
THE LEVENBERG–MARQUARDT METHOD:
AN OVERVIEW OF MODERN CONVERGENCE THEORIES

AND MORE∗

Andreas Fischer1, Alexey F. Izmailov2, 3, and Mikhail V. Solodov4

November 27, 2023

ABSTRACT

The Levenberg–Marquardt method is a fundamental regularization technique for the Newton
method applied to nonlinear equations, possibly constrained, and possibly with singular or
even nonisolated solutions. We review the literature on the subject, in particular relating
to each other various convergence frameworks and results. In this process, the analysis is
performed from a unified perspective, and some new results are obtained as well. We discuss
smooth and piecewise smooth equations, inexact solution of subproblems, and globalization
techniques. Attention is also paid to the LP-Newton method, because of its relations to the
Levenberg–Marquardt method.
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1 Introduction and description of the methods

We consider the constrained equation

Φ(u) = 0, u ∈ P, (1.1)

where Φ : Rp → Rq is a given mapping, and P ⊂ Rp is a given nonempty closed set. Let U
stand for the solution set of (1.1).

The case of P = Rp and p = q corresponds to the classical setting of unconstrained
nonlinear equations. The fundamental paradigm for solving such problems is the Newton
method; see, e.g., [45]. In its basic form, the Newton method requires for convergence that
a given solution be nonsingular (in particular, isolated). The Levenberg–Marquardt (LM)
method for unconstrained nonlinear equations [52, 56] (see also [59, Section 10.3]) is a classical
regularization technique for handling cases when a solution can be singular (and possibly
nonisolated, and possibly p ̸= q).

Before introducing the LM method, it is natural to consider first the (constrained) Gauss–
Newton (GN) method. For the current iterate u ∈ P , the GN method defines the next iterate
as u+ v, where v minimizes the (squared) residual of the linearized equation from (1.1) over
P − u, i.e., v is a solution of the optimization problem

minimize
1

2
∥Φ(u) + Φ′(u)v∥2 subject to u+ v ∈ P. (1.2)

Due to the Frank–Wolfe Theorem [39], this subproblem always has a solution when P is
polyhedral, but a solution need not be unique.

Partially because of the potential lack of uniqueness of solutions in the subproblem (1.2),
it is natural to regularize it. This yields the constrained LM method [8, 50] for (1.1), defining
the next iterate as u+ v, where v solves the optimization problem

minimize
1

2
∥Φ(u) +G(u)v∥2 + 1

2
σ(u)∥v∥2 subject to u+ v ∈ P, (1.3)

with a function σ : P → R+ defining the values of the regularization parameter, and with
G(u) being Φ′(u), or its suitable substitute when it does not exist or is not available. If
σ(u) > 0, and if Euclidean norms are used, the objective function of (1.3) is strongly convex
quadratic, and hence, this subproblem has a solution, which is necessarily unique if P is con-
vex. Moreover, if P is a polyhedral set, then (1.3) is a strongly convex quadratic programming
problem.

When P = Rp, the constrained LM method reduces to the classical (sometimes called
unconstrained) LM method with its origins in [52, 56]. For its convergence properties in the
case of smooth Φ and isolated solutions, as well as related references, see [19, Theorem 10.2.6].
The cases of nonsmooth (semismooth) Φ with isolated solutions is considered in [25]; see also
[48, 49].

The purpose of this work is to discuss, and in some aspects to clarify, the more recent the-
ories developed under weaker assumptions allowing, in particular, for nonisolated solutions.
The key conditions are of the local Lipschitzian error bound type, originating in the context
of LM methods from [63]. Another attention is on the combination of nonisolated solutions
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with nonsmoothness, which is an especially challenging situation [22]. We emphasize that
our focus is on the asymptotic convergence properties. For some complexity results on LM
methods, we refer the reader to [13, 57]. Yet some other issues that we do not consider in
this paper are the following: more general regularization terms (allowing other norms and
their exponents) in (1.3), as in [3]; the case when (1.1) has no solutions and so the LM
method is intended to minimize the residual to some nonzero optimal value [12, 61]; the
case of Hölderian (rather than Lipschitzian) error bounds [1] and Hölderian continuity of the
derivative, and the corresponding choices of the regularization and inexactness parameters in
solving the subproblems.

