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ABSTRACT

For the classical quadratic penalty, it is known that the distance from the solution of
the penalty subproblem to the solution of the original problem is at worst inversely
proportional to the value of the penalty parameter under the linear independence con-
straint qualification, strict complementarity, and the second-order sufficient optimality
conditions. Moreover, using solutions of the penalty subproblem, one can obtain cer-
tain useful Lagrange multipliers estimates whose distance to the optimal ones is also at
least inversely proportional to the value of the parameter. We show that the same prop-
erties hold more generally, namely, under the (weaker) strict Mangasarian–Fromovitz
constraint qualification and second-order sufficiency (and without strict complemen-
tarity). Moreover, under the linear independence constraint qualification and strong
second-order sufficiency (also without strict complementarity), we demonstrate local
uniqueness and Lipschitz continuity of stationary points of penalty subproblems. In
addition, those results follow from the analysis of general power penalty functions, of
which quadratic penalty is a special case.

Key words: penalty function, quadratic penalty, convergence rate, strong regularity, linear
independence constraint qualification, strict Mangasarian–Fromovitz constraint qualification,
second-order sufficient optimality conditions.
AMS subject classifications: 90C30, 65K05

1 Lomonosov Moscow State University, MSU, Uchebniy Korpus 2, VMK Faculty, OR De-
partment, Leninskiye Gory, 119991 Moscow, Russia.
Email: izmaf@cs.msu.ru
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1 Introduction

Penalty functions belong to classical tools of theoretical and numerical optimization,
dating back at least to [9]. Penalty methods are discussed in most Optimization text-
books; for example, [11], [3, Section 2.1], [12, Section 12.1], [21, Sections 8.2.5, 9.4.3],
[8, Chapter 14], [20, Section 17.1], [25, Section 6.2].

To start with, consider the general constrained optimization problem

minimize f(x) subject to x ∈ D, (1.1)

where f : Rn → R and D ⊂ Rn. Recall that an exterior penalty for the set D ⊂ Rn is
any function ψ : Rn → R such that

ψ(x) = 0 ∀x ∈ D, ψ(x) > 0 ∀x ∈ Rn \D.

For a chosen penalty, one then defines the family of penalty functions φc : Rn → R,

φc(x) = f(x) + cψ(x), (1.2)

where c > 0 is the penalty parameter. The basic penalty method consists in sequentially
solving the unconstrained subproblems

minimize φc(x), x ∈ Rn, (1.3)

for growing values of c, until a point satisfying some (approximate) stationarity condi-
tion for problem (1.1) is obtained.

Under the continuity assumptions on f and ψ, the basic convergence result states
that as the penalty parameter c increases to infinity, every accumulation point of
(global) solutions of the sequence of penalty subproblems (1.3) is a (global) solution
of the original problem (1.1). See, e.g., [12, Theorem 12.1.1], [25, Theorem 6.6], [20,
Theorem 17.1]. In Section 2 below, we shall also state and use a somewhat more refined
result concerning approximating a strict local solution of the original problem by local
solutions of penalty subproblems.

At the same time, results about convergence rate estimates, characterizing the dis-
tance from a solution xc of the penalty method subproblem (1.3) to a solution x̄ of
the original problem (1.1), appear to be few in the literature. We discuss this type of
results next.

Consider now the equality- and inequality-constrained problem

minimize f(x) subject to h(x) = 0, g(x) ≤ 0, (1.4)

with a smooth objective function f : Rn → R and smooth constraint mappings h :
Rn → Rl and g : Rn → Rm (the specific smoothness assumptions will be imposed in
the sequel, as needed). Consider further the specific quadratic penalty, given by

ψ(x) = ∥h(x)∥22 + ∥max{0, g(x)}∥22. (1.5)

1



For equality-constrained optimization problems (no inequality constraints), conver-
gence rate estimates for the corresponding quadratic penalty method were obtained
in [22, 2]; see also [12, Theorem 12.1.2] and [21, Theorem 8.2.7]. A reference to a
formal statement extending the results to problems with inequality constraints, that
the authors are aware of, is [15, Theorem 4.7.3]. However, the understanding of such
extensions had certainly appeared earlier in other literature, as (under strict comple-
mentarity) the proof is via the standard technique of using squared slack variables to
reformulate inequality constraints as equalities; see, e.g., [2, Section 5]. The analysis
of convergence rates of the quadratic penalty method relies on the following assump-
tions: the linear independence constraint qualification (implying the uniqueness of the
Lagrange multiplier (λ̄, µ̄) associated to the solution x̄ in question), the strict com-
plementarity condition for this Lagrange multiplier, and the second-order sufficient
optimality condition. Under these assumptions, it was shown that

xc − x̄ = O(1/c) (1.6)

as c→ ∞.
However, this set of assumptions above is rather restrictive. In what follows, we

show that the estimate (1.6) still holds for the quadratic penalty method even if strict
complementarity is omitted, provided the strong second-order sufficient optimality con-
dition holds (despite the word “strong”, the latter is a weaker assumption than the
combination of strict complementarity and the usual second-order sufficient optimality
condition). We also show that in this case, stationary points of the penalty subprob-
lems are locally unique and Lipschitz-continuous with respect to 1/c. Moreover, the
strict complementarity can be omitted even in the case when the linear independence
constraint qualification is relaxed to the weaker strict Mangasarian–Fromovitz con-
straint qualification, and under the usual second-order sufficient optimality condition.
Although the local uniqueness of the solution of a penalty subproblem generally need
not hold in this case (or at least, it does not follow from the analysis presented in
this work). In addition, those results are obtained from a more general analysis of
power-penalty functions, of which quadratic penalties is one special case.

