Comput Optim Appl (2012) 51:199-221
DOI 10.1007/s10589-010-9341-7

Semismooth Newton method for the lifted
reformulation of mathematical programs
with complementarity constraints

A.F. Izmailov - A.L. Pogosyan - M.V. Solodov

Received: 2 December 2009 / Published online: 5 August 2010
© Springer Science+Business Media, LLC 2010

Abstract We consider a reformulation of mathematical programs with complemen-
tarity constraints, where by introducing an artificial variable the constraints are con-
verted into equalities which are once but not twice differentiable. We show that the
Lagrange optimality system of such a reformulation is semismooth and BD-regular
at the solution under reasonable assumptions. Thus, fast local convergence can be
obtained by applying the semismooth Newton method. Moreover, it turns out that the
squared residual of the Lagrange system is continuously differentiable (even though
the system itself is not), which opens the way for a natural globalization of the local
algorithm. Preliminary numerical results are also reported.
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1 Introduction

We consider a mathematical program with complementarity constraints (MPCC)
min  f(x) st Gx)=0, Hx)=>0, (Gx),H(x))=0, 1.1

where f :R" — R is a smooth function and G, H : R* — R are smooth map-
pings (precise smoothness requirements would be specified when needed). Additional
equality and inequality constraints can be added to our problem setting without any
principal difficulties. We shall consider the form of (1.1) for simplicity.

MPCC is an important example of a mathematical program with equilibrium con-
straints [17, 20]. As is well known, feasible points of MPCC inevitably violate stan-
dard constraint qualifications, and thus the problem often requires special analysis
and special algorithmic developments. Concerning the latter, it should be noted that
there exists some numerical evidence of good performance of the usual sequential
quadratic programming (SQP) algorithms when applied to MPCC [6]. Also, [7] gives
some partial theoretical justification for local superlinear convergence of SQP when
applied to MPCC. However, it is very easy to provide examples satisfying all nat-
ural in MPCC context requirements and such that SQP does not possess superlin-
ear convergence; see, e.g., the example in [7, Sect. 7.3], discussed also in detail
in [10, Sect. 6]. Therefore, developing special algorithms, which take into account
MPCC structure and have guaranteed attractive convergence properties, is still worth-
while.

The following idea, called “lifting MPCC”, had been proposed in [28]. Consider
the set in the space R? of variables (a, b) defined by the basic complementarity con-
dition:

D={a,b)eR*|a>0, b>0, ab=0)}.

This set is “nonsmooth”, in the sense that it has a kink at the origin. Introducing
an artificial variable ¢ € R, consider a smooth curve S in the space R3 of variables
(a, b, c) such that the projection of S onto the plane (a, b) coincides with the set D.
This can be done, for example, as follows:

S={(a,b,c) e R} |a=(—min{0, ¢})*, b= (max{0, c})*}, s> 1.

In [28], it is suggested to use the power s = 3. This leads to a reformulation of the
original problem (1.1) given by

min  f(x) st —(min{0, y})> — G(x)=0, (max{0,y)?>—H(x)=0, (1.2)

where the operations of taking minimum, maximum, and applying power are un-
derstood component-wise. As is easy to see, a point x € R” is a (local) solution of
(1.1) if, and only if, the point (x, y) € R” x R™ is a (local) solution of (1.2) with y
uniquely defined by x. At the same time, the constraints in the reformulation (1.2)
are twice differentiable equalities, which appear much simpler than the original com-
plementarity constraints in (1.1). Of course, this does not come for free—a closer
look reveals that the Jacobian of the Lagrange optimality system of the reformula-
tion (1.2) is inevitably degenerate whenever the lower-level strict complementarity
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does not hold at x, i.e., if G;(x) = H;(x) =0 for some i € {1,...,m}. In fact, at
any feasible point of (1.2) the derivatives of the Lagrangian with respect to y; for
indices i that fail strict complementarity are zero, and thus the Jacobian matrix has
zero rows. To deal with degeneracy, in [28] an approach somewhat similar in spirit
to relaxation/regularization schemes for MPCC [25, 27] is suggested. Geometrically,
degeneracy arising in the lifted reformulation means that the tangent of the smooth
curve S (regardless of the power s used in its definition) at the point (0, 0, 0) is al-
ways vertical. It is proposed in [28] to add to the objective function of (1.2) a certain
regularization term (linear in y) which shifts the point corresponding to the solution
from (0, 0, 0) to some other nearby point on S where the tangent to S is not vertical.
This point is obtained by solving the regularized problem and is then used to ini-
tialize the method for solving (1.2) itself, the hope being that such “pre-processing”
may prevent the method from getting stuck at nonoptimal weakly stationary points.
However, one still needs to solve problem (1.2), whose Lagrange optimality system
is likely degenerate. Also, the numerical experience reported in [28] indicates that the
starting point used to initialize the method for the regularized version of (1.2) must
already be feasible, which is a limitation in general.

The issue of degeneracy of smoothed lifted MPCC is similar in nature to degener-
acy of smooth equation-based reformulations of nonlinear complementarity problems
(NCP) in the absence of strict complementarity [12]; see also [8] for a detailed dis-
cussion. At the same time, it is known that nonsmooth equation-based reformulations
of NCP, such as based on the Fischer-Burmeister function [1, 5] or the min-function,
can have appropriate regularity properties without strict complementarity and are thus
generally preferred for constructing Newton-type methods for NCP. Drawing on this
experience for NCP, in this work we propose to use, instead of power s = 3 which
leads to degeneracy of the Lagrange optimality system of the lifted MPCC reformu-
lation, the power s = 2 which leads to its nonsmoothness but can be expected to have
better regularity properties. Specifically, consider the reformulation of (1.1) given
by

min £(x) st (min{0, y)? — G(x) =0, (max{0,yH?—H(x)=0. (1.3)

As we shall show, nonsmoothness of the Lagrange optimality system of (1.3) is
structured and allows application of the semismooth Newton method [14, 15, 22,
23] under reasonable assumptions. Moreover, it turns out that the squared resid-
ual of the Lagrange optimality system of (1.3) is actually continuously differ-
entiable, even though the system itself is not. This opens the way to a natural
globalization of the local semismooth Newton method. The latter is again simi-
lar to the nonsmooth Fischer-Burmeister equality-based reformulation of NCP, for
which the squared residual becomes smooth and can be used for globalization
[1,2,5, 11].

