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Abstract We prove a new local upper Lipschitz stability result and the associated
local error bound for solutions of parametric Karush–Kuhn–Tucker systems corre-
sponding to variational problems with Lipschitzian base mappings and constraints
possessing Lipschitzian derivatives, and without any constraint qualifications. This
property is equivalent to the appropriately extended to this nonsmooth setting notion
of noncriticality of the Lagrange multiplier associated to the primal solution, which
is weaker than second-order sufficiency. All this extends several results previously
known only for optimization problems with twice differentiable data, or assuming
some constraint qualifications. In addition, our results are obtained in the more gen-
eral variational setting.
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1 Introduction

Given the base mapping Φ : R
n → R

n and the constraints mappings h : R
n → R

l

and g : R
n → R

m , consider the variational problem

x ∈ D, 〈Φ(x), ξ 〉 ≥ 0 ∀ ξ ∈ TD(x), (1)

where

D = {x ∈ R
n | h(x) = 0, g(x) ≤ 0},

and TD(x) is the usual tangent (contingent) cone to D at x ∈ D. This problem setting
is fairly general. In particular, it contains optimality conditions: for a given smooth
function f : R

n → R, any local solution of the optimization problem

minimize f (x)

subject to h(x) = 0, g(x) ≤ 0,
(2)

necessarily satisfies (1) with the base mapping defined by

Φ(x) = f ′(x), x ∈ R
n . (3)

Assuming that the constraints mappings h and g are smooth, for any local solution x̄
of problem (1) under the appropriate constraint qualifications there exists a multiplier
(λ, μ) ∈ R

l × R
m satisfying the Karush–Kuhn–Tucker (KKT) system

Φ(x) + (h′(x))Tλ + (g′(x))Tμ = 0,

h(x) = 0, μ ≥ 0, g(x) ≤ 0, 〈μ, g(x)〉 = 0
(4)

for x = x̄ . In particular, if (3) holds then (4) is the KKT system of optimization
problem (2). Let M(x̄) stand for the set of such multipliers associated with x̄ .

Define the mapping Ψ : R
n × R

l × R
m → R

n by

Ψ (x, λ, μ) = Φ(x) + (h′(x))Tλ + (g′(x))Tμ. (5)

Let

A = A(x̄) = {i = 1, . . . , m | gi (x̄) = 0}, N = N (x̄) = {1, . . . , m}\A

be the sets of indices of active and inactive constraints at x̄ and, for (λ̄, μ̄) ∈ M(x̄),
let

A+ = A+(x̄, μ̄) = {i ∈ A | μ̄i > 0}, A0 = A0(x̄, μ̄) = A\A+
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A note on upper Lipschitz stability, error bounds, and critical multipliers 593

be the sets of indices of strongly active and weakly active constraints, respectively. If
Φ is differentiable at x̄ , and h and g are twice differentiable at x̄ , then from the results
and discussions in [7–9,17] the following three properties are known to be equivalent.

Property 1 (Upper Lipschitz stability of the solutions of KKT system under canon-
ical perturbations) There exist a neighborhood U of (x̄, λ̄, μ̄) and � > 0 such that
for any σ = (a, b, c) ∈ R

n × R
l × R

m close enough to (0, 0, 0), any solution
(x(σ ), λ(σ ), μ(σ )) ∈ U of the perturbed KKT system

Ψ (x, λ, μ) = a, h(x) = b, μ ≥ 0, g(x) ≤ c, 〈μ, g(x) − c〉 = 0 (6)

satisfies the estimate

‖x(σ ) − x̄‖ + dist((λ(σ ), μ(σ )), M(x̄)) ≤ �‖σ‖. (7)

Property 2 (Error bound for KKT system) There exist a neighborhood U of (x̄, λ̄, μ̄)

and � > 0 such that for all (x, λ, μ) ∈ U it holds that

‖x − x̄‖ + dist((λ, μ), M(x̄)) ≤ �

∥
∥
∥
∥
∥
∥

⎛

⎝

Ψ (x, λ, μ)

h(x)

min{μ,−g(x)}

⎞

⎠

∥
∥
∥
∥
∥
∥

. (8)