As applications of LM methods to specific instances of (constrained) equations, we men-
tion the following: [25, 48, 49, 50] for complementarity problems; [34] for complementarity
systems; [34, 46] for Karush–Kuhn–Tucker systems; [24, 34] for generalized Nash equilibrium
problems; [36] for multicriteria optimization; [14, 61] for (constrained) least squares; [47, 62]
for bilevel optimization.

Before proceeding, we define some notation. The Euclidean inner product for u, v ∈ Rp

is denoted by ⟨u, v⟩. Generally, ∥ · ∥ stands for some (arbitrary) norm. When necessary, we
specify that it is Euclidean. We denote ∥u∥∞ = maxi=1, ..., p |ui|. For a set U ⊂ Rp and a
point u ∈ Rp, dist(x, U) = infv∈U ∥v − u∥, and B(u, δ) = {v ∈ Rp | ∥v − u∥ ≤ δ} is the
closed ball of radius δ ≥ 0 centered at u. By I we denote the identity matrix, with dimension
always clear from the context.

For a closed convex set U ⊂ Rp, by πU (x) we mean the unique metric projection of u ∈ Rp

onto U , i.e., the solution of minv∈U ∥v − u∥. By NU (u) we denote the normal cone to U at
u, i.e., NU (u) = {v ∈ Rp | ⟨v, ũ− u⟩ ≤ 0, ∀ũ ∈ U} if u ∈ U , and NU (u) = ∅ otherwise.

A function F : Rp → Rq is Hölder-continuous of order β ∈ (0, 1] on a set U ⊂ Rp if
∥F (u) − F (v)∥ ≤ L∥u − v∥β for some L > 0 and all u, v ∈ U . It is Lipschitz-continuous if
β = 1.

For a sequence {uk} ⊂ Rp convergent to some ū ∈ Rp, we say that convergence is of
Q-order θ > 1 if there exists c > 0 such that ∥uk+1 − ū∥ ≤ c∥uk − ū∥θ for all k large enough.
Such rate of convergence is superlinear, and it is at least quadratic if θ ≥ 2. We say that
{uk} converges to ū with R-order θ if there exist c > 0 and a sequence {tk} ⊂ R+ converging
to 0 with Q-order θ, such that ∥uk+1 − ū∥ ≤ ctk for all k large enough.

One alternative approach to adapting the idea of the classical LM method to constrained
equations with convex constraint sets was apparently first considered in [50]. This approach
can make sense when computing the metric projection onto P is easier than solving (1.3).
Then one can define the next iterate as πP (u+ v), where v is obtained by solving the uncon-
strained optimization problem obtained by removing the constraint in (1.3). The iterative
process constructed this way is called projected LM method.

In what follows, we also pay some attention to an algorithm which is somehow related to
the LM method (1.3), but is different. It was introduced in [23] under the name LP-Newton
(LPN) method. Given the current iterate u, its subproblem for defining the next iterate u+v
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solves for (v, γ)

minimize γ subject to ∥Φ(u) +G(u)v∥ ≤ γ∥Φ(u)∥2,
∥v∥ ≤ γ∥Φ(u)∥,
u+ v ∈ P, γ ≥ 0.

(1.4)

The nonnegativity constraint on γ is redundant when u ̸∈ U , and thus can be dropped in
practical computations (recall that U is the solution set). But in theoretical considerations
it is convenient to have this constraint, because it ensures solvability of the subproblem (1.4)
even when u ∈ U . Observe that if P is a polyhedral set, and if the ∞-norm is used in the
left-hand sides of inequality constraints in (1.4), the latter turns into a linear programming
problem, thus giving the name to the method. On the other hand, if the Euclidean norms
are used, and if P is just convex, the LPN method turns out to be closely related to the LM
method, being an instance of the latter with a special choice of the regularization parameter.
Indeed, the first-order necessary optimality condition for the LM subproblem (1.3) has the
form