The rest of the paper is organized as follows. In Sect. 2 we collect some prelim-
inary material and terminology from MPCC literature, needed for further develop-
ments. Section 3 contains the statement of the semismooth Newton method for the
lifted reformulation of MPCC and the proof of its local superlinear/quadratic conver-
gence. A comparison with some alternatives is also given in this section. Globaliza-
tion issues are discussed in Sect. 4 and numerical results are reported in Sect. 5.

@ Springer



202 A.F. Izmailov et al.

Some final words about our notation. For u,v € R?, by (u, v) we denote the
Euclidean inner product between u and v, and by || - || the associated norm. If u € R?
and I C {l,...,q}, then u; stands for the subvector of u with components u;, i € I.
By diag(u) we define the quadratic g x g-matrix with the components of the vector
u € R? on the diagonal and zeroes elsewhere. For an arbitrary matrix A, we denote
by AT its transpose. Finally, we say that & : R? — R is locally Lipschitz-continuous
with respect to the point u € R if ||®(u) — ® ()| < £||lu — u|| for some £ > 0 and
all u € R? close enough to u.

2 Some basic facts about MPCC and lifted MPCC

Our notation and definitions are standard in MPCC literature, e.g., [7, 9, 26]. Let
x € R" be a feasible point of problem (1.1). We define the sets of indices

Ig=Ig(x)={i=1,...,m| G;(x) =0},

Ig=Ip(x)={i=1,...,m| H;i(x) =0}, (2.1)
Iy=1I1cN1y,
where Ig U Ig ={1,...,m}, and I is called the set of degenerate indices. If Iy = 0,

we say that lower-level strict complementarity holds at x. This condition, however,
is considered as restrictive in MPCC literature. We emphasize that it would not be
assumed anywhere in our developments.

The special MPCC-Lagrangian for problem (1.1) is given by

Lx, )= fx)—(ue, G(x)) — (un, HX)),

where x € R” and o = (1%, uf') € R™ x R™. A point X which is feasible in (1.1) is
called weakly stationary if there exists it = (2¥, 1) € R™ x R™ such that

oL _ _ _ _
a(xﬂ /’L) = 07 (H'G)IH\IG = Oa (MH)I(;\IH =0. (22)

The point x is called strongly stationary if, in addition to (2.2),
(Gl =0, (e = 0. (2.3)
When conditions (2.2) and (2.3) hold, i is called an MPCC-multiplier associated to
the strongly stationary point x of problem (1.1).
It is said that the special MPCC linear independence constraint qualification
(MPCC-LICQ) holds at a feasible point x if
Gi(x), i€lg, H/(X),i€ly arelinearly independent. 2.4)

If a local solution x of problem (1.1) satisfies MPCC-LICQ, then X is a strongly
stationary point and the associated MPCC-multiplier f is unique [26, Theorem 2].
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The usual critical cone for problem (1.1) at the point x is given by

Gy O =0, H] (D)€ =0, G} (DE = 0, Hy (D) >0,

C(%) = R" Ig\Ig
w {ée (/). 8) <0

(2.5)
The following cone takes also into account the second-order information about the
last constraint in (1.1):

G (x) = {5 eR"

Gl 1y @E =0, H] | (D)€ =0, G (D& = 0, Hy (D)€ =0,
(f'(2).§) <0.(G}(D). &) (H/(2). &) = 0.i € Iy '
(2.6)

Evidently, it holds that
Car(x) C C(x).
If x is a strongly stationary point, then for any associated MPCC-multiplier g =
(LG, g ) it holds that
Gl 1y DE =0, H 1 (D)E =0, G ()& > 0, H} (F)E >0,

CE) ={EcR"| o ° - :
{ (1G)i(G; (%), ) =0, (Am)i(H;(x),§)=0,i € Ip

2.7
and

Gl ©E=0,Hy 1 (¥)€ =0,G ()& =0, Hy (¥)§ =0,
Co(X) =186 eR" | (16)i(G{(X),§) =0, (Ap)i(H](X),§) =0, ,
(GL(X), &)(H[(X),§)=0,i€ly
(2.8)

respectively.
The special MPCC second-order sufficient condition (MPCC-SOSC) is said to
hold at a strongly stationary point x with an associated MPCC-multiplier fz, if

2L _ _
<ﬁ(x,u)é,€>>0 V& € C(x)\ {0}. (2.9)

The weaker piece-wise second-order sufficient condition consists of saying that

2L _ _
<ﬁ(x,u)§,é>>0 V& € C2(x) \ {0} (2.10)

Condition (2.10) (and, consequently, (2.9)) is indeed sufficient for local optimality of
X, see [9]. In general, (2.10) is a more natural condition than (2.9). This is because
condition (2.10) with the strict inequality replaced by non-strict is a necessary con-
dition for optimality under MPCC-LICQ [26, Theorem 7], while (2.9) does not have
any necessary counterpart.
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We say that the upper-level strict complementarity condition (ULSCC) holds for
some MPCC-multiplier j& associated to x if

() >0, (LH)1y > 0. 2.11)
Under ULSCQC, it holds that C(x) = C»(x) = K (x), where
K(G)={£eR" |G’,G()E)§=O, H,/H()E);%:O}. (2.12)
In that case, conditions (2.9) and (2.10) become equivalent and can be stated as

2L _ _
<W(x,y,)$,.§>>() VE € K (%) \ {0}. (2.13)

Let us now turn our attention to the lifted MPCC reformulation (1.3). Note first
that the value y of the artificial variable y that corresponds to any given feasible point
x of the original problem (1.1) is uniquely defined: the point (x, y) is feasible in (1.3)
if, and only if,

e = —(Grpnag N2 Sy = Higa, GNY2, 51, =0. (2.14)

Furthermore, it is immediate that x is a (local) solution of the original problem (1.1)
if, and only if, (x, y) is a (local) solution of the lifted MPCC reformulation (1.3). In
addition, it is also easy to see (as in [28]) that MPCC-LICQ at a point x feasible in
(1.1) is equivalent to linear independence of constraints gradients of (1.3) at the point
(x, ).