Property 3 (The multiplier (λ̄, μ̄) is noncritical) There is no triple (ξ, η, ζ ) ∈ R
n ×

R
l × R

m , with ξ �= 0, that satisfies the system

∂Ψ

∂x
(x̄, λ̄, μ̄)ξ + (h′(x̄))Tη + (g′(x̄))Tζ = 0, h′(x̄)ξ = 0, g′

A+(x̄)ξ = 0, (9)

ζA0 ≥ 0, g′
A0

(x̄)ξ ≤ 0, ζi 〈g′
i (x̄), ξ 〉 = 0, i ∈ A0, ζN = 0. (10)

The equivalence between Properties 1 and 2 is valid in the more general context of
mixed complementarity problems that contain KKT systems as a special case and, as
will be discussed in Sect. 2, this equivalence actually does not require differentiability
of Φ and twice differentiability of h and g. Observe also that Property 1 (dealing with
canonical perturbations) implies the corresponding upper Lipschitz stability property
for arbitrary parametric perturbations satisfying the Lipschitz-continuity assumption
specified in item (b) of Theorem 1 below.

The notion of critical and noncritical multipliers had been discussed in [15,16], and
the equivalence of noncriticality to Properties 1 and 2 in [17]. Note also that, as can
be easily seen, when ∂Ψ

∂x (x̄, λ̄, μ̄) is a symmetric matrix [e.g., in optimization setting
(3)], (9)–(10) is the KKT system for the quadratic programming problem

minimizeξ

1

2

〈
∂Ψ

∂x
(x̄, λ̄, μ̄)ξ, ξ

〉

subject to ξ ∈ C(x̄),

(11)
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where

C(x̄) = {ξ ∈ R
n | h′(x̄)ξ = 0, g′

A(x̄)ξ ≤ 0, 〈Φ(x̄), ξ 〉 ≤ 0}
= {ξ ∈ R

n | h′(x̄)ξ = 0, g′
A+(x̄)ξ = 0, g′

A0
(x̄)ξ ≤ 0}

is the critical cone of the KKT system (4) at x̄ . Therefore, in this case (λ̄, μ̄) being
noncritical is equivalent to saying that ξ = 0 is the unique stationary point of problem
(11). Using the terminology of [4], the multiplier (λ̄, μ̄) being noncritical also means
that the cone-matrix pair (C(x̄), ∂Ψ

∂x (x̄, λ̄, μ̄)) has the so-called R0 property (see the
discussion following (3.3.18) in [4]). Finally, note that multiplying the first equality in
(9) by ξ and using the other two equalities in (9) and the relations in (10), it can be seen
that a sufficient condition for (λ̄, μ̄) to be noncritical is the following second-order
sufficiency condition (SOSC):

〈
∂Ψ

∂x
(x̄, λ̄, μ̄)ξ, ξ

〉

> 0 ∀ ξ ∈ C(x̄)\{0}. (12)

In particular, SOSC (12) is sufficient for the equivalent Properties 1–3, but is stronger
in general.

Most error bounds for KKT systems would require at least some regularity-type
assumptions about the constraints; see [13] for a summary. The exception is precisely
the bound (8) first established under SOSC (12), which follows from [7,8]; and which
is actually equivalent to the weaker assumption of noncriticality of the multiplier, as
discussed above. Speaking about the predecessor of these results, we first mention [27]
where under the additional Mangasarian–Fromovitz constraint qualification (MFCQ)
it was proved that in optimization setting (3), SOSC (12) for all (λ̄, μ̄) ∈ M(x̄) implies
the stronger version of Property 1, with U being a neighborhood of the entire set
{x̄}×M(x̄). In [2,22], SOSC (12) was replaced by a condition close to noncriticality,
but still for all (λ̄, μ̄) ∈ M(x̄), and still under MFCQ. Note that the works cited
above deal with upper Lipschitzian stability of the primal solution only but, as will be
demonstrated in the proof of Theorem 1 below, the needed property of dual solutions
can then be easily derived by an application of Hoffman’s error bound.