The next issue is the useful Lagrange multiplier estimates that can be obtained from
solving the penalty subproblem (1.3), and their distance to the optimal multipliers. It
is well known that if we define

λc = 2ch(xc), µc = 2cmax{0, g(xc)}, (1.7)

where xc solves (1.3) with the quadratic penalty and the max-operation is applied
component-wise, then these quantities serve as estimates of Lagrange multipliers associ-
ated to a solution of (1.4). Specifically, as c→ +∞, under the Mangasarian–Fromovitz
constraint qualification, these estimates are bounded and every accumulation point is a
Lagrange multiplier associated to a solution x̄ of (1.4) (assuming x̄ is an accumulation
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point of the primal trajectory xc). We refer to [25, Theorem 6.7] for the general case.
For equality-constrained problems see also, e.g., [20, Theorem 17.2]. As for convergence
rates for the multiplier estimates given by (1.7), for equality-constrained problems they
again date back to [22, 2]; see also [12, Theorem 12.1.2] and [21, Theorem 8.2.7]. For
problems with inequality constraints, see [15, Theorem 4.7.3]. Specifically, under the
same conditions as for the primal estimate (1.6), namely, the linear independence
constraint qualification, the strict complementarity condition, and the second-order
sufficient optimality condition, it holds that

2ch(xc)− λ̄ = O(1/c), 2cmax{0, g(xc)} − µ̄ = O(1/c), (1.8)

as c→ +∞, where (λ̄, µ̄) is the unique Lagrange multiplier associated to x̄.
As for the primal estimate (1.6), again we show that the estimates (1.8) are still

valid under the weaker assumptions: the strict Mangasarian–Fromovitz constraint qual-
ification and second-order sufficiency.

We note that even though smooth exterior penalty methods (like quadratic penal-
ties) are rarely employed nowadays by computational experts to solve a problem di-
rectly, they may still be useful for some purposes. In particular, the property (1.8) gives
some information about how to obtain good multiplier estimates λc and µc by solv-
ing one (or perhaps a few) smooth unconstrained optimization problems (1.3). These
good multiplier estimates can then be used as a starting point in other primal-dual
algorithms; see, e.g., some discussions in [8, Chapter 14]. For example, good multiplier
starting points are desirable in the augmented Lagrangian methods [2, 4], where they
are needed for fast convergence of the primal-dual iterates [10].

Concluding our literature overview of convergence rates of the distance to solutions
in penalty methods, we note that the linear independence constraint qualification and
strict complementarity condition were avoided also in the analysis of primal convergence
estimates presented in [1]. In that reference, the only assumptions are various sufficient
optimality conditions, and in particular, the set of Lagrange multipliers associated to
x̄ need not be a singleton. However, in [1] only primal rates are considered, and the
estimate obtained for the quadratic penalty method under the second-order sufficient
optimality condition has the form

xc − x̄ = O

(
1

c1/2

)
.

This estimate is weaker than (1.6), and [1, Example 5] demonstrates that it cannot
be improved even under the Mangasarian–Fromovitz constraint qualification, even if
there exist Lagrange multipliers satisfying the strict complementarity condition, and
the second-order sufficient optimality condition holds with some universal (i.e., not
depending on critical directions) multiplier possessing this property. Our approach
follows the spirit of [1], in that it consists of introducing an auxiliary subproblem related
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to the penalty method subproblem, in such a way that the former can be interpreted
as a right-hand side perturbation of the constraints of the original problem, and xc is a
solution of that auxiliary problem. Then the auxiliary problem is tackled by some tools
of sensitivity theory for optimization problems. In this sense, the main difference with
[1] consists precisely in the appropriate selection and use of sensitivity tools that allow
to obtain new results ensuring that primal (1.6) and dual (1.8) estimates hold under
weaker than previous assumptions. We also show that under these weaker assumptions,
the estimates (1.6) and (1.8) cannot be improved.

Finally, we mention that there exist other kind of convergence rate results for
penalty methods, assessing the difference of the objective function values at xc and
x̄ (rather than the distance form xc to x̄, as in the current work). This approach
employs error bounds for constraints (estimates of the distance to the feasible set in
terms of constraints violations); see, e.g., [14] and [15, Theorem 4.7.5]. The use of
error bounds is also closely related to the so-called exact penalization principle; see
[19, 7, 18], and also [17, Section 2.1], [5, Proposition 3.111, Theorem 3.112].

The rest of the paper is organized as follows. Section 2 contains some preliminary
information and necessary tools from sensitivity theory for optimization problems.
These tools are further employed in Section 3 to obtain the main result on primal
convergence rates of power penalty methods under SMFCQ and SOSC. In Section 4,
under the appropriate additional assumptions, we derive further improvements of the
result from Section 3. Specifically, we characterize the quality of dual approximations,
and demonstrate local uniqueness and Lipschitz continuity of stationary points of the
quadratic penalty subproblems under LICQ and SSOSC, the latter by making use of the
celebrated Robinson’s theorem on strongly regular solutions of generalized equations.
Section 5 provides some examples illustrating the results obtained, and demonstrating
sharpness of the estimates and the need of some of the assumptions used in the pa-
per. Finally, Section 6 summarizes contributions of the paper and outlines some open
questions.