Let us define the usual Lagrangian of the lifted problem (1.3):

L()C, Y, )\,) = f(x) + ()"Gv (mln{os y})z - G(-x)> + <)“H1 (maX{O, y})2 - H(x)>7

where (x,y) e R" x R™ and A = (Ag, Ag) € R™ x R™. The Lagrange optimality
system characterizing stationary points of (1.3) and the associated multipliers is given
by

oL oL . 2

—(x,y,2) =0, —(x,y,2) =0, (min{0, y})* — G(x) =0,
ox ay

(max{0, y})2 —H(x)=0,

where

oL oL
— 0,y M) =—x,2), (2.15)
0x 0x

oL . .
a—y(x, ¥, &) =2(kg)i minf0, y;} +2(Ap)i max{0, y;}, i=1,....m. (2.16)
]

Observe that for any i = 1, ..., m, the right-hand side in (2.16) is not differentiable
at points (x, y, A) such that y; = 0.

The following correspondence between stationary points and multipliers for the
original problem (1.1) and its lifted reformulation (1.3) can be checked by direct
verification, as in [28].
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Proposition 2.1 Let f, G and H be differentiable at a point x € R"™ which is feasible
in problem (1.1).

If x is a strongly stationary point of (1.1) and i = (LG, fAy) is an associated
MPCC-multiplier, then the point (x, y) with y given by (2.14) is a stationary point of
problem (1.3) and A = [ is an associated Lagrange multiplier.

Conversely, if (x,y) is a stationary point of problem (1.3), then x is a weakly
stationary point of problem (1.1). In addition, if there exists a Lagrange multiplier
» = (hg, Ay) associated to (X, y) and such that ()_‘G)Io >0 and (XH)IO >0, then x
is a strongly stationary point of problem (1.1) and i = A is an associated MPCC-
multiplier.

3 Semismooth Newton method for lifted MPCC

We start with reminding the reader some basic facts of nonsmooth analysis and the
semismooth Newton method (SNM), see [14, 15, 22, 23] and [4, Chap. 7].

Consider a mapping ®: R? — R” which is locally Lipschitz-continuous around a
point u € RY. The B-differential of ® at u € RY is the set

AP W) ={A e R™ |3k} c Do: {1k} — u, (@' (uF)} = Atk — 00)},

where Do is the set of points at which ® is differentiable (under the stated assump-
tions & is differentiable almost everywhere around u). Then the Clarke generalized
Jacobian is given by

0®(u) =convig®(u),

where convX stands for the convex hull of the set X.

Furthermore, @ is said to be semismooth [18] at u € RY if it is locally Lipschitz-
continuous around u, directionally differentiable at u# in every direction, and satisfies
the condition

sup [P +v) — D) — Av| =o(v]).
A€d®(u+v)

If the stronger condition

sup [ D+ v) — D) — Av|| = O(|Jvl|*)
A€dd(u+v)

holds, then & is said to be strongly semismooth at u.

For our purposes, the following basic facts would be needed. If &, ®;:
R? — R" are (strongly) semismooth at u € R?, then so are the mappings (D (-) +
D2(-)), (@1 (), P2(-)), min{®@; (), P2(-)}, max{P;(-), 2(-)}, and (P (-), P2(-)).

Recall finally that ®: R? — R is said to be BD-regular at a point u € R? if all
the matrices A € dp® (1) are nonsingular.

The SNM iterative scheme for the equation

du) =0, 3.1
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206 A.F. Izmailov et al.

where @: R? — RY, is then given by
A — iRy = —o k), Aredp@Wh), k=0,1,.... (3.2)
The following is the basic local convergence result for SNM.

Theorem 3.1 Let ®: R? — RY be semismooth at u € RY. Let u be a solution of
(3.1) such that ® is BD-regular at u.

Then any starting point u® € R? sufficiently close to it uniquely defines SNM it-
erative sequence {u*} satisfying (3.2), and this sequence converges to ii. The rate of
convergence is superlinear, and it is quadratic if ® is strongly semismooth at u.

We shall next consider SNM applied to the Lagrange optimality system of the
lifted MPCC reformulation (1.3). Taking into account the relation (2.15), this system
takes the form of (3.1) if we define ®: R"” x R” x (R™ x R™) — R"” x R” x (R™ x
R™) by

9E (x, 2)
LI C S
(min{0, y})* — G (x)
(max{0, y})* — H (x)

D)= (3.3)

where u = (x, y, 1), A = (Ag, Ay).

Using (2.16) and (3.3), by direct calculations it follows that the B-differential of
® at an arbitrary point u = (x, y, 1) € R” x R™ x (R x R™) consists of all matrices
of the form

2
SLn) 0 =G —(H ()T
A= 0/ 2A(y, M) 2Bmin(y) 2Bmax (y) ) (3.4)
—-G'(x) 2Bmin(y) 0 0
_H/(x) 2Bmax () 0 0
where
Bmax (v) = diag(max{0, y}), '
and the vector a(y, A) € R™ is defined by
A26)i ify; <0,
ai=14 (Ag)ior (Ag);, ify; =0, i=1,...,m. (3.6)
(Aris if y; >0,

SNM for the Lagrange optimality system of the lifted MPCC reformulation (1.3) is
therefore given by the following

@ Springer



Semismooth Newton method for the lifted reformulation 207

Algorithm 3.1 Choose u® = (x, y0,19) e R” x R™ x (R™ x R™) and set k =0.