(G(u))⊤(Φ(u) +G(u)v) + σ(u)v +NP (u+ v) ∋ 0 (1.5)

(see, e.g., [15, Proposition 2.1.2], [59, Theorem 12.9]).
Similarly, assuming that Φ(u) ̸= 0, the first-order necessary optimality conditions for the

LPN subproblem with squared left-hand and right-hand sides of inequality constraints consist
of the relations

2µ1(G(u))
⊤(Φ(u) +G(u)v) + 2µ2v +NP (u+ v) ∋ 0, (1.6)

1− 2µ1γ∥Φ(u)∥4 − 2µ2γ∥Φ(u)∥2 = 0, (1.7)

complemented by the inequality constraints in (1.4), by nonnegativity requirements on dual
variables µ1 and µ2, and by the complementarity slackness conditions. Equation (1.7) implies
that µ1 and µ2 cannot be both zero, and in particular, at least one of the inequality constraints
in (1.4) must be active at its solution. If µ1 > 0, then (1.6) coincides with (1.5) with
σ(u) = µ2/µ1. If µ1 = 0, then (1.6) implies that −v ∈ NP (u+ v), and since u ∈ P , the latter
further implies that 0 ≥ ⟨−v, u− (u+v)⟩ = ∥v∥2. Therefore, in this case, it necessarily holds
that v = 0, and since the second inequality constraint in (1.4) must be active, it also holds
that γ = 0 (recall that Φ(u) ̸= 0). But then the first inequality constraint in (1.4) cannot
hold, unless Φ(u) = 0.

A deeper relation between the LM and LPN methods will be demonstrated below by the
fact that, under appropriate assumptions, both methods fit the local convergence frameworks
to be described in Section 2.

The rest of this paper is organized as follows. Section 2 reviews convergence frameworks
and results relevant for the context: [22, 23, 34, 38], and relations between them. Section 3 fo-
cuses on the smooth case, where in particular some clarifications and new results are obtained.
In Section 4 we discuss the piecewise smooth case, and in Section 5 approximate solution of
subproblems. Section 6 is devoted to some globalization techniques of the local algorithms
in question. We conclude with Section 7, where some open questions are summarized.
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2 Local convergence frameworks

We start with a discussion of the abstract local convergence framework recently proposed in
[38]. For this, it is convenient to consider a problem with a single scalar equation:

φ(u) = 0, u ∈ P, (2.1)

where φ : Rp → R+ is a given scalar-valued function, and P ⊂ Rp is a given nonempty closed
set. Evidently, the constrained equation (1.1) can be stated in the form (2.1) with, say,

φ(u) = ∥Φ(u)∥ν , (2.2)

with any ν > 0. To that end, let for now U stand for the solution set of (2.1).
Let Ψ : P → P be a given mapping, and consider an abstract iterative process updating

the current iterate u ∈ P to the new one of the form Ψ(u). The following is [38, Theorem 2.1].

Theorem 2.1 Let φ : Rp → R+ be a continuous function, P ⊂ Rp be a nonempty closed set,
and ū ∈ U . Moreover, let Ψ : P → P be a mapping such that, with some τ > 1,

Ψ(u)− u = O(φ(u)) (2.3)

and
φ(Ψ(u)) = O((φ(u))τ ) (2.4)

as u ∈ P tends to ū.
Then, for every δ > 0 small enough, and every u0 ∈ P close enough to ū, the sequence

{uk} defined by uk+1 = Ψ(uk) for all k is contained in B(ū, δ) and converges to some u∗ ∈ U
with the R-order τ .

If, in addition, there exists β ∈ (0, 1] such that

φ(u) = O((dist(u, U))β) (2.5)

as u ∈ P tends to ū, then, for each integer s, there exists cs > 0 such that

∥uk+s − u∗∥ ≤ cs∥uk − u∗∥βτs

holds for all k large enough. In particular, if βτ s > 1, the rate of convergence of the sequence
{uk} is s-step superlinear with the Q-order βτ s.