Some words about our notation. For a vector z ∈ Rm and an index set J ⊂
{1, . . . , m}, by zJ we mean the vector of components of z indexed by J . Then, z\J
stands for the vector of components of z indexed by {1, . . . , m} \ J . We write ∥z∥ for
any norm, when the specific choice of the norm is of no importance. In other cases,
the notation ∥z∥∞ and ∥z∥q for q ≥ 1 is standard. In the expression zq with any real
exponent q, the power is applied component-wise. By B(x̄, δ) = {x ∈ Rn | ∥x−x̄∥ ≤ δ}
we denote the closed ball of radius δ ≥ 0, centered at x̄ ∈ Rn. Finally, by NQ(·) we
denote the standard normal cone multifunction to a convex set Q.
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2 Preliminaries

As already mentioned, when the penalty parameter tends to infinity, global solutions
of subproblems (1.3) accumulate to global solutions of the original problem (1.1). The
following convergence result (e.g., [15, Theorem 4.7.1]) concerns approximating a strict
local solution of (1.1) by some local solutions of (1.3).

Let f be continuous near a strict local solution x̄ of problem (1.1), i.e., there exists
δ > 0 such that x̄ is the unique global solution of the restricted problem

minimize f(x) subject to x ∈ D ∩B(x̄, δ).

Let ψ be an exterior penalty for D, continuous near x̄. Then for any choice of a global
solution xc of problem

minimize φc(x) subject to x ∈ B(x̄, δ), (2.1)

it holds that
xc → x̄ as c→ +∞. (2.2)

In particular, for all c large enough, the point xc is a local solution of problem (1.3). In
other words, every strict local solution of problem (1.1) is approximated by some local
solutions of the penalty subproblem (1.3) as the penalty parameter tends to infinity.

The subsequent developments are concerned with the specific form of constraints
defining the feasible set D, namely, with those in (1.4). Let L : Rn ×Rl ×Rm → R be
the Lagrangian of problem (1.4), i.e.,

L(x, λ, µ) = f(x) + ⟨λ, h(x)⟩+ ⟨µ, g(x)⟩.

Then the Lagrange multipliers associated with a point x̄ ∈ Rn, feasible in (1.4), are
defined as elements of the set

M(x̄) =

{
(λ, µ) ∈ Rl × Rm

+

∣∣∣∣ ∂L∂x (x̄, λ, µ) = 0, µ\A = 0

}
,

where
A = A(x̄) = {i ∈ {1, . . . , m} | gi(x̄) = 0}

is the set of indices of inequality constraints active at x̄. A feasible point x̄ is called
stationary for problem (1.4) if M(x̄) ̸= ∅.

The linear independence constraint qualification (LICQ) at x̄ consists of saying that(
h′(x̄)
g′A(x̄)

)
has full row rank.

If LICQ holds at a local solution x̄ of problem (1.4), then x̄ is a stationary point, and
moreover, if LICQ holds at a stationary point x̄ of problem (1.4), then M(x̄) is a sin-
gleton. The latter property (uniqueness of the Lagrange multiplier associated to x̄) is
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known as the strict Mangasarian–Fromovitz constraint qualification (SMFCQ). Gen-
erally, SMFCQ is a weaker condition than LICQ, but stronger than the Mangasarian–
Fromovitz constraint qualification (MFCQ) that is stated as follows:

rankh′(x̄) = l

and
∃ ξ̄ ∈ Rn such that h′(x̄)ξ̄ = 0, g′A(x̄)ξ̄ < 0.

At a stationary point x̄ of problem (1.4), MFCQ is equivalent to saying that M(x̄) is
bounded (the fact first pointed out in [13]), which is evidently implied by SMFCQ.

The second-order sufficient optimality condition (SOSC) at x̄ for (λ̄, µ̄) ∈ M(x̄) is
the following property:〈

∂2L

∂x2
(x̄, λ̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C(x̄) \ {0},

where
C(x̄) = {ξ ∈ Rn | h′(x̄)ξ = 0, g′A(x̄)ξ ≤ 0, ⟨f ′(x̄), ξ⟩ ≤ 0}

is the critical cone of problem (1.4) at x̄. The strong second-order sufficient condition
(SSOSC) has the form〈

∂2L

∂x2
(x̄, λ̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C+(x̄, µ̄) \ {0},

where
C+(x̄, µ̄) = {ξ ∈ Rn | h′(x̄)ξ = 0, g′A+

(x̄)ξ = 0},
A+ = A+(x̄, µ̄) = {i ∈ A | µ̄i > 0}.

Recall that for any (λ̄, µ̄) ∈ M(x̄), the critical cone can be written in the form

C(x̄) = {ξ ∈ Rn | h′(x̄)ξ = 0, g′A+
(x̄)ξ = 0, g′A\A+

(x̄)ξ ≤ 0}.

This shows, in particular, that under the strict complementarity condition, i.e., when
µ̄A > 0, it holds that C+(x̄, µ̄) = C(x̄). Hence, under strict complementarity, SSOSC
is the same as SOSC. In general, as C(x̄) ⊂ C+(x̄, µ̄), SSOSC is a more restrictive
assumption than SOSC. However, despite the word “strong” in SSOSC, it is weaker
than the combination of strict complementarity with SOSC.

Define the residual mapping of the constraints in (1.4): Ψ : Rn → Rl × Rm,

Ψ(x) = (h(x), max{0, g(x)}). (2.3)

Then the so-called power penalty has the form

ψ(x) = (ρ(Ψ(x)))q, (2.4)

where q > 0 is a fixed exponent, and a function ρ : Rl×Rm → R+ satisfies the following
condition:
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(i) ρ(0, 0) = 0, ρ(y, z) > 0 ∀ (y, z) ∈ (Rl × Rm) \ {(0, 0)}, and
ρ is continuous near (0, 0).