1. Compute a matrix Ax = A according to (3.4)—(3.6) with (x, y, X)) = (xk, yk, Ak,
Compute ¥+ = (xkF1 yk+1 jk+1) e R7 x R” x (R™ x R™) as a solution of the
linear system

Agu = At — W), (3.7)

where @ is defined in (3.3).
2. Increase k by 1 and go to Step 1.

Let x be a strongly stationary point of the original problem (1.1) and let & be an
associated MPCC-multiplier. Let y be given by (2.14). According to Theorem 3.1, lo-
cal superlinear (quadratic) convergence of Algorithm 3.1 to the solution u = (x, y, i)
of (3.1) would be established if we show (strong) semismoothness and BD-regularity
of ® at u. The semismoothness properties easily follow from calculus of (strongly)
semismooth mappings summarized above. We thus omit the proof.

Proposition 3.1 Let f:R" — Rand G, H : R" — R™ be differentiable around the
point x € R", with their derivatives being semismooth at this point.

Then for any A = (Ag,Ag) € R™ x R™ and y € R™, the mapping ® defined in
(3.3) is semismooth at the point (x,y,A). Moreover, if f, G and H are twice dif-
ferentiable around X, with their derivatives being locally Lipschitz-continuous with
respect to x, then ® is strongly semismooth at (x, y, 1).

Now, according to (3.4)—(3.6), and taking also into account (2.3) and (2.14), we
obtain that the B-differential of & at the point u = (x, y, 1) consists of all matrices
of the form

a2 - - —
SLE w0 —(G @) —(H @)
—G'(¥*)  2Bmin 0 0 ’
—H'(X)  2Bmax 0 0
where
A =diag(a), Bunin = diag(bmin), Bmax = diag(bmax), (3.9)

with the vector a € R™ given by

0, ifi e{l,...,m}\ I,
a; = B _ L (3.10)
(Lg)ior (p)i, ifiely,
and the vectors bpin and bpyax given by
(bmin) 1\ 16 = — (G116 GNY2, (bmin) 1 =0, (3.11)
(bmax) 1o\ 1y = (Hig\ 1y GDY2, (bma) 1, = 0. (3.12)

We next show that the mapping ® is BD-regular under reasonable assumptions.
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Proposition 3.2 Let f, G and H be twice differentiable at the point x € R" which
is strongly stationary for problem (1.1) and satisfies MPCC-LICQ (2.4). Let i1 be
the (unique) associated MPCC-multiplier. Assume finally that ULSCC (2.11) and the
second-order sufficient condition (2.13) hold.

Then ® defined by (3.3) is BD-regular at u = (X, y, [L), where y is given by (2.14).

Proof Suppose that for some matrix A € d®p(u) and some & € R", n € R™,
¢ € R™ and ¢y € R™ it holds that Av =0, where v = (&, 1, {G, {H). According
to (3.8)—(3.12), taking into account also (2.11), we then conclude that

2L
77 WE - (G’ — (H' (@) ey =0, (3.13)
(&6) g1 =0, CH)ig\iy =0, N1, =0, (3.14)

~(G}(®). ) = 2(G;(@) P =0, iely\lg, G, (NE=0, (3.15)
—(H/(X), &)+ 2(H;(¥))'?; =0, ielg\Iy,  Hj (D)&=0. (3.16)

The second relations in (3.15) and (3.16) mean that & € K (x), see (2.12). More-
over, multiplying both sides of the equality (3.13) by £ and using the first two rela-
tions in (3.14) and the second relations in (3.15) and (3.16), we obtain that

BZL: - - /= o=
0=<m(x,u)§,$>— (¢, G (x)§) — (Cn, H (X)§)

2L
=<w(?€,ﬂ)5,$>-

Hence, by (2.13), we conclude that £ = 0.
Substituting now & = 0 into (3.13) and using the first two relations in (3.14), we
have that

(G, N €)1 + (H], () Cr) iy =0.
From the latter and (2.4), it follows that
(¢6)i =0, (CH)iy =0. (3.17)
In addition, using £ = 0 in the first relations of (3.15) and (3.16), we have that
Nig\ig =0, Nig\iy = 0. (3.18)
Combining (3.14), (3.17) and (3.18) gives that n =0, {G =0, ¢y =0, i.e.,, v =0.

We have thus shown that any matrix A in question has only zero in its null space.
It follows that all the matrices are nonsingular. |

Given Theorem 3.1 and Propositions 3.1 and 3.2, we immediately obtain local
convergence and rate of convergence for Algorithm 3.1.
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Theorem 3.2 Let f:R" — R and G, H : R" — R™ be twice differentiable in a
neighbourhood of a strongly stationary point x € R" of problem (1.1), and let their
second derivatives be continuous at x. Let MPCC-LICQ (2.4) be satisfied at x, and
let i1 be the (unique) MPCC-multiplier associated to x. Assume, finally, that ULSCC
(2.11) and the second-order sufficient condition (2.13) are satisfied.

Then any point (x°,y%,10) e R" x R™ x (R™ x R™) close enough to (X, y, i)
uniquely defines SNM iterative sequence of Algorithm 3.1, and this sequence con-
verges to (X, y, ib). The rate of convergence is superlinear, and if the second deriva-
tives of f, G and H are locally Lipschitz-continuous with respect to X then the rate
is quadratic.

We next comment on how our local convergence result in Theorem 3.2 compares
to some alternatives in MPCC literature.

As already discussed above, using the lifted reformulation (1.2), suggested in [28],
gives a Lagrange optimality system which is smooth but inherently degenerate (at
least in the absence of lower-level strict complementarity). Nevertheless, this degen-
eracy is again structured and can be tackled, in principle, by the tools for solving
degenerate equations and reformulations of complementarity problems developed
in [8]. But careful consideration of the approach of [8] applied to the lifted refor-
mulation (1.2) shows that it would require the same assumptions as those for Algo-
rithm 3.1 in Theorem 3.2, while the approach itself is quite a bit more complicated. In
addition, methods in [8] do not come with natural globalization strategies. In Sect. 4
below we shall show that Algorithm 3.1 allows natural globalization by linesearch
for the squared residual of the Lagrange optimality system for (1.3).