We remark that [38, Theorem 2.1] employs the Hölder-continuity assumption for φ in
some neighborhood of ū. This can be easily relaxed by the weaker requirement (2.5) above.

We now get back to the problem setting (1.1), and recall the local convergence framework
developed in [22] on the basis of the constructions for the LPN method in [23], and with some
modifications discussed in [34]. Define the set-valued mapping F from Rp ×R+ to subsets of
Rp, with

F(u, γ) = {v ∈ P − u | ∥Φ(u) +G(u)v∥ ≤ γ∥Φ(u)∥2, ∥v∥ ≤ γ∥Φ(u)∥}. (2.6)
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Observe that the constraints defining F(u, γ) exactly correspond to the two inequality con-
straints of the LPN subproblem (1.4). For the current iterate u, the iterative framework in
question generates the next iterate as u+ v, with any

v ∈ F(u, Γ),

where Γ > 0 is a pre-fixed parameter.
To ensure local quadratic convergence of this iterative scheme, we make use of the following

assumptions.

Assumption 1. Lipschitzian growth of the residual:

∥Φ(u)∥ = O(dist(u, U))

as u ∈ P tends to ū.

Assumption 2. Existence of approximate solutions: There exists Γ > 0 such that

F(u, Γ) ̸= ∅

for all u ∈ P close enough to ū, where F(u, Γ) is defined according to (2.6).

Assumption 3. Quality of approximation: For any v ∈ P − u satisfying

∥Φ(u) +G(u)v∥ ≤ t2, ∥v∥ ≤ t, (2.7)

it holds that
∥Φ(u+ v)∥ = O(t2)

as u ∈ P \ U tends to ū and t→ 0+.
The following theorem essentially recovers [22, Theorem 1], but here it is derived as a

particular case of Theorem 2.1 above, under Assumptions 1–3. Observe that there is an
additional error bound condition in [22], as well as in [23, Theorem 1] and [34, Theorem 1].
We point out that this additional condition resulted from the way of reasoning adopted to
prove [23, Theorem 1]. Here, it is avoided by a subtler argument used in [38] to prove
Theorem 2.1 above. In particular, the proof of Theorem 2.1 in [38] does not involve distances
to the solution set at all. Note, however, that appropriate error bound conditions still play
an important role in the convergence theory for ensuring that Assumption 2 holds for specific
mappings G; see the subsequent Sections 3 and 4.

Theorem 2.2 Let Φ : Rp → Rq be a continuous mapping, P ⊂ Rp a nonempty closed set,
and ū ∈ U . For a fixed mapping G : Rp → Rq×p, let Assumptions 1–3 be satisfied.

Then, for every δ > 0 small enough, every Γ > 0 large enough, and every u0 ∈ P close
enough to ū, there exists a sequence {uk} such that uk+1 − uk ∈ F(uk, Γ) for all k, with
F(uk, Γ) defined according to (2.6); any such sequence is contained in B(ū, δ), converges to
some u∗ ∈ U , and the rate of convergence is quadratic.
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Assumption 1 is readily satisfied if Φ is Lipschitz-continuous near ū. Moreover, if As-
sumption 1 holds, then (2.5) holds with φ(u) = ∥Φ(u)∥ and β = 1 as u ∈ P tends to ū.
Observe again that with this choice of φ, problems (1.1) and (2.1) have the same solution
set U .

The fulfilment of Assumptions 2 and 3 depends on the choice of G. Assumption 2 just
means that for Γ > 0 large enough, and for a current iterate u ∈ P close enough to ū, the
iteration process considered in Theorem 2.2 successfully generates the next iterate. Therefore,
under this assumption, one can always consider that this iterative process can be characterized
by some mapping Ψ : P → P in Theorem 2.1. Moreover, (2.6) directly implies condition
(2.3) as u ∈ P tends to ū.

Finally, if Assumption 3 holds, then applying it with t = max{
√
Γ, Γ}∥Φ(u)∥ yields (2.4)

as u ∈ P tends to ū, for Ψ specified above, and with τ = 2. This completes the observations
demonstrating that Theorem 2.2 follows from Theorem 2.1.