In this case, function ψ defined by (2.3)–(2.4) is a penalty for the feasible set of problem
(1.4). The analysis below employs the following further assumptions on ρ:

(ii) ρ is monotone in the following sense: if z1, z2 ∈ Rm satisfy 0 ≤ z1 ≤ z2, then
ρ(y, z1) ≤ ρ(y, z2) ∀ y ∈ Rl.

(iii) ρ majorizes norm, i.e.,
(y, z) = O(ρ(y, z))

holds as (y, z) ∈ Rl × Rm tends to (0, 0).

The two typical choices of ρ in (2.4) are

ρ(y, z) = ∥(y, z)∥∞ = max{∥y∥∞, ∥z∥∞},

and

ρ(y, z) =

(
l∑

j=1

|yj|q +
m∑
i=1

|zi|q
)1/q

.

If q ≥ 1, then the right-hand side of the latter equality is ∥(y, z)∥q, but one can easily
see that both these choices of ρ satisfy (i)–(iii) for any value of q > 0. With these
choices, (2.4) gives the penalties

ψ(x) = (max{|h1(x)|, . . . |hl(x)|, 0, g1(x), . . . , gm(x)})q

(with 0 included for the case when l = 0, i.e., there are no equality constraints) and

ψ(x) =
l∑

j=1

|hj(x)|q +
m∑
i=1

(max{0, gi(x)})q, (2.5)

respectively. In particular, if q = 2, then (2.5) gives the quadratic penalty (1.5).
The following observation will be used below. Since x̄ is feasible in both problems

(1.4) and (2.1), from (1.2), (2.3)–(2.4), and (i), one can readily see that Ψ(x̄) = 0, and
for any global solution xc of problem (2.1) it holds that

f(xc) + c(ρ(Ψ(xc)))
q ≤ f(x̄). (2.6)

We complete this section by recalling some results from sensitivity theory for op-
timization problems, which will play the central role in our analysis below. For every
pair (y, z) ∈ Rl × Rm, consider the following optimization problem, obtained by the
right-hand side perturbations of the constraints in (1.4):

minimize f(x) subject to h(x) = y, g(x) ≤ z. (2.7)
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Proposition 2.1 below follows, e.g., from [24, Theorem 3.2 and Corollary 4.3]. Its
assumptions do imply that the point x̄ in question is a strict local solution of problem
(1.4): if δ > 0 is chosen small enough, then x̄ is the unique global solution of the
restricted problem

minimize f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ B(x̄, δ). (2.8)

Consider now the corresponding restricted version of the perturbed problem (2.7):

minimize f(x) subject to h(x) = y, g(x) ≤ z, x ∈ B(x̄, δ), (2.9)

and let Sδ(y, z) stand for the set of (global) solutions of this problem.

Proposition 2.1 Let f : Rn → R, h : Rn → Rl, and g : Rn → Rm be twice dif-
ferentiable at x̄ ∈ Rn, and let h and g be continuously differentiable near x̄. Let x̄
be a stationary point of problem (1.4), let SMFCQ hold, and let SOSC hold for the
associated Lagrange multiplier (λ̄, µ̄) ∈ Rl × Rm.

Then for any δ > 0 small enough, it holds that

sup
x∈Sδ(y, z)

∥x− x̄∥ = O(∥(y, z)∥) (2.10)

as (y, z) → (0, 0). Moreover, for every (y, z) close enough to (0, 0), every x ∈ Sδ(y, z)
is a stationary point of problem (2.7), and for the set My, z(x) ̸= ∅ of associated
Lagrange multipliers, it holds that

sup
x∈Sδ(y, z),

(λ, µ)∈My, z(x)

∥(λ, µ)− (λ̄, µ̄)∥ = O(∥(y, z)∥) (2.11)

as (y, z) → (0, 0).

Recall finally that, as demonstrated in [23] (see also, e.g., [5, Proposition 5.38],
[16, Proposition 1.28]), if SMFCQ and SOSC in Proposition 2.1 are replaced by the
stronger combination of assumptions LICQ and SSOSC, then (x̄, λ̄, µ̄) is a strongly
regular solution of the generalized equation corresponding to the primal-dual first-order
optimality conditions for problem (1.4). Moreover, according to [6] (see also, e.g., [16,
Proposition 1.28]) the stronger conditions LICQ and SSOSC are necessary for strong
regularity of the (x̄, λ̄, µ̄) when x̄ is a local solution of (1.4).

3 General primal convergence rate estimate

We start with the case when SMFCQ and SOSC are assumed to hold, forming the
weakest combination of assumptions used in this paper. The analysis will rely on the
following considerations.
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For every value of the penalty parameter c > 0, let xc be a global solution of
problem (2.1). Recall that if δ > 0 is small enough, this xc necessarily satisfies (2.2).
Consider the auxiliary optimization problem

minimize f(x) subject to h(x) = h(xc), g(x) ≤ max{0, g(xc)}, x ∈ B, (3.1)

for now with an abstract set B ⊂ Rn. With xc replaced by x̄, and with B = B(x̄, δ),
this problem transforms into (2.8), and therefore, (3.1) can be regarded as a result of the
right-hand side perturbation of constraints in (2.8), i.e., as (2.9) with (y, z) = Ψ(xc),
where Ψ is defined in (2.3). Moreover, from (2.2) it follows that this (y, z) → (0, 0) as
c→ +∞.

The next result [1] relates the rate of convergence analysis of penalty methods to
sensitivity analysis of the solution x̄ of problem (2.8) with respect to the perturbation
specified above. We include its short proof for the sake of clarity.

Lemma 3.1 For any f : Rn → R, h : Rn → Rl, and g : Rn → Rm, and any c ≥ 0,
let φc be defined according to (1.2) and (2.3)–(2.4), with a function ρ : Rl ×Rm → R+

satisfying (ii).
Then for any set B ⊂ Rn, any global solution xc of problem

minimize φc(x) subject to x ∈ B, (3.2)

is a global solution of problem (3.1).