Another possibility is to apply the usual SQP directly to the original problem (1.1),
perhaps introducing slacks so that the complementarity condition is stated for sim-
pler bound constraints. In practice, this approach appears to work rather well [6].
There is also some local analysis showing superlinear convergence of SQP applied to
MPCC [7], although it is not quite complete. In any case, the assumptions used in [7]
are stronger than those for Algorithm 3.1 in Theorem 3.2. Specifically, in addition to
the hypotheses of Theorem 3.2, in [7, Theorem 5.7] it is assumed that all MPCC mul-
tipliers are non-zero (Assumption [A4]), that the active-set QP solver applied to SQP
subproblems always picks a linearly independent basis (Assumption [AS]) and, per-
haps most importantly, that the exact complementarity always holds from some iter-
ation on (Assumption [A6]). Strict complementarity is dropped in [7, Theorem 5.14]
but it is additionally assumed that the constraints of SQP subproblems remain consis-
tent along iterations (Assumption [A7]). (Also, it is not clear which dual solution p*
[7, Theorem 5.14] refers to.) Note also that, unlike SQP, Algorithm 3.1 solves lin-
ear systems of equations rather than quadratic subproblems. On the other hand, SQP
comes with well-developed globalization strategies which may be preferable to the
one based on linesearch for the squared residual of the optimality system suggested
in Sect. 4.

Finally, local superlinear convergence of piecewise-SQP in [17, 24], and of an
active-set Newton method in [9], had been shown under assumptions weaker than
those for Algorithm 3.1 in Theorem 3.2. Specifically, those methods do not require
ULSSC (2.11). But, just as in the case of [8], the methods in question come without
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ready-to-use globalization strategies, while a reasonable globalization scheme for Al-
gorithm 3.1 will be proposed next.

We complete this section with an observation that the mapping ® defined in (3.3)
is piecewise smooth, and SNM specified in Algorithm 3.1 can be interpreted as the
piecewise Newton method developed in [13]. However, the semismooth approach is
more general and could possibly be used for other (semismooth but not piecewise
smooth) lifting MPCC reformulations.

4 Globalization of the local method

In this section, we propose to globalize the local SNM of Algorithm 3.1 by introduc-
ing linesearch for the merit function ¢ : R" x R™ x (R™ x R™) — R,

1
o) = §||<I><u)||2, 4.1)

where @ is defined in (3.3). It turns out that this merit function ¢ is continuously
differentiable, even though & itself is not. Moreover, the gradient of ¢ is explicitly
computable using any element of the B-differential of . It is interesting to point out
that those properties are similar to the popular equation-based reformulation of NCP
based on the Fischer—Burmeister function and its squared residual [1, 2, 5, 11].

Proposition 4.1 Let f :R" — R and G, H : R" — R"™ be twice differentiable at a
point x € R".

Then for any y € R™ and A = (Mg, ) € R™ x R™, the function ¢ defined by
(4.1) and (3.3) is differentiable at the point u = (x, y, A) and it holds that

') =ADWU) YA edzdu). 4.2)

Moreover, if f, G and H are twice continuously differentiable on R”", then the func-
tion @ is continuously differentiable on R" x R™ x (R™ x R™).

Proof Nonsmoothness of ¢ can only be induced by the components of & that corre-
spond to partial derivatives of L with respect to y (see (3.3)); all the other components
of @ are sufficiently smooth under the stated assumptions.

Observe that for any ¢ € R it holds that

min{0, ¢} max{0, ¢} = 0.

Therefore, foreachi =1, ..., m, from (2.16) it follows that

IL 2 2, 2 2 2
(8—%(&%)&) =4((Ag); (min{0, y; D~ + (Ag); (max{0, y;})7), (4.3)

where the right-hand side is a differentiable function in the variables y € R™ and
A= (Ag,Apg) € R™ x R™. This shows that ¢ has the announced differentiability
properties.
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Furthermore, from (4.3) it follows that

0
4((r6)}(minf0, y1}) + (A )3 (max{0, y1}))

4((rg)3(min{0, y,}) + (pr)Z, (max{0, yu})

1oL 4(2g)1(min{0, y1})?

(5 ‘ E(X»Y’A)

2>/
4(AG)m (min{0, yu})?
4(hp)1(max{0, y1})?

4(hp)m(max{0, yn })?

0
2A(y, A) oL
= —(x,y, M), 44
2 Bmin(y) ay .y, 1) @4)
2Bmax (y)

where the last equality is by (2.16), (3.5) and (3.6). Differentiating the other parts of
¢ and combining the result with (4.4) and with (3.3)—(3.6), gives the equality (4.2). J

Recall that according to (3.4)—(3.6), all the matrices A € dp P (u) are symmetric at
any u € R" x R™ x (R™ x R™). Using this fact, as well as (4.2), for any such matrix
and for any direction v € R” x R” x (R x R™) computed as a solution of the linear
system

Av=—D(u),
it holds that

('), v) = (AP ), v) = (D (u), Av) = —(D(u), D)) = —[|PW)|> = =20 ).
4.5)

In particular, if the point u is not a solution of (3.1) or, equivalently, is not a global
minimizer of the function ¢, then v is a descent direction for ¢ at the point u. This
immediately suggests a natural globalization strategy for the local SNM in Algo-
rithm 3.1. We next state our globalized algorithm, which is similar to the method in
[11] for the reformulation of NCP based on the Fischer—-Burmeister function. The
latter, however, assumes existence and boundedness of Newton directions along the
iterative process.

Algorithm 4.1 Choose parameters ¢ € (0,1/2), t € (0,1), M >0, 6 >0, and a
starting point u?=(x% y0, 20 e R x R” x (R™ x R™). Set k = 0.

