fix consistency
problems. This mechanism, called the file system con-
sistency check (fsck) was in popular use until recently in
the Linux Ext2 and Windows VFAT file systems. How-
ever, as increasing disk sizes made such global scans
more and more expensive, more efficient mechanisms
have become popular. Journalling, originally proposed

10

as early as in the Cedar file system [2], uses database like
transactions for metadata updates. Modern file systems
such as Ext3 and Windows NTFS use journalling for file
system consistency. Another technique proposed for file
system consistency is Soft Updates [1, 6], which orders
updates carefully so that pointer dependencies get up-
dated in the right order. Soft updates is somewhat similar
in spirit to our approach since it is also pointer-based. A
relatively recent study evaluated the trade-offs between
journalling and soft updates [9].

Database systems have for long used mechanisms
for consistency. Consistency in databases is enforced
via transactions; the ARIES transaction based recov-
ery mechanism [8] is used quite widely in database sys-
tems. The basic technique is to group all related updates
into a single transaction that is then committed to disk
atomically, so that the state remains consistent. As we
described in Section 4.6, transactions are more general
and powerful than pointer-based consistency, but using
transactions requires a fair bit of work at the application
level. Our mechanism provides a simpler yet effective
alternative to transactions, although not as general.

Implementing consistency at the disk level transpar-
ent to the file system has been explored in the context of
Semantically-smart disks (SDS) [11]. In that paper, the
authors implement journalling underneath unmodified
Ext2 by utilizing inferred semantic knowledge. How-
ever, in their work, the disk system had to be aware of
the specific structures at the file system level and thus
was tied to a specific file system. Further, it required
a synchronous mount of the file system. Our work ex-
plores enforcing consistency in a manner generic to the
higher level software. However, in the process, we re-
quire changing the file system or software above to use
the pointer API, as compared to SDS which did not re-
quire any change. We therefore view both these ap-
proaches as complementary.

8 Conclusions
In this work, we have shown how pointer knowledge
at the disk-level can enable inference and enforcement
of semantic consistency of data that gets written. As
pointers are fundamental entities in disk storage, our
mechanism is generic across several storage applica-
tions. Disk-level knowledge of consistency also enable
interesting applications as such on-disk snapshotting.
Our prototype implementation of Ext2ACE shows that
it is simple to modify storage software to support ACE-
disks. Evaluation of our implementations show that the
overheads associated with our consistency mechanism
are minimal and are comparable to existing software-
level mechanisms.

While the update dependency information conveyed
by pointers is quite rich and sufficient to enforce con-

sistency, they do not provide the strong and flexible
consistency guarantees provide by transactional sys-
tems. However, for most common storage applications
the pointer-based consistency mechanism would be ade-
quate.

References
[1] G. R. Ganger, M. Kirk McKusick, C. A. N. Soules,

and Y. N. Patt. Soft updates: a solution to the meta-
data update problem in file systems.ACM Trans.
Comput. Syst., 18(2):127–153, 2000.

[2] D. K. Gifford, R. M. Needham, and M. D.
Schroeder. The Cedar File System.Communica-
tions of the ACM, 31(3):288–298, 1988.

[3] D. Hitz, J. Lau, and M. Malcolm. File System De-
sign for an NFS File Server Appliance. InProceed-
ings of the USENIX Winter Technical Conference,
pages 235–245, San Francisco, CA, January 1994.

[4] N. C. Hutchinson, S. Manley, M. Federwisch,
G. Harris, D. Hitz, S. Kleiman, and S. O’Malley.
Logical vs. Physical File System Backup. InPro-
ceedings of the Third Symposium on Operating
Systems Design and Implementation (OSDI 1999),
pages 239–249, New Orleans, LA, February 1999.
ACM SIGOPS.

[5] M. Ji, A. Veitch, and J. Wilkes. Seneca: remote
mirroring done write. InProceedings of the Annual
USENIX Technical Conference, San Antonio, TX,
June 2003. USENIX Association.

[6] M. K. McKusick and G. R. Ganger. Soft Up-
dates: A Technique for Eliminating Most Syn-
chronous Writes in the Fast Filesystem. InPro-
ceedings of the Annual USENIX Technical Confer-
ence, FREENIX Track, pages 1–18, Monterey, CA,
JUNE 1999. USENIX Association.

[7] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A fast file system for UNIX.ACM Transac-
tions on Computer Systems, 2(3):181–197, August
1984.

[8] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh,
and P. Schwarz. ARIES: a transaction recov-
ery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging.ACM
Trans. Database Syst., 17(1):94–162, 1992.

[9] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A.
Smith, C. A. N. Soules, and C. A. Stein. Journal-
ing Versus Soft Updates: Asynchronous Meta-data
Protection in File Systems. InProc. of the Annual
USENIX Technical Conference, pages 71–84, San
Diego, CA, June 2000. USENIX Association.

[10] G. Sivathanu, S. Sundararaman, and E. Zadok.
Type-Safe Disks. InProceedings of the 7th Sym-
posium on Operating Systems Design and Imple-

11

mentation (OSDI 2006), pages 15–28, Seattle, WA,
November 2006. ACM SIGOPS.

[11] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Semantically-Smart Disk Systems. In
Proceedings of the Second USENIX Conference on
File and Storage Technologies (FAST ’03), pages
73–88, San Francisco, CA, March 2003. USENIX
Association.

[12] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz,
C. A. N. Soules, and G. R. Ganger. Self-Securing
Storage: Protecting Data in Compromised Sys-
tems. InProceedings of the 4th Usenix Symposium
on Operating System Design and Implementation
(OSDI ’00), pages 165–180, San Diego, CA, Octo-
ber 2000. USENIX Association.

[13] S. Tweedie. Journaling the Linux ext2fs filesystem.
In LinuxExpo Conference Proceedings, May 1998.

[14] VERITAS Software. VERITAS File Server Edition
Performance Brief: A PostMark 1.11 Benchmark
Comparison. Technical report, Veritas Software
Corporation, June 1999.http://eval.veritas.com/
webfiles/docs/fsedition-postmark.pdf.

12