Proof. Take any x̃ feasible in (3.1). Then it is also feasible in (3.2), and by (1.2),

(2.3)–(2.4), we obtain that

f(xc) + c(ρ(h(xc), max{0, g(xc)}))q = φc(xc)

≤ φc(x̃)

= f(x̃) + c(ρ(h(x̃), max{0, g(x̃)}))q

≤ f(x̃) + c(ρ(h(xc), max{0, g(xc)}))q,

where the last inequality is by the monotonicity of ρ (property (ii)) and the feasibility
of x̃ in (3.1). The obtained inequality readily yields f(xc) ≤ f(x̃).

We are now in a position to establish the primal convergence rate estimates.

Theorem 3.1 Under the assumptions of Proposition 2.1, for any c > 0, let φc be
defined according to (1.2) and (2.3)–(2.4), with a function ρ : Rl×Rm → R+ satisfying
(i)–(iii).

Then for any δ > 0 small enough, and any global solution xc of problem (2.1) with
c > 0, the following assertions are valid:
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• If q > 1, then the estimates

xc − x̄ = O

(
1

c1/(q−1)

)
(3.3)

and

Ψ(xc) = O

(
1

c1/(q−1)

)
. (3.4)

hold as c→ +∞.

• If q ∈ (0, 1], then xc = x̄ for all c > 0 large enough.

Proof. Fix δ > 0 as in Section 2, i.e., such that x̄ is the unique global solution of

problem (2.8). Let xc be any global solution of problem (2.1). From Lemma 3.1 it then
follows that xc is a global solution of (3.1) with B = B(x̄, δ). Taking into account
(2.2), from estimate (2.10) in Proposition 2.1 we then derive (after further reducing
δ > 0 if necessary) that

xc − x̄ = O(∥Ψ(xc)∥) (3.5)

as c→ +∞.
Next, from (iii), (2.6), and (3.5), we obtain that

Ψ(xc) = O(ρ(Ψ(xc)))

= O

((
f(x̄)− f(xc)

c

)1/q
)

= O

((
∥xc − x̄∥

c

)1/q
)

= O

((
∥Ψ(xc)∥

c

)1/q
)
. (3.6)

For q > 1, this implies the estimate (3.4), and combining the latter with (3.5) we obtain
the claimed (3.3).

Finally, if q ∈ (0, 1], then (3.6) implies that for all c large enough it holds that
Ψ(xc) = 0 , and hence, according to (3.5), xc = x̄.

Note that SMFCQ in Theorem 3.1 cannot be replaced by the weaker MFCQ. As
mentioned in Section 1, this can be demonstrated by [1, Example 5].

The second assertion of Theorem 3.1 means that under its assumptions, the power
penalty is in a sense exact for the exponent values q ∈ (0, 1].
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4 Further results under further assumptions

We proceed with analyzing convergence rates for the multiplier estimates, which for
the quadratic penalty are given by (1.7). We shall consider the more general case when
ρ(·) = ∥ · ∥q with q > 1 or, in other words, when the penalty is defined by (2.5).

Lemma 4.1 Let f : Rn → R, h : Rn → Rl, and g : Rn → Rm be given. For any c > 0,
let φc be defined according to (1.2) and (2.5) with q > 1.

Then any stationary point xc of the penalty subproblem (1.3), i.e., a point satisfying
φ′
c(xc) = 0, where f , h, and g are differentiable at xc, is a stationary point of problem

(3.1) with B = Rn. Furthermore, the associated to xc in problem (3.1) with B = Rn

Lagrange multiplier (λc, µc) is given by

λc = qcĥ(xc), µc = qc(max{0, g(xc)})q−1, (4.1)

where the components of ĥ(xc) ∈ Rl are defined by

ĥj(xc) =

{
(hj(xc))

q−1 if hj(xc) ≥ 0,
−(−hj(xc))q−1 if hj(xc) < 0.

(4.2)

Moreover, if q = 2, then xc is a stationary point of the penalty subproblem (1.3) if
and only if (xc, λc, µc), with λc and µc defined in (1.7), is a solution of the generalized
equation

Φ(σ, u) +NQ(u) ∋ 0 (4.3)

in variable u = (x, λ, µ), where σ = 1/(2c), Φ : R× (Rn ×Rl ×Rm
+ ) → Rn ×Rl ×Rm

+ ,

Φ(σ, u) =

(
∂L

∂x
(x, λ, µ), h(x)− σλ, −g(x) + σµ

)
, (4.4)

and Q = Rn × Rl × Rm
+ .

Proof. Observe that the penalty function φc, defined according to (1.2) and (2.5)

with q > 1, is differentiable at any x ∈ Rn in the domain of differentiability of f , h,
and g, and

φ′
c(x) = f ′(x) + 2qc((h′(x))⊤ĥ(x) + (g′(x))⊤(max{0, g(x)})q−1),

with ĥ(x) defined according to (4.2). Therefore, xc is a stationary point of the penalty
subproblem (1.3), i.e., φ′

c(xc) = 0, if and only if

∂L

∂x
(xc, λc, µc) = 0, (4.5)
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where λc and µc are given by (4.1)–(4.2).
Furthermore, it can be easily checked that the definition of µc in (4.1) yields

min

{(
µc

qc

)1/(q−1)

, −g(xc) +
(
µc

qc

)1/(q−1)
}

= 0,

which is evidently equivalent to

min

{
µc, −g(xc) +

(
µc

qc

)1/(q−1)
}

= 0. (4.6)

This implies that µc ≥ 0, and (µc)i = 0 if gi(xc) < 0, and so gi(xc) < max{0, gi(xc)}.
Together with (4.5), this yields that xc is a stationary point of problem (3.1) with
B = Rn, and (λc, µc) is an associated Lagrange multiplier.