Furthermore, in [3,18,19] these results were extended to the case when the func-
tions in (2) may not be twice differentiable, but only possess Lipschitz-continuous first
derivatives. This problem setting with restricted smoothness requirements has multi-
ple applications: e.g., in stochastic programming and optimal control (the so-called
extended linear-quadratic problems [26,28,29]), and in semi-infinite programming
and in primal decomposition procedures (see [21,25] and references therein). Once
but not twice differentiable functions arise also when reformulating complementarity
constraints as in [12] or in the lifting approach [10,11,30]. Other possible sources
are subproblems in penalty or augmented Lagrangian methods with lower-level con-
straints treated directly and upper-level inequality constraints treated via quadratic
penalization or via augmented Lagrangian, which gives rise to certain terms that are
not twice differentiable in general; see, e.g., [1]. Theoretical difficulties concerned
with the lack of smoothness have already been highlighted in [31] where, among other
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things, an example of an unconstrained optimization problem was provided showing
that, unlike in the twice differentiable case, a point satisfying the quadratic growth con-
dition may not be an isolated stationary point, and hence, may not be upper Lipschitz
stable or satisfy the error bound (8).

We also mention the related work concerned with characterization of Lipschitz
stability properties for generalized equations with possible nonsmooth base mappings
by means of generalized differentiation [23]. However, the much stronger pseudo-
Lipschitzian property of the solution mapping is investigated in that work.

Apart from theoretical significance, all this has implications for convergence of
numerical algorithms. For example, SOSC (12) was the only assumption needed to
prove local convergence of the stabilized sequential quadratic programming method in
[5] and of the augmented Lagrangian algorithm in [6], with the error bound (8) playing
a key role. When there are equality constraints only, the error bound itself (equivalently,
noncriticality of the multiplier) is enough in the case of stabilized sequential quadratic
programming [17]. The error bound (8) was also the key in active set identification [3]
and constructing local regularization methods for problems with degenerate constraints
in [14,32]. For other roles and applications of error bounds, see, e.g., [24].

The goal of this note is to prove that under weaker smoothness assumptions Proper-
ties 1 and 2 are equivalent to the appropriately defined notion of noncriticality, without
any constraint qualifications. Not employing constraint qualifications is crucial for the
applications of error bounds discussed above. Also, avoiding MFCQ is what makes the
results presented below meaningful for problems with pure equality constraints and
nonunique multipliers associated to a solution. Our smoothness hypotheses reduces to
local Lipschitz-continuity of the mapping Ψ , and in particular, the results presented
below are new and fully relevant in the case of a piecewise smooth Ψ .

Some words about our notation and terminology are in order. According to [20,
(6.6)], for a mapping F : R

p → R
r which is locally Lipschitz-continuous at u ∈ R

p

(that is, Lipschitz-continuous in some neighborhood of u), the contingent derivative
of F at u is the multifunction C F(u) from R

p to the subsets of R
r , given by

C F(u)(v) = {w ∈ R
r | ∃ {tk} ⊂ R+, {tk} → 0+ :

{(F(u + tkv) − F(u))/tk} → w}. (13)

In particular, if F is directionally differentiable at u in the direction v then C F(u)(v)

is single-valued and coincides with the directional derivative of F at u in the direction
v. The B-differential of F : R

p → R
r at u ∈ R

p is the set

∂B F(u) = {J ∈ R
r×p | ∃ {uk} ⊂ SF such that {uk} → u, {F ′(uk)} → J },

where SF is the set of points at which F is differentiable (this set is dense in the
contexts of our interest). Then the Clarke generalized Jacobian of F at u is given by

∂ F(u) = conv ∂B F(u),
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where conv S stands for the convex hull of the set S. Observe that according to
[20, (6.5), (6.6), (6.16)],

∀w ∈ C F(u)(v) ∃ J ∈ ∂ F(u) such that w = Jv. (14)

Moreover, if in addition F has the property

sup
J∈∂ F(u+v)

‖F(u + v) − F(u) − Jv‖ = o(‖v‖), (15)

then for any v ∈ R
p and any sequence {tk} corresponding to a given w ∈ C F(u)(v)

due to (13), it holds that

F(u + tkv) − F(u) = tk Jkv + o(tk) (16)

for any choice of Jk ∈ ∂B F(u + tkv). Since the multifunction corresponding to the
B-differential of a locally Lipschitz-continuous mapping is locally bounded and upper
semicontinuous, we may assume without loss of generality that {Jk} converges to some
J ∈ ∂B F(u). Then from (16) we derive the equality w = Jv. It is thus proved that
assuming (15), property (14) can be strengthened as follows:

∀w ∈ C F(u)(v) ∃ J ∈ ∂B F(u) such that w = Jv. (17)

Property (15) is one of the ingredients of the widely used notion of semismoothness
of F at u (see [4, Section 7.4]). Specifically, semismoothness combines local Lipschitz
continuity of F at u and property (15) with directional differentiability of F at u in
any direction. The latter is not needed in our development.

Furthermore, for a mapping F : R
p × R

q → R
r , the partial contingent derivative

(partial B-differential; partial Clarke generalized Jacobian) of F at (u, v) ∈ R
p × R

q

with respect to u is the contingent derivative (B-differential; Clarke generalized Jaco-
bian) of the mapping F(·, v) at u, which we denote by Cu F(u, v) (by (∂B)u F(u, v);
by ∂u F(u, v)).

Finally, a mapping F : R
p → R

r is said to be locally Lipschitz-continuous with
respect to u ∈ R

p if there exist a neighborhood U of u and � > 0 such that

‖F(v) − F(u)‖ ≤ �‖v − u‖ ∀ v ∈ U.

2 Lipschitz-continuous KKT systems

The following is an extension of the notion of a noncritical multiplier to the case when
the mapping Ψ defined in (5) is locally Lipschitz-continuous at the reference point
but may not be differentiable.

Definition 1 Given a solution (x̄, λ̄, μ̄) of (4), we say that the multiplier (λ̄, μ̄) is
noncritical if there is no triple (ξ, η, ζ ) ∈ R

n × R
l × R

m , with ξ �= 0, satisfying the
system
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d + (h′(x̄))Tη + (g′(x̄))Tζ = 0, h′(x̄)ξ = 0, g′
A+(x̄)ξ = 0, (18)

ζA0 ≥ 0, g′
A0

(x̄)ξ ≤ 0, ζi 〈g′
i (x̄), ξ 〉 = 0, i ∈ A0, ζN = 0. (19)

with some d ∈ CxΨ (x̄, λ̄, μ̄)(ξ). Otherwise (λ̄, μ̄) is critical.

Observe that system (18)–(19) corresponds to system (35) in [19].

Remark 1 Employing (14) it is immediate that the multiplier (λ̄, μ̄) is necessarily
noncritical if there is no triple (ξ, η, ζ ) ∈ R

n × R
l × R

m , with ξ �= 0, satisfying the
system (18)–(19) with d = Hξ and some H ∈ ∂xΨ (x̄, λ̄, μ̄). Now one can readily
see that the second-order sufficiency condition

∀ H ∈ ∂xΨ (x̄, λ̄, μ̄) 〈Hξ, ξ 〉 > 0 ∀ ξ ∈ C(x̄)\{0} (20)

implies that the multiplier (λ̄, μ̄) is necessarily noncritical. It was established in [21]
that in the optimization setting (3), condition (20) is indeed sufficient for local opti-
mality of x̄ in the problem (2).

Moreover, if in addition Ψ has the property

sup
H∈∂x Ψ (x̄+ξ, λ̄, μ̄)

‖Ψ (x̄ + ξ, λ̄, μ̄) − Ψ (x̄, λ̄, μ̄) − Hξ‖ = o(‖ξ‖)

(in particular, if Ψ (·, λ̄, μ̄) is semismooth at x̄), then employing (17) it is immediate
that the multiplier (λ̄, μ̄) is necessarily noncritical if there is no triple (ξ, η, ζ ) ∈
R

n × R
l × R

m , with ξ �= 0, satisfying the system (18)–(19) with d = Hξ and some
H ∈ (∂B)xΨ (x̄, λ̄, μ̄).