1. If ®(u*) =0, stop. Otherwise, compute some matrix Ay = A according to the
formulas (3.4)—(3.6) with (x, y, A) = (x¥, yk, 1%). Compute it e R x R x
(R™ x R™) as a solution of the linear system (3.7), where @ is defined in (3.3). If
ik +1 exists and

a5+t — uk || < max{M, 1/(p(u*))%}, (4.6)
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then set v = K+ — y; otherwise set vF = — A ® (k). If v =0, stop.

2. Compute the stepsize value oy by the Armijo rule: oy = 7/, where j is the smallest
nonnegative integer which satisfies the inequality

X + Tk < o) +et! (¢ (WF), vF). 4.7)

Set uk+l = (xkF1 yktl ahtly — yk 4 ook,
3. Increase k by 1 and go to Step 1.

If ®(u*) = 0 for some iterate, we stop since the equation is solved. Note that if
we do not stop according to this test, then neither v¥ = 0 nor ¢’(u¥) = 0 can happen
when the Newton direction exists, because of (4.5). If v¥ = 0 is the gradient direction
at the point where the Newton direction does not exist, then u is a stationary point
of ¢ and we stop since no further progress is possible. We assume, from now on, that
Algorithm 4.1 does not stop, which means that v* % 0 and ¢’ (u¥) = 0 for all k.

The test (4.6) for the size of the Newton direction (where M > 0 and 6 > 0 should
be chosen large to allow more Newton directions) can be checked within the inner
solver for the Newton system, and plays the same role as detecting its inconsistency—
i.e., that something is wrong. In such cases, we resort to the back-up gradient direction
and proceed.

Theorem 4.1 Ler [ : R" — Rand G, H : R" — R™ be twice continuously differen-
tiable on R".

Then Algorithm 4.1 is well-defined, and any accumulation point u of any sequence
{ukY generated by this algorithm is a stationary point of the function ¢, i.e.,

¢ (it) = 0. (4.8)

Proof First note that linesearch is always in a direction of descent, because the New-
ton direction satisfies (4.5) and otherwise the direction is the negative gradient, and
thus, in any case,

(@' Wh), vk <0 (4.9)

for all k. By the standard facts concerning the Armijo linesearch, it follows that the
sequences {o} and {uk } are well-defined. Furthermore, by (4.7) we have that the se-
quence {oW")} is monotonically nonincreasing. Since it is bounded below (by zero),
it converges. Then, by (4.7), we have that

lim oy (¢ (), v%)y =0. (4.10)
k—00

Let u be an accumulation point of the sequence {u¥}, and let {u¥i} be a subsequence
convergent to u. Consider the two possible cases:

lim sup ag; > 0 or lim 7 =0. 4.11)
Jj—00 J—>00
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In the first case, passing onto a further subsequence if necessary, we can assume
that the entire {ay;} is separated from zero:

liminfoekj > 0.
Jj—00

Then (4.10) implies that
lim (¢’ (), vk7iy = 0. (4.12)
Jj—00
If within this subsequence the Newton direction is used for infinitely many indices j,
by (4.5) we have in (4.12) that

(@ i), vhi) = =20 ki)

for infinitely many j. Then (4.12) implies that ¢ () =0, i.e., u is a global minimizer
of ¢, which certainly implies (4.8). On the other hand, if Newton directions are used
only for finitely many indices j, then

(@ @k, kY = —(@ W), @' W)y = — ¢’ (k) )2

for all j large enough, and we conclude by (4.12) that (4.8) holds.

It remains to consider the second case in (4.11). Suppose first that the se-
quence {v*/} is unbounded. Note that this can only happen when the Newton di-
rections are used infinitely often (because otherwise vk = —¢' (ui) for all j large
enough, and hence, {ka} converges to —¢’(«)). But then the condition ||ka I <
max{M, 1/(¢u’))?} implies that ¢(u*i) — 0 so that (i) = 0, and hence, i is
again a global minimizer of ¢, and (4.8) follows.

Let finally {v*/} be bounded. Taking a further subsequence, if necessary, assume
that {vX/} converges to some . Since in the second case in (4.11) for each j large
enough the initial stepsize value had been reduced at the current point u*/ at least
once, the value ok; /T > ok; does not satisfy (4.7), i.e.,

@i + (a; /T)VM) — @)

ok /T

> e(@’ Wk, vhi).

Employing the Mean-Value Theorem and the fact that ax; — 0 as j — 00, and pass-
ing onto the limit as j — 0o, we obtain that

(¢' (@), 0) > (' (), V),
which may only hold when
(¢’ (), v) > 0.
Combining this with (4.9), we obtain that
(¢ (@), v) =0.

Considering, as above, the two cases when the number of times the Newton direction
had been used is infinite or finite, the latter relation implies that (4.8) holds. O
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According to the proof of Theorem 4.1, if along a subsequence convergent to
u=(x,y, 1) e R” x R™ x (R™ x R™) the Newton direction had been used infinitely
many times, then ®(i1) = 0, i.e., (X, y) is a stationary point of problem (1.3) and A
is an associated Lagrange multiplier. By Proposition 2.1, it then follows that x is a
weakly stationary point of (1.1). Convergence to a stationary point of ¢ which is not
its global minimizer can only happen when Newton directions are not used along
the corresponding subsequence from some point on at all. But even in that case,
since for any stationary point & of the function ¢ it holds that A® (u) = 0 for each
matrix A € dp® () (see (4.2)), if among those matrices at least one is nonsingular
we immediately obtain that ® (i) = 0. Thus we can expect global convergence of
Algorithm 4.1 to weakly stationary points of (1.1).

Finally, we show that Algorithm 4.1 preserves fast local convergence of Algo-
rithm 3.1 under the relevant assumptions.