Furthermore, assuming that q = 2, we have from (4.1)–(4.2) that λc and µc are
defined as in (1.7), and (4.5)–(4.6) mean precisely that (xc, λc, µc) is a solution of the
generalized equation (4.3) with the ingredients specified in the statement of the lemma.

This lemma suggests, in particular, that one may expect (λc, µc) defined in (4.1)–
(4.2) to be a relevant approximation of (λ̄, µ̄), obtained by using a solution xc of the
penalty subproblem, close enough to x̄. This expectation is confirmed by the following
result.

Proposition 4.1 Under the assumptions of Proposition 2.1, for any c > 0, let φc be
defined according to (1.2) and (2.5) with q > 1.

Then for any δ > 0 small enough, and any global solution xc of problem (2.1) with
c > 0, in addition to (3.3), the estimates

λc − λ̄ = O

(
1

c1/(q−1)

)
, µc − µ̄ = O

(
1

c1/(q−1)

)
(4.7)

hold as c→ +∞, for λc and µc defined according to (4.1)–(4.2).

Proof. For any fixed δ > 0, from (2.2) it follows that xc is a stationary point

of problem (1.3) provided c > 0 is large enough. From Lemma 4.1 we then have
that for (λc, µc) defined according to (4.1)–(4.2), it holds that (λc, µc) ∈ MΨ(xc)(xc).
Therefore, from estimate (2.11) in Proposition 2.1 we derive (after further reducing
δ > 0 if necessary) that

λc − λ̄ = O(∥Ψ(xc)∥), µc − µ̄ = O(∥Ψ(xc)∥)

12



as c → +∞. Employing now Theorem 3.1, and in particular, the estimate (3.4), we
arrive at the needed conclusion.

We now proceed with the case when the penalty is quadratic, and instead of SMFCQ
and SOSC, the stronger LICQ and SSOSC are assumed to hold. As discussed in
Section 2, this implies that (x̄, λ̄, µ̄) is a strongly regular solution of the generalized
equation corresponding to the primal-dual first-order optimality conditions for problem
(1.4). Observe that this generalized equation is obtained from (4.3) considered in
Lemma 4.1 by setting σ = 0.

Theorem 4.1 Let f : Rn → R, h : Rn → Rl, and g : Rn → Rm be twice continuously
differentiable near x̄ ∈ Rn. Let x̄ be a stationary point of problem (1.4), assume
that LICQ holds at x̄, and that SSOSC holds for the associated Lagrange multiplier
(λ̄, µ̄) ∈ Rl × Rm. For any c > 0, let φc be defined according to (1.2) and (1.5).

Then for every c > 0 large enough, the penalty subproblem (1.3) has near x̄ the
unique stationary point xc, this point is a local solution of (1.3), and the estimates
(1.6) and (1.8) hold as c → +∞, for λc and µc defined according to (1.7). Moreover,
xc, λc and µc are Lipschitz-continuous, considered as functions of 1/c.

Proof. Consider the parametric generalized equation (4.3) with Φ defined by (4.4),

and with NQ(·) being the normal cone multifunction to the set Q = Rn ×Rl ×Rm
+ . As

discussed above, (x̄, λ̄, µ̄) is a strongly regular solution of this generalized equation,
considered with the parameter σ equal to 0. Our smoothness assumptions guarantee
continuous differentiability of Φ near (0, (x̄, λ̄, µ̄)), and allow to apply Robinson’s
theorem on strongly regular solutions of generalized equations [23]. In particular, it
holds that for every σ close enough to 0, (4.3) has near (x̄, λ̄, µ̄) the unique solution
(x(σ), λ(σ), µ(σ)), and the dependence of this solution on σ is Lipschitz-continuous
near 0.

Fix δ > 0 as in Section 2, i.e., such that x̄ is the unique global solution of problem
(2.8). Let xc be any global solution of problem (2.1). Taking into account (2.2), this
implies that xc is local solution of problem (1.3), and hence, a stationary point of this
problem provided c > 0 is large enough.

We will now show that for any stationary point xc of problem (1.3), close enough
to x̄ (including the one obtained as a global solution of (2.1)), it necessarily holds
that xc = x(σ) for all c > 0 large enough. We argue by contradiction: suppose there
exist a sequence of positive reals {ck} and a sequence {xk} ⊂ Rn such that ck → +∞,
{xk} → x̄ as k → ∞, and for all k it holds that φ′

ck
(xk) = 0, xk ̸= x(σk), where

σk = 1/(2ck) → 0 as k → ∞. For every k, using (1.7), set (λk, µk) = (λck , µck).
According to Lemma 4.1, for every k it holds that (xk, λk, µk) is a solution of (4.3)
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with σ = σk, which can be expressed in the form

∂L

∂x
(xk, λk, µk) = 0, min{µk, −g(xk) + σkµ

k} = 0 (4.8)

(see (4.5), and (4.6) where we take q = 2).
If the sequence {(λk, µk)} were to be bounded, we can assume (passing onto a

subsequence if necessary) that it converges to some (λ̃, µ̃) ∈ Rl ×Rm. Then passing in
(4.8) onto the limit as k → ∞, we obtain that

∂L

∂x
(x̄, λ̃, µ̃) = 0, min{µ̃, −g(x̄)} = 0.