Consider now the following parametric version of the KKT system (4):

Φ(σ, x) +
(

∂h

∂x
(σ, x)

)T

λ +
(

∂g

∂x
(σ, x)

)T

μ = 0,

h(σ, x) = 0, μ ≥ 0, g(σ, x) ≤ 0, 〈μ, g(σ, x)〉 = 0,

(21)

where σ ∈ R
s is a (perturbation) parameter, and Φ : R

s × R
n → R

n , h : R
s × R

n →
R

l , g : R
s × R

n → R
m are the given mappings such that h and g are differentiable

with respect to x .
The following sensitivity result generalizes [9, Theorem 2.3] with respect to its

smoothness assumptions (see also the related result in [8]).

Theorem 1 Let (x̄, λ̄, μ̄) ∈ R
n × R

l × R
m be a solution of system (21) for σ = σ̄ ,

where Φ : R
s × R

n → R
n, h : R

s × R
n → R

l and g : R
s × R

n → R
m are such that

h and g are differentiable with respect to x near (σ̄ , x̄). Let the following assumptions
be satisfied:

1. Φ(σ̄ , ·), ∂h
∂x (σ̄ , ·) and ∂g

∂x (σ̄ , ·) are locally Lipschitz-continuous at x̄ .
2. There exist a neighborhood U of σ̄ and � > 0 such that for any fixed x close

enough to x̄ the mappings Φ(·, x), g(·, x), h(·, x), ∂h
∂x (·, x) and ∂g

∂x (·, x) are
Lipschitz-continuous with respect to σ̄ on U with the Lipschitz constant �.
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If (λ̄, μ̄) is a noncritical multiplier associated with x̄ for the KKT system (21) for
σ = σ̄ , then for each σ close enough to σ̄ and every solution (x(σ ), λ(σ ), μ(σ )) of
(21) close enough to (x̄, λ̄, μ̄), it holds that

‖x(σ ) − x̄‖ + dist((λ(σ ), μ(σ )), M(σ̄ , x̄)) = O(‖σ − σ̄‖),

where M(σ̄ , x̄) is the set of (λ, μ) ∈ R
l × R

m such that (x̄, λ, μ) is a solution of
(21) for σ = σ̄ .

Proof We first establish that

‖x(σ ) − x̄‖ = O(‖σ − σ̄‖). (22)

Suppose that (22) does not hold, which means that there exist some sequences {σ k} ⊂
R

s and {(xk, λk, μk)} ⊂ R
n × R

l × R
m such that {σ k} → σ̄ , {(xk, λk, μk)} →

(x̄, λ̄, μ̄), for each k the point (xk, λk, μk) is a solution of (21) for σ = σ k , and
‖xk − x̄‖ > γk‖σ k − σ̄‖ with some γk > 0 such that γk → ∞. It then holds that

‖σ k − σ̄‖ = o(‖xk − x̄‖). (23)

Define the index sets

A = A(σ̄ , x̄) = {i = 1, . . . , m | gi (σ̄ , x̄) = 0},
N = N (σ̄ , x̄) = {1, . . . , m}\A,

A+ = A+(σ̄ , x̄, μ̄) = {i ∈ A | μ̄i > 0},
A0 = A0(σ̄ , x̄, μ̄) = A\A+.

Since there is only a finite number of ways to decompose the index set A0 into two
non-intersecting subsets, without loss of generality we can assume that for each k,

μk
i > 0 ∀ i ∈ I1, μk

i = 0 ∀ i ∈ I2, (24)

where I1 and I2 are some fixed index sets such that I1 ∪ I2 = A0, I1 ∩ I2 = ∅.
Furthermore, under the assumptions (a) and (b), g is continuous at (σ̄ , x̄). Therefore,
by the complementarity condition in (21), and by convergence of {(xk, λk, μk)} to
(x̄, λ̄, μ̄), without loss of generality we can assume that for all k

μk
i > 0 ∀ i ∈ A+, μk

i = 0 ∀ i ∈ N . (25)

Define the mapping Ψ : R
s × R

n × R
l × R

m → R
n by

Ψ (σ, x, λ, μ) = Φ(σ, x) +
(

∂h

∂x
(σ, x)

)T

λ +
(

∂g

∂x
(σ, x)

)T

μ.