To conclude this section, in addition to the iterative frameworks dealt with in Theorems
2.1 and 2.2 above, we would like to mention two other convergence frameworks with some
relations to the issues considered here. One is given in [37], and it will be used in the sequel
as Proposition 3.2. It helps to easily show a Q-order of convergence of an abstract sequence.
The second framework we would like to mention is that of [32], which allows to investigate
convergence of a large class of Newton-type methods for generalized equations.

3 Local convergence in the smooth case

We proceed with local convergence analysis of the constrained LM algorithm under the as-
sumption that Φ is differentiable in some neighborhood of a solution ū of (1.1), and with Φ′

being Lipschitz-continuous in this neighborhood. Accordingly, throughout this section, we
set G(u) = Φ′(u) for u ∈ Rp close enough to ū. In the first part of this section, we shall verify
Assumptions 1–3, in order for Theorem 2.2 to be applicable. Thereafter, further topics will
be discussed, including the influence of the regularization parameter.

In the setting of this section, Assumption 1 is automatically satisfied since Φ′ is Lipschitz-
continuous near ū. To see that Assumption 3 is fulfilled, let us take any v ∈ Rp satisfying
(2.7). Then the Mean-Value Theorem [45, Theorem A.10] yields

∥Φ(u+ v)∥ ≤ ∥Φ(u) + Φ′(u)v∥+ ∥Φ(u+ v)− Φ(u)− Φ′(u)v∥
≤ t2 + sup

τ∈[0, 1]
∥Φ′(u+ τv)− Φ′(u)∥∥v∥

≤ t2 +O(∥v∥2)
= O(t2)

as u→ ū and t→ 0+. Thus, Assumption 3 is satisfied.
It remains to verify Assumption 2, and this should be done by demonstrating that the

LM step belongs to F(u, Γ) with fixed Γ > 0 large enough, for u ∈ P close enough to ū.
The latter, together with the already verified Assumptions 1 and 3, will also mean that the
constrained LM method fits the iterative framework of Theorem 2.2.
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If u ∈ U , then according to (2.6), it holds that 0 ∈ F(u, Γ) for any choice of Γ, and
moreover, under the reasonable convention that the constrained LM method always picks up
specifically v = 0 at any solution u ∈ U , we formally conclude that in this case the LM step
belongs to F(u, Γ). Now we need to demonstrate the same for u ∈ P \ U .

Assume that the regularization parameter satisfies the requirements

∥Φ(u)∥2 = O(σ(u)), σ(u) = O(∥Φ(u)∥2) (3.1)

as u ∈ P tends to ū, where the first estimate implies, in particular, that σ(u) > 0 for all
u ∈ P \ U close enough to ū. We also need to assume that

dist(u, U) = O(∥Φ(u)∥) (3.2)

holds as u ∈ P tends to ū. The latter property is known as the constrained error bound.
Then, from the first estimate in (3.1), it also follows that

(dist(u, U))4

σ(u)
= (dist(u, U))2O

(
∥Φ(u)∥2

σ(u)

)
= O((dist(u, U))2) (3.3)

as u ∈ P \ U tends to ū.
Since σ(u) > 0 for u ∈ P \U near ū, the LM subproblem (1.3) necessarily has a solution v.

We shall show that there exists Γ > 0 such that v ∈ F(u, Γ) for all u ∈ P \ U close enough
to ū. The argument essentially follows the one in [50, Lemma 2.3].