This implies that (λ̃, µ̃) ∈ M(x̄), where under LICQ we have that M(x̄) = {(λ̄, µ̄)}.
Therefore, (λ̃, µ̃) = (λ̄, µ̄), and hence, {(xk, λk, µk)} → (x̄, λ̄, µ̄). But this contradicts
the assumption that xk ̸= x(σk) for all k, since for k large enough, (x(σk), λ(σk), µ(σk))
is the only solution of (4.3) with σ = σk near (x̄, λ̄, µ̄).

Suppose now that the sequence {(λk, µk)} is unbounded. Then we can assume
(passing onto a subsequence if necessary) that (λk, µk) ̸= 0 for all k, and the sequence
{(λk, µk)/∥(λk, µk)∥} converges to some nonzero (η, ζ) ∈ Rl × Rm. Observe that
according to (1.7), σkµ

k = max{0, g(xk)} for all k, and feasibility of x̄ in problem (1.4)
then implies that {σkµk} → 0. Dividing both parts of the first equality in (4.8) by
∥(λk, µk)∥, we obtain

f ′(xk)

∥(λk, µk)∥
+ (h′(xk))⊤

λk

∥(λk, µk)∥
+ (g′(xk))⊤

µk

∥(λk, µk)∥
= 0.

Furthermore, replacing the second equality in (4.8) by the equivalent one

min

{
µk

∥(λk, µk)∥
, −g(xk) + σkµ

k

}
= 0,

and passing onto the limit in the last two relations above as k → ∞, we obtain that

(h′(x̄))⊤η + (g′(x̄))⊤ζ = 0, min{ζ, −g(x̄)} = 0.

The existence of a nonzero (η, ζ) satisfying these equalities contradicts (the dual form
of) MFCQ (see, e.g., [16, Remark 1.1]), and hence contradicts the stronger LICQ.

The argument above demonstrates that if c > 0 is large enough then, on the one
hand, x(σ) with σ = 1/(2c) is a local solution of problem (1.3), while on the other
hand, in some neighborhood of x̄ there are no other stationary points for this problem,
and in particular, x(σ) coincides with the global solution xc of problem (2.8).

Finally, the estimates (1.6) and (1.8) now follow from Theorem 3.1 and Proposi-
tion 4.1, applied with q = 2. Moreover, since the estimates in (1.8) imply that λc and
µc get arbitrarily close to λ̄ and µ̄, for c > 0 large enough Lemma 4.1 implies that
λc = λ(σ) and µc = µ(σ). In particular, xc, λc and µc are Lipschitz-continuous in
σ = 1/c.
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Remark 4.1 Apart from application of Robinson’s theorem on strongly regular solu-
tions of generalized equations [23], the only key ingredient of the proof above consists of
showing that if for every k it holds that (xk, λk, µk) is a solution of (4.3) with σ = σk,
and {xk} → x̄, then necessarily {(λk, µk)} → (λ̄, µ̄). Observe that derivation of this
property in the proof above is actually not making use of LICQ, but rather of the
weaker SMFCQ only. This feature can be useful for further possible developments and
improvements concerning uniqueness of stationary points of the penalty subproblems.

At the same time, as pointed out by one of the referees, actually using LICQ the
needed property can be derived in a simpler and more direct manner. Indeed, since
{xk} → x̄, for all k large enough and for any i ∈ {1, . . . , m}\A it holds that gi(x

k) < 0.
Hence, by the second equality in (4.8), we have that µk

i = 0. Therefore, the first equality
in (4.8) implies that

f ′(xk) + (h′(xk))⊤λk + (g′A(x
k))⊤µk

A = 0,

where, by LICQ, the columns of the matrices (h′(xk))⊤ and (g′A(x
k))⊤ form a uniformly

linearly independent system for all k large enough. Since

f ′(x̄) + (h′(x̄))⊤λ̄+ (g′A(x̄))
⊤µ̄A = 0

and µ̄i = 0 for all i ∈ {1, . . . , m} \ A as well, these observations imply that

(λk − λ̄, µk − µ̄) = O(∥f ′(xk)− f ′(x̄)∥)

as k → ∞. It follows that {(λk, µk)} → (λ̄, µ̄).

Apart from the fact that Theorem 4.1 deals only with the case of q = 2, the differ-
ences between Theorems 3.1 and 4.1 are as follows. The assumptions of Theorem 4.1
are stronger: they include LICQ and SSOSC (instead of SMFCQ and SOSC as in The-
orem 3.1), and under these assumptions, the penalty subproblem (1.3) is claimed to
have the unique stationary point. In Theorem 3.1, no uniqueness is claimed, and the
estimate or the exactness property hold for global solutions of the restricted penalty
subproblem (2.1).

5 Illustrating Examples

We complete the paper with some simple examples demonstrating that the estimates
obtained herein are sharp, and that some of the imposed assumptions cannot be relaxed.

Example 5.1 Let n = l = 1, m = 0, f(x) = −x, h(x) = x. The unique feasible point
x̄ = 0 of (1.4) is the global solution and the unique stationary point of this problem,
with the unique associated Lagrange multiplier λ̄ = 1. It holds that C(x̄) = {0}, and
both LICQ and SSOSC are satisfied.
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Figure 1: Graphs of φc in Example 5.1.

For every c > 0, let φc be defined according to (1.2) and (2.5). If q ∈ (0, 1], the
penalty subproblem (1.3) with c > 1 has the unique global solution xc = 0, which
is also its unique local solution. If q > 1, the unique stationary point of (1.3) is
xc = 1/(qc)1/(q−1), showing that the primal estimate (3.3) cannot be improved. Note
that (4.1)–(4.2) yield λc = 1.