Passing onto a subsequence if necessary, we can assume that {(xk − x̄)/‖xk − x̄‖}
converges to some ξ ∈ R

n , ‖ξ‖ = 1. Then, setting tk = ‖xk − x̄‖ and passing
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to a further subsequence, if necessary, by (13) and by local Lipschitz continuity of
Ψ (σ̄ , ·, λ̄, μ̄) at x̄ (implied by local Lipschitz continuity of Φ(σ̄ , ·), ∂h

∂x (σ̄ , ·) and
∂g
∂x (σ̄ , ·) at x̄) we have that there exists d ∈ CxΨ (σ̄ , x̄, λ̄, μ̄)(ξ) such that

Ψ (σ̄ , xk, λ̄, μ̄) = Ψ (σ̄ , x̄ + tkξ, λ̄, μ̄) − Ψ (σ̄ , x̄, λ̄, μ̄)

+Ψ (σ̄ , xk, λ̄, μ̄) − Ψ (σ̄ , x̄ + tkξ, λ̄, μ̄)

= tkd + o(tk) + O(‖xk − x̄ − tkξ‖)
= tkd + o(tk) + O

(

tk

∥
∥
∥
∥

xk − x̄

‖xk − x̄‖ − ξ

∥
∥
∥
∥

)

= ‖xk − x̄‖d + o(‖xk − x̄‖). (26)

The first line in (21) can be written in the form

Ψ (σ, x, λ, μ) = 0.

Therefore, using (24)–(26) and assumptions (a) and (b), as well as (23), we obtain that

0 = Ψ (σ k, xk, λk, μk)

= Ψ (σ k, xk, λ̄, μ̄) +
(

∂h

∂x
(σ k, xk)

)T

(λk − λ̄) +
(

∂g

∂x
(σ k, xk)

)T

(μk − μ̄)

= Ψ (σ̄ , xk, λ̄, μ̄) +
(

∂h

∂x
(σ̄ , xk)

)T

(λk − λ̄) +
(

∂g

∂x
(σ̄ , xk)

)T

(μk − μ̄)

+O(‖σ k − σ̄‖)
= ‖xk − x̄‖d +

(
∂h

∂x
(σ̄ , x̄)

)T

(λk − λ̄)

+
(

∂gA+∪I1

∂x
(σ̄ , x̄)

)T

(μk
A+∪I1

− μ̄A+∪I1) + o(‖xk − x̄‖)

= ‖xk − x̄‖d +
(

∂h

∂x
(σ̄ , x̄)

)T

(λk − λ̄)

+
(

∂gA+
∂x

(σ̄ , x̄)

)T

(μk
A+ − μ̄A+) +

(
∂gI1

∂x
(σ̄ , x̄)

)T

μk
I1

+ o(‖xk − x̄‖).

Hence,

− im

(
∂h

∂x
(σ̄ , x̄)

)T

− im

(
∂gA+
∂x

(σ̄ , x̄)

)T

−
(

∂gI1

∂x
(σ̄ , x̄)

)T

R
|I1|+

� ‖xk − x̄‖d + o(‖xk − x̄‖), (27)

where the set in the left-hand side is a closed cone (as a sum of a linear subspace and
a polyhedral cone).
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Using the second line in (21), and assumption (b), as well as (23), we obtain that

0 = h(σ k, xk)

= ∂h

∂x
(σ̄ , x̄)(xk − x̄) + O(‖σ k − σ̄‖) + o(‖xk − x̄‖)

= ∂h

∂x
(σ̄ , x̄)(xk − x̄) + o(‖xk − x̄‖). (28)

Similarly, making use of (24), (25), we derive the estimates

0 = gA+∪I1(σ
k, xk) = ∂gA+∪I1

∂x
(σ̄ , x̄)(xk − x̄) + o(‖xk − x̄‖), (29)

0 ≥ gI2(σ
k, xk) = ∂gI2

∂x
(σ̄ , x̄)(xk − x̄) + o(‖xk − x̄‖). (30)

Dividing (27)–(30) by ‖xk − x̄‖ and taking the limit as k → ∞, we obtain that

d ∈ −im

(
∂h

∂x
(σ̄ , x̄)

)T

− im

(
∂gA+
∂x

(σ̄ , x̄)

)T

−
(

∂gI1

∂x
(σ̄ , x̄)

)T

R
|I1|+ , (31)

∂h

∂x
(σ̄ , x̄)ξ = 0,

∂gA+
∂x

(σ̄ , x̄)ξ = 0, (32)

∂gI1

∂x
(σ̄ , x̄)ξ = 0,

∂gI2

∂x
(σ̄ , x̄)ξ ≤ 0. (33)

The inclusion (31) means that there exists (η, ζ ) ∈ R
l × R

m satisfying

d +
(

∂h

∂x
(σ̄ , x̄)

)T

η +
(

∂g

∂x
(σ̄ , x̄)

)T

ζ = 0 (34)

and such that

ζI1 ≥ 0, ζI2∪N = 0.