Theorem 4.2 Let f, G and H be twice continuously differentiable on R", and let a
sequence {u*} generated by Algorithm 4.1 have an accumulation point it = (X, ¥, i),
where X is a strongly stationary point of the problem (1.1), y is given by (2.14), and
L is an MPCC-multiplier associated to x. Assume that MPCC-LICQ (2.4), ULSCC
(2.11), and the second-order sufficient condition (2.13) hold.

Then the whole sequence {u*} converges to (X, y, jt). The rate of convergence
is superlinear, and if the second derivatives of f, G and H are locally Lipschitz-
continuous with respect to X then it is quadratic.

Proof Let u* be close to i1, and let i**! be computed as in Algorithm 4.1. According
to Theorem 3.2, for u* be close to i, this point is well-defined and

@+t — il = o(Jlu* — il). (4.13)

As a consequence, i¥*! would be accepted by the test (4.6).

Furthermore, according to Proposition 3.2, under the stated assumptions the map-
ping @ is BD-regular at i. It is well known [21] that BD-regularity implies the error
bound of the form

lu —ull = O @)ID.
Employing this error bound and (4.13), and also taking into account Lipschitz-

continuity of ® near u (see Proposition 3.1), we obtain that

~k+1) —

(it — @@ — d@)|?

L
2
= o([la**" —al?)
=o(lu* — i
=o(|®")|*)

= o(p()).
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Fig. 1 Lifted SNMs vs SNM-FB

k+1

Setting v* = ¥+ — y*¥, the above relation implies that if u* is close enough to i then

o* +v5) = @t
< (1=2e)p")
= ") — e @Wh)|?
= ") + (¢’ "), vh),

where the last equality is by (4.5) (recall also that ¢ € (0, 1/2)). Therefore, oy = 1
will be accepted by the Armijo rule: inequality (4.7) holds with j = 0. This shows
that iterations of Algorithm 4.1 reduce to the (local) Algorithm 3.1. The assertions
now follow from Theorem 3.2. (|

5 Numerical results

In this section, we present some preliminary numerical experience with two versions
of SNM applied to the lifted MPCC, SNM applied to the optimality conditions of the
original MPCC, and SQP with linesearch for the original MPCC. We use small test
problems derived from MacMPEC [16]. Our selection of test problems is the same as
in [9]. Specifically, we select all the problems in MacMPEC satisfying the following
criteria: they have no more than 10 variables, and they do not have any inequality
constraints apart from complementarity constraints. We also ignore simple bounds
when there are any (which sometimes affects the solutions and stationary points of
these problems). We end up with 38 problems.

We consider two versions of SNM for lifted MPCC. One is Algorithm 4.1 as
stated, and we refer to it as Lifted SNM. The other is a quasi-Newton version
of Algorithm 4.1, with the Hessian in (3.4) replaced by its SR1 approximations [19,
(6.24), (18.13)], and we call it Lifted SNM SR1. SR1 updates were chosen be-
cause in the context of SNM we do not need to care about positive definiteness of
approximations of the Hessian, but we want to keep them symmetric.
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Fig. 2 Lifted SNMs vs Convergence to solution
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We first compare both methods with SNM-FB, which is the natural linesearch
version of the semismooth Newton method applied to the Fischer-Burmeister refor-
mulation of the first-order optimality conditions of the original MPCC (1.1); see [9]
for details of the specific implementation. Another algorithm chosen for compari-
son is SQP BFGS, which is the quasi-Newton version of the SQP algorithm, with
BFGS approximations of the Hessian complemented by Powell’s modification, and
with linesearch for the /| penalty function (e.g., see [19, Sect. 18], and also [9] for
details of our implementation). The latter method was implemented without any tools
for tackling possible infeasibility of subproblems and for avoiding the Maratos effect.

The parameters of Algorithm 4.1 were chosen as follows: ¢ = 1074, £ = 0.5,
M=10°60=1. All computations were performed in Matlab environment, with
the QP-subproblems of SQP BFGS solved by the built-in Matlab QP-solver. For
Lifted SNMand Lifted SNM SRI1, we used the stopping criterion of the form

@k, vk, 1K) <1070

where @ is defined in (3.3). SNM-FB and SQP BFGS were stopped when the
Fischer-Burmeister residual of the first-order optimality conditions of the original
MPCC (1.1) becomes smaller than 10~°. Failures were declared when the needed
accuracy was not achieved after 500 iterations or when the method in question failed
to complete an iteration, for whatever reason.

We performed 100 runs for each algorithm under consideration from the same
sample of randomly generated starting points. Primal starting points for each algo-
rithm were generated in a cubic neighborhood around the solution (the “solutions”
were found in the course of experiments), with the edge of the cube equal to 20. For
the lifted reformulation, we defined the starting value y° of the auxiliary variable as
follows:

P =

o | HGOH2 i Hi(x%) = Gi(x9),
—1G; (xOV2, if H;(x%) < G; (x9),
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Best objective value achieved Non-worst objective value achieved
Lifted SNM SR1 14%
ifted SNM SR1 23%

ed SNM 14%

ted SNM 28%

(a) Best objective value achieved (b) Non-worst objective value achieved

Fig. 3 Lifted SNMs vs SNM-FB

where x" is the primal starting point. Dual starting points for all algorithms were
generated the same way as primal ones but around 0, and with additional nonnega-
tivity restrictions for their components corresponding to inequality constraints (this
concerns SNM-FB and SQP BFGS which are applied to the original problem (1.1)).
In the case of a successful run, “convergence to solution” was declared when the
distance from the last primal iterate to the solution was smaller than 1073,

Figure 1 reports on the average numbers of iterations and evaluations of constraint
functions and derivatives values for Lifted SNM, Lifted SNM SR1 and SNM-
FB over successful runs, in the form of a performance profile [3]. (Note that these
methods do not require objective function values.) For each algorithm, the value of
the plotted function at 7 € [1, 400) corresponds to the part of the problems in the test
set for which the achieved result (the average iteration count, or the evaluation count)
was no more than t times worse (bigger) than the best result among the three algo-
rithms. Failure is regarded as infinitely many times worse than the best result. Thus,
the value at T = 1 characterizes “pure efficiency” of the algorithm (that is, the part
of problems for which the given algorithm demonstrated the best result), while the
value at T = +o00 characterizes robustness of the algorithm (that is, the part of prob-
lems which were successfully solved by the given algorithm). It is evident that both
Lifted SNMand Lifted SNM SRI seriously outperform SNM-FB both in ro-
bustness and efficiency. Lifted SNM SR1 is less efficient (and somewhat less ro-
bust) than Lifted SNM, which is a natural price for not computing the true Hessian.
Of course, the former has its usual advantages when computing second derivatives is
too costly or simply impossible.