Figure 1a shows the graphs of φc with c = 2 for different values of q, while Figure 1b
shows the graphs with q = 2 for different values of c.

Furthermore, if we modify f by setting f(x) = −x + |x|q for a fixed q > 1, then
the unique stationary point of (1.3) is xc = 1/(c + 1)1/(q−1), and (4.1)–(4.2) yield
λc = c/(c + 1). Then λc − 1 = −1/(c + 1), demonstrating that the dual estimate in
(4.7) cannot be improved when q = 2 (sharpness of (4.7) for any q > 1 is demonstrated
below).

The modified function f(x) = −x + |x|q is not twice differentiable at 0 when
q ∈ (1, 2), while twice differentiability is among the assumptions of Theorem 3.1,
Proposition 4.1, and Theorem 4.1. To avoid this imperfection (with respect to this ex-
ample), one can replace f by a quadratic function f(x) = −x+ x2, though derivation
of the needed properties in this case requires some manipulations. For q > 1 we have

φ′
c(x) = −1 + 2x+ qc

{
xq−1 if x ≥ 0,
−(−x)q−1 if x < 0,

and the equation φ′
c(x) = 0 may have solutions only when x ≥ 0, in which case it takes

the form −1 + 2x + qcxq−1 = 0. The left-hand side of this equation is negative for
x = 0, and positive for x ≥ 1/2, and therefore, this equation has a solution xc. Since
q > 1, it evidently holds that xc → 0 as c→ +∞, and hence, xq−1

c = (1− 2xc)/(qc) =
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1/(qc) + o(1/(qc)), implying that

xc =
1

(qc)1/(q−1)
+ o

(
1

(qc)1/(q−1)

)
as c → +∞. This demonstrates that the primal estimate (3.3) cannot be improved.
Furthermore,

xq−1
c =

1

qc
− 2xc

qc
=

1

qc
− 2

(qc)q/(q−1)
+ o

(
1

(qc)q/(q−1)

)
,

and from (4.1)–(4.2) we then have

λc = qcxq−1
c = 1− 2

(qc)1/(q−1)
+ o

(
1

(qc)1/(q−1)

)
,

as c→ +∞. This demonstrates that the dual estimate in (4.7) cannot be improved.
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Figure 2: Graphs of φc in Example 5.2.

Example 5.2 Let n = l = 1, m = 0, f(x) = −x2, h(x) = x. As in Example 5.1, the
unique feasible point x̄ = 0 of (1.4) is the global solution and the unique stationary
point of this problem, with the unique associated Lagrange multiplier λ̄ = 0, and both
LICQ and SSOSC being satisfied again.

For every c > 0, let φc be defined according to (1.2) and (2.5). If q > 2, then along
with a stationary point at 0, the penalty subproblem (1.3) has two other stationary
points xc = ±(2/(qc))1/(q−2), and these points are global solutions of this subproblem.
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This shows that local uniqueness of stationary points established in Theorem 4.1 cannot
be extended to the case of a power penalty (2.5) with q > 2.

Violation of local uniqueness can be seen from Figure 2, which shows for this ex-
ample the graphs of φc, in the same way as Figure 1 for Example 5.1.

The next two examples illustrate the results of this work in the absence of strict
complementarity. In Example 5.3, Theorem 4.1 is applicable.

Example 5.3 Let n = 2, l = 0, m = 2, f(x) = x1 + (x1 + x2)
2/2, g(x) = (−x1, −x2).

The unique global solution and the unique stationary point of the corresponding prob-
lem (1.4) is x̄ = 0, with the unique associated Lagrange multiplier µ̄ = (1, 0). Strict
complementarity is violated, but both LICQ and SSOSC are satisfied.

For every c > 0, the quadratic penalty subproblem has the unique stationary point
xc = (−1/(2c), 1/(2c)), and 2cmax{0, g(xc)} = µ̄.

Our final example shows a problem that can be tackled by Theorem 3.1 and Propo-
sition 4.1, but not by Theorem 4.1.

Example 5.4 Consider the problem from Example 5.3, but with one additional con-
straint: letm = 3, g(x) = (−x1, −x2, −x1−x2). This modification does not change the
solution: it is still x̄ = 0, with the unique associated Lagrange multiplier µ̄ = (1, 0, 0).
Therefore, strict complementarity is violated, and LICQ is violated as well, but SMFCQ
and SSOSC (hence SOSC) are satisfied.

For every c > 0, the quadratic penalty subproblem has the same unique stationary
point xc = (−1/(2c), 1/(2c)) as in Example 5.3, and 2cmax{0, g(xc)} = µ̄.

6 Conclusions

We have established the distance-to-solution estimates for power penalty methods un-
der the assumptions weaker than previously used in the literature. Specifically, we
assume the strict Mangasarian–Fromovitz constraint qualification and second-order
sufficiency, with no strict complementarity assumption. Apart from primal estimates,
we also derive the dual estimates for the natural related approximations of the Lagrange
multiplier. In addition, we show local uniqueness and Lipschitz-continuity of the sta-
tionary points of the quadratic penalty subproblem under the linear independence
constraint qualification and the strong second-order sufficient optimality condition.
One interesting direction of further development of these results might be concerned
with considering “lower-level” constraints not included in the penalty function. An-
other important question concerns allowing for controllable inexactness when solving
the penalty subproblems. Finally, we mention that we are not aware of an example
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demonstrating the lack of local uniqueness of solutions for the quadratic penalty sub-
problem under the strict Mangasarian–Fromovitz constraint qualification and second-
order sufficiency, so this also remains an open question. The discussion in Remark 4.1
sheds some light on possible reasons of the corresponding difficulties.
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