Let û stand for a metric projection of u onto the solution set U :

∥u− û∥ = dist(u, U). (3.4)

Since v is a global solution of (1.3), it holds that

∥Φ(u) + Φ′(u)v∥2 + σ(u)∥v∥2 ≤ ∥Φ(u) + Φ′(u)(û− u)∥2 + σ(u)∥û− u∥2. (3.5)

Evidently, û → ū as u → ū, and from (3.4)–(3.5), applying again the Mean-Value Theorem
[45, Theorem A.10], we derive that

∥v∥2 ≤ 1

σ(u)

(
∥Φ(u) + Φ′(u)(û− u)∥2 + σ(u)∥û− u∥2

)
=

1

σ(u)
∥Φ(u)− Φ(û)− Φ′(u)(u− û)∥2 + ∥u− û∥2

≤ 1

σ(u)
sup

τ∈[0, 1]
∥Φ′(τu+ (1− τ)û)− Φ′(u)∥2∥u− û∥2 + ∥u− û∥2

= ∥u− û∥2 +O

(
∥u− û∥4

σ(u)

)
= O((dist(u, U))2), (3.6)

where the last estimate is by (3.3). Hence,

∥v∥ = O(dist(u, U)) (3.7)
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as u ∈ P \ U tends to ū.
Furthermore, by a similar reasoning as in (3.6), from (3.4)–(3.5) we also have that

∥Φ(u) + Φ′(u)v∥2 ≤ ∥Φ(u) + Φ′(u)(û− u)∥2 + σ(u)∥û− u∥2

= σ(u)∥u− û∥2 +O(∥u− û∥4)
= O(∥Φ(u)∥2(dist(u, U))2) +O((dist(u, U))4),

where the last relation is by the second estimate in (3.1), and hence, taking into account that
Assumption 1 is satisfied, we conclude that

∥Φ(u) + Φ′(u)v∥ = O((dist(u, U))2) (3.8)

as u ∈ P \ U tends to ū.
The needed inclusion v ∈ F(u, Γ) now follows by combining (3.7) and (3.8) with (3.2) as

u ∈ P tends to ū.
The observations above together with Theorem 2.2 yield the following result, essentially

recovering [50, Theorem 2.11].

Theorem 3.1 Let Φ : Rp → Rq be a given mapping, P ⊂ Rp be a nonempty closed set, and
ū ∈ U . Assume that Φ is differentiable near ū with Φ′ being Lipschitz-continuous. Let the
error bound (3.2) hold, and let the regularization function σ : P → R+ satisfy (3.1) as u ∈ P
tends to ū.

Then, for every u0 ∈ P , there exists a sequence {uk} such that for every k, the displace-
ment uk+1 − uk is a solution of (1.3) with u = uk and G(u) = Φ′(uk) (with the convention
that uk+1 = uk if uk ∈ U). For every δ > 0, if u0 ∈ P is close enough to ū, then every such
sequence is contained in B(ū, δ) and converges to some u∗ ∈ U , and the rate of convergence
is quadratic.

The smoothness requirements in Theorem 3.1 can be relaxed to piecewise smoothness
at least, and this will be done in Section 4. Observe that the analysis above justifying
Theorem 3.1 relies directly and solely on the property of the step to be a global solution of
the LM subproblem (1.3). However, when Φ is smooth and P is convex, some additional
powerful tools were developed in [8], leading to sharper results. In particular, [8] allows
for wider range of choices for the regularization parameter than those in (3.1). These tools
consider the LM step also as a stationary point of (1.3). To that end, from now on and
up to the end of this section, let the norms used in the LM subproblem (1.3) be Euclidean.
However, before proceeding with stationarity conditions, the following observation is in order.

Assume now that

∥Φ(u)∥θ = O(σ(u)), σ(u) = O(∥Φ(u)∥θ) (3.9)

as u ∈ P tends to ū, with some fixed θ ∈ (0, 2]. From the first estimate and from (3.2), as
u ∈ P tends to ū, it then follows that (3.3) is still valid, further implying (3.7) as u ∈ P \ U
tends to ū, where v = v(u) is now the unique solution of (1.3).

8



Any u ∈ U is a (global) solution of the optimization problem

minimize
1

2
∥Φ(u)∥2 subject to u ∈ P, (3.10)

and the objective function of this problem is differentiable at u provided Φ is, with the
gradient being (Φ′(u))⊤Φ(u). Therefore, any such u must satisfy the first-order necessary
optimality condition

(Φ′(u))⊤Φ(u) +NP (u) ∋ 0. (3.11)

The key role in this analysis is played by the following result, demonstrating that the
constrained error bound implies the upper Lipschitzian property of the solutions set of the
generalized equation (3.11) subject to the right-hand side perturbations.