Then, taking also into account (33), the triple (ξ, η, ζ ) satisfies

ζA0 ≥ 0,
∂gA0

∂x
(σ̄ , x̄)ξ ≤ 0, ζi

〈
∂gi

∂x
(σ̄ , x̄), ξ

〉

= 0, i ∈ A0,

ζN = 0.

(35)

As ξ �= 0, relations (32), (34), (35) contradict the assumption that the multiplier
(λ̄, μ̄) is noncritical. This proves (22).

Considering σ close enough to σ̄ , and a solution (x(σ ), λ(σ ), μ(σ )) of system
(21) close enough to (x̄, λ̄, μ̄), we have that

Ψ (σ, x(σ ), λ(σ ), μ(σ )) = 0, μ(σ ) ≥ 0, μN (σ ) = 0,
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where the last equality is by the continuity of g at (σ̄ , x̄). Since M(σ̄ , x̄) is the
solution set of the linear system

Ψ (σ̄ , x̄, λ, μ) = 0, μA ≥ 0, μN = 0,

by Hoffman’s error bound (e.g., [4, Lemma 3.2.3]) we obtain that

dist((λ(σ ), μ(σ )), M(σ̄ , x̄)) = O

(

‖Ψ (σ̄ , x̄, λ(σ ), μ(σ ))‖

+
∑

i∈A

min{0, μi (σ )} + ‖μN (σ )‖
)

= O(‖Ψ (σ, x(σ ), λ(σ ), μ(σ ))

−Ψ (σ̄ , x̄, λ(σ ), μ(σ ))‖)
= O(‖σ − σ̄‖) + O(‖x(σ ) − x̄‖),

where assumptions (a) and (b) were also used. Together with (22), this gives the
assertion of the theorem. ��

In the optimization setting (3), and if MFCQ and noncriticality of all the multipliers
are assumed, Theorem 1 essentially recovers the sufficiency part of Theorem 4 in [19]
(see also [20, Theorem 8.24]). Regarding the necessity part, the following comments
are in order.

Remark 2 Being applied to the case of canonical perturbations, Theorem 1 reveals
that noncriticality of the multiplier in question is sufficient for Property 1 to hold. It
turns out that it is necessary as well. In order to show this, take any triple (ξ, η, ζ ) ∈
R

n × R
l × R

m satisfying the system (18)–(19) with some d ∈ CxΨ (x̄, λ̄, μ̄)(ξ), and
fix a sequence {tk} corresponding to this d due to (13). It then can be directly checked
that for all k large enough the triple (x̄ + tkξ, μ̄+ tkη, λ̄+ tkζ ) satisfies (6) with some
a = o(tk), b = o(tk) and c = o(tk). Therefore, if ξ �= 0, we would get a contradiction
with (7).

Remark 3 The properties specified in Remark 1 are indeed strictly stronger than non-
criticality introduced in Definition 1, and hence, strictly stronger than Property 1.

For example, let n = m = 1, l = 0, Φ(x) = max{0, x}, g(x) = −x . The point
(x̄, μ̄) = (0, 0) is the only solution of system (4). It can be easily checked that the
multiplier μ̄ is noncritical, and Property 1 is valid for the specified (x̄, μ̄). Indeed,
system (6) takes the form

max{0, x} − μ = a, μ ≥ 0, −x ≤ c, μ(x + c) = 0.