Apart from robustness and efficiency, another important characteristic of any al-
gorithm is the quality of the output produced, i.e., the percentage of those cases
when the algorithm converges to a true solution rather than to some nonoptimal
stationary point. Figure 2 reports on this aspect of behavior of Lifted SNM,
Lifted SNM SR1 and SNM-FB. Here, for each algorithm we look at the inverse of
the number of convergences to solution. Note that this result equals to +oco0 when the
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Fig. 5 Lifted SNMs vs SQP BFGS

given algorithm gave no convergences to the solution for a given problem, and this
adds to the cases of failure. That is why the values on the right end are smaller than
in Fig. 1. One can see that SNM-FB has in principle a stronger tendency of conver-
gence to the solution than Lifted SNM and Lifted SNM SRI1, but the picture
becomes different when this data is combined with robustness.

Diagrams in Fig. 3 are intended to give some impression of the ability of
Lifted SNM, Lifted SNM SR1 and SNM-FB to achieve smaller values of the
objective function in the cases of successful runs when, in particular, the last pro-
duced iterate is (nearly) feasible. We report on percentage of those problems for
which each algorithm demonstrated the best (smallest) and the non-worst average
of the achieved objective function values over successful runs among the three SNM-
based algorithms. The results were regarded as equal when the difference was less
than 1073, Note that for some particular problems the algorithms can fall into both
“best” and “worst” categories, if all three algorithms give the same result. SNM-FB
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Fig. 6 Lifted SNMs vs Convergence to solution
SQP BFGS: convergence to T T
solution 1l ]
0.8r -’_/—
8 0.6t |
j
IS
E
204t E
[
a
0.2} 1
| ifted SNM
ot Lifted SNM SR1 ||
= SQP BFGS
10° 10° 102 10°
T

demonstrates better ability in decreasing the objective function. Note, however, that
comparative robustness of the algorithms is not reflected in Fig. 3.

We proceed with comparisons of Lifted SNM and Lifted SNM SRI1 with
SQP BFGS. The information in Figs. 4-7 is produced similarly to Figs. 1-3. Some
special features are the following.

First, Fig. 4 reports separately on major and minor iteration counts. For Lifted
SNM and Lifted SNM SRI1 these two counts are the same, since these algorithms
are QP-free and each major iteration consists of solving one linear system, followed
by linesearch. SQP BFGS subproblems are general QPs with inequality constraints.
Solving each of these subproblems by the active set QP-solver usually requires more
than one minor (inner) iteration, and each minor iteration includes solving a certain
linear system. One can see from Fig. 4 that Lifted SNMand Lifted SNM SR1
are comparable with SQP BFGS in terms of major iterations, but outperform the
latter in terms of minor iterations. Moreover, lifted SNMs are even somewhat more
robust than our simple implementation of SQP BFGS.

Figure 5 reports separately on the numbers of evaluation of constraint functions
and of derivatives, since these two counts are not the same for SQP BFGS. This
method requires less evaluations than both Lifted SNMand Lifted SNM SRI1.
Note, however, that SQP BFGS requires also evaluations of the objective function,
not needed in SNMs.

Figures 6 and 7 demonstrate that SQP BFGS has better properties of convergence
to solution and of reducing the objective function value. This is quite natural, since
SQP is clearly more optimization-related. Somewhat surprisingly, Fig. 3 and Fig. 7
turn out to be exactly the same. Most likely, this happened accidentally (recall that
we round off the averages of achieved objective function values up to the accuracy
1073).

We do not report here on the comparisons of Lifted SNM and Lifted SNM
SR1 with the active-set Newton methods developed in [9] (these combine SNM and
SQP with active-set strategies). The reason is that numerical results in [9] on the
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Best objective value achieved Non-worst objective value achieved
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(a) Best objective value achieved (b) Non-worst objective value achieved

Fig. 7 Lifted SNMs vs SQP

same test set indicate that the active-set phase can be beneficial in certain situations
but does not seriously change the behavior “on average”.

Numerical results presented in this section allow for the following (very prelimi-
nary) conclusions. The idea of lifting can be useful. For example, lifted SNM algo-
rithms outperform in efficiency and robustness SNM applied to the original MPCC.
They also compare quite favorably in the same indicators even with SQP (at least
in its simple implementations). On the other hand, the quality of the output of lifted
SNMs with respect to optimality is generally lower than that of more traditional (es-
pecially SQP-based) algorithms.

6 Concluding remarks

We have shown that the Lagrange optimality system of the lifted reformulation (with
power s = 2) of MPCC, although nonsmooth, can be regular in an appropriate sense.
Sufficient conditions for its regularity are reasonable: MPCC-LICQ, upper-level strict
complementarity (ULSCC), and the second-order sufficiency. Under these assump-
tions, the Lagrange system can be solved by a fast semismooth Newton method.
Moreover, it turns out that the squared residual of this system is actually smooth,
which allows for a natural globalization strategy. The resulting globalized algorithm
preserves fast local convergence under the relevant assumptions. Preliminary numer-
ical experience suggest that the approach developed in this work has some potential.

We note, in passing, that Proposition 3.2 and Theorems 3.2 and 4.2 remain
valid with the strong stationarity assumption replaced by weak stationarity, and with
ULSCC replaced by the assumption that the lp-components of the corresponding
multiplier are not equal to zero (allowed to be negative).
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