Proposition 3.1 ([8, Lemma 1]) Let Φ : Rp → Rq be a given mapping, P ⊂ Rp a non-
empty closed convex set, and ū ∈ U . Assume that Φ is differentiable near ū with Φ′ being
Lipschitz-continuous. Let the error bound condition (3.2) hold as u ∈ P tends to ū.

Then, for any solution u of the perturbed generalized equation

(Φ′(u))⊤Φ(u) +NP (u) ∋ ω, (3.12)

close enough to ū, it holds that
dist(u, U) = O(∥ω∥)

as ω → 0.

Recall that the first-order necessary optimality condition for the LM subproblem (1.3)
has the form (1.5). For any given u ∈ Rp, (3.11) is equivalent to saying that

(Φ′(u+ v))⊤Φ(u+ v) +NP (u+ v) ∋ 0 (3.13)

holds with v = 0. Then (1.5) can be regarded as a perturbation of the generalized equation
(3.13). Specifically, if we set

ω(u, v) = (Φ′(u+ v))⊤Φ(u+ v)− (Φ′(u))⊤(Φ(u) + Φ′(u)v)− σ(u)v

=
(
(Φ′(u+ v))⊤ − (Φ′(u))⊤

)
Φ(u+ v) + (Φ′(u))⊤(Φ(u+ v)− Φ(u)− Φ′(u)v)

−σ(u)v, (3.14)

then (1.5) can be written in the form

(Φ′(u+ v))⊤Φ(u+ v) +NP (u+ v) ∋ ω(u, v).

From Lipschitz-continuity of Φ′ near ū, and from (3.7) with v = v(u), employing again the
Mean-Value Theorem [45, Theorem A.10], one can readily derive the estimates

ω(u, v(u)) = O((dist(u, U))θ+1) +O((dist(u, U))2) = O((dist(u, U))min{θ+1, 2}) (3.15)

as u ∈ P \ U tends to ū.
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Summarizing the considerations above, u+ v(u) is a solution of the generalized equation
(3.12) with ω = ω(u, v(u)), and it holds that u+ v(u) → ū and ω(u, v(u)) → 0 as u ∈ P \U
tends to ū. Therefore, since we assume the constrained error bound condition to hold,
Proposition 3.1 allows to conclude that

dist(u+v(u), U) = O(ω(u, v(u))) = O((dist(u, U))min{θ+1, 2}) = o(dist(u, U)) ≤ 1

2
dist(u, U)

(3.16)
for u ∈ P \U close enough to ū, where the second estimate is by (3.15), and the third one is
by the requirement θ > 0.

In order to complete the proof of the announced sharper result on the local superlinear
convergence rate of the LM method when the regularization parameter is chosen according
to (3.9) (see Theorem 3.2 below), we employ the following auxiliary result not related to
any specific algorithm but rather giving sufficient conditions for convergence of a generic
sequence, and with a certain Q-order of convergence.

Proposition 3.2 ([37, Lemma 2.9]) Let {uk} ⊂ Rp and {rk} ⊂ R+ be given sequences
such that, for some ρ ∈ [0, 1) and R > 0, uk ∈ B(u0, Rr0/(1− ρ)) implies that

∥uk+1 − uk∥ ≤ Rrk

and
rk+1 ≤ ρrk

for every k.
Then rk → 0, and {uk} converges to some u∗ ∈ Rp.
If, in addition, there exist C > 0 and τ > 1 such that

rk+1 ≤ Crτk (3.17)

and
∥uk − u∗∥ ≥ rk (3.18)

hold for all k, then {uk} converges to u∗ with the Q-order τ .