This implies that either μ = 0, in which case x satisfies at least one of the relations
x = a or −c ≤ x < 0; or μ > 0, in which case x = −c and μ equals to at least one
of −a or −a − c. Therefore, |x |+ |μ| ≤ |a|+ 2|c|, giving (7) with U = R×R and an
appropriate � > 0 (depending on the choice of the norm in the right-hand side of (7)).
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However, (∂B)xΨ (x̄, μ̄) = {0, 1} contains zero, and any ξ ≥ 0 satisfies (18)–(19)
with d = 0 and η = 0.

Note that the example above corresponds to the parametric optimization problem

minimize
1

2
(max{0, x})2

subject to x ≥ 0.

Therefore, the conditions from Remark 1 are stronger than noncriticality and not
necessary for Property 1 to hold even for optimization problems. This is different
from the case when the problem data is twice differentiable.

Remark 4 As already mentioned in Sect. 1, Properties 1 an 2 are equivalent under the
only assumptions that Φ and the derivatives of h and g are locally Lipschitz-continuous
with respect to x̄ . The fact that Property 2 implies Property 1 is immediate. The
converse implication was established in [7, Theorem 2]. The essence of the argument
is the following. For any triple (x, λ, μ) ∈ R

n × R
l × R

m close enough to (x̄, λ̄, μ̄)

one can construct μ̃ ∈ R
m and σ = (a, b, c) ∈ R

n × R
l × R

m such that

Φ(x) + (h′(x))Tλ + (g′(x))Tμ̃ = a,

h(x) = b, μ̃ ≥ 0, g(x) ≤ c, 〈μ̃, g(x) − c〉 = 0

[cf. (6)], and

‖μ̃ − μ‖ = O(‖ min{μ, −g(x)}‖), ‖σ‖ = O

⎛

⎝

∥
∥
∥
∥
∥
∥

⎛

⎝

Ψ (x, λ, μ)

h(x)

min{μ, −g(x)}

⎞

⎠

∥
∥
∥
∥
∥
∥

⎞

⎠ .

In the case when there are no inequality constraints, the construction is obvious, as
one simply takes a = Φ(x) + (h′(x))Tλ and b = h(x). We refer the reader to
[7, Theorem 2] for details in the case when inequality constraints are present.

Combining Remarks 2 and 4, we finally obtain the following result.

Corollary 1 Let (x̄, λ̄, μ̄) ∈ R
n × R

l × R
m be a solution of system (4), where

Φ : R
n → R

n, h : R
n → R

l and g : R
n → R

m are such that h and g are
differentiable near x̄ , and Φ, h′ and g′ are locally Lipschitz-continuous at x̄ .

Then the following three properties are equivalent:

1. Property 1 (Upper Lipschitz stability of the solutions of KKT system under canon-
ical perturbations)

2. Property 2 (Error bound for KKT system).
3. The multiplier (λ̄, μ̄) ∈ M(x̄) is noncritical (in the sense of Definition 1).

We complete this note with another example illustrating the setting in question and
the results obtained. Note that the derivatives of the data of the reformulated opti-
mization problem in this example are locally Lipschitz-continuous but not piecewise
smooth.
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Example 1 Consider the mathematical program with model complementarity con-
straints

minimize
1

2
(x2

1 + x2
2 )

subject to x1 ≥ 0, x2 ≥ 0, x1x2 = 0.

Employing the squared Fischer–Burmeister complementarity function, we can refor-
mulate the constraints of this problem as a single equality constraint with locally
Lipschitz-continuous derivative:

minimize
1

2
(x2

1 + x2
2 )

subject to
1

2

(

x1 + x2 −
√

x2
1 + x2

2

)2

= 0.

The unique solution of this problem is x̄ = 0, and M(x̄) = R. After some manipula-
tions, one can see that the only critical multipliers are −3 ± 2

√
2.

Take, e.g., the critical multiplier λ̄ = −3 − 2
√

2, and consider x ∈ R
2 such that

x1 = x2 = t > 0. Then by direct computation we obtain that for this problem data
Ψ (x, λ̄) = 0, h(x) = (2 − √

2)2t2/2. Therefore, the error bound (8) does not hold
with λ = λ̄ for any � > 0 provided t is small enough.

On the other hand, and as established above, it can be seen that the error bound (8)
holds around noncritical multipliers.

Acknowledgments The authors thank the anonymous referees and the Associate Editor for useful com-
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