Consider now any u0 ∈ P and the corresponding uniquely defined iterative sequence {uk}
generated by the LM algorithm. For each k, we set rk = dist(uk, U). Furthermore, let
ρ = 1/2, τ = min{θ + 1, 2}, and let a constant R > 0 be fixed. If uk ∈ B(u0, Rr0/(1 − ρ)),
then

∥uk − ū∥ ≤ ∥uk − u0∥+ ∥u0 − ū∥ ≤ 2R dist(u0, U) + ∥u0 − ū∥,

where the right-hand side becomes arbitrarily small provided u0 is close enough to ū, for any
pre-fixed value of R > 0. Then (3.7) with v = v(uk) allows to take R > 0 large enough, so
that

∥v(uk)∥ ≤ R dist(uk, U)

provided u0 is close enough to ū, and hence,

∥uk+1 − uk∥ = ∥v(uk)∥ ≤ Rrk.
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Moreover, employing (3.16), we also have that for such u0 it holds that

rk+1 = dist(uk+1, U) = dist(uk + v(uk), U) ≤ 1

2
dist(uk, U) = ρrk.

Therefore, the first part of the claim of Proposition 3.2 yields convergence of {dist(uk, U)}
to 0, and of {uk} to some u∗ ∈ Rp that in this case necessarily belongs to U .

Furthermore, by the intermediate estimates in (3.16), one can take C > 0 large enough
so that

dist(uk + v(uk), U) ≤ C(dist(uk, U))min{θ+1, 2}

provided u0 is close enough to ū. Hence, (3.17) holds, while (3.18) is automatic. Therefore, the
second part of the claim of Proposition 3.2 yields convergence with the Q-order min{θ+1, 2}.

We have thus proven a particular case of [8, Theorem 1], stated as Theorem 3.2 below. For
unconstrained equations, a similar result was obtained in [65] by somewhat different tools,
involving singular-value decompositions (cf. [31]). In [65], the approach was further extended
to the case of nonnegativity constraints on some variables, but with a weaker convergence
result when compared to the theorem below. Finally, the work [27] contains Theorem 4.2 of
[8] in full, also using singular-value decompositions, but with the convergence rate estimate
obtained only assuming that convergence is to a solution in the interior of P .

Theorem 3.2 Under the assumptions of Proposition 3.1, let a function σ : P → R+ satisfy
(3.9) as u ∈ P tends to ū, with some fixed θ ∈ (0, 2].

Then, for every u0 ∈ P , there exists the unique sequence {uk} such that for every k, the
displacement uk+1 − uk is the solution of (1.3) with the Euclidean norms, with u = uk and
G(u) = Φ′(uk), and with the additional convention that uk+1 = uk if uk ∈ U . For any δ > 0,
if u0 ∈ P is close enough to ū, then this sequence is contained in B(ū, δ) and converges to
some u∗ ∈ U , and the rate of convergence is superlinear with the Q-order min{θ + 1, 2}.

The next example is concerned with the restriction θ ∈ (0, 2] in Theorem 3.2, and demon-
strates that at least the requirement θ < 4 cannot be avoided. To the best of our knowledge,
the question regarding the values θ ∈ (2, 4) remains open. That said, [6, Example 4.2] claims
the lack of quadratic convergence for θ > 3, but this claim seems to be based on some numer-
ical observations only. On the other hand, [30] additionally obtains superlinear convergence
to 0 of the sequence {dist(uk, U)} for θ ∈ (2, 3). A similar result and some of its extensions
can also be found in the recent work [64].

Example 3.1 Let p = q = 2, P = R2, Φ(u) = (2u1(1+u2), u
2
1). Observe that (1.1) with this

data is the Lagrange optimality system for the equality-constrained optimization problem

minimize u21 subject to u21 = 0,

with u2 being the dual variable. This is a model problem used in [43] and other works on
critical solutions (it also appears in DEGEN test collection [18] under the identifier 20101).
We have U = {0} ×R, and the unconstrained local Lipschitzain error bound condition holds
at all solutions except for the solution (0, −1).
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The LM subproblem (1.5) with G(u) = Φ′(u) takes the form

4u1(1 + u2)
2 + 2u31 + 4(u21 + (1 + u2)

2)v1 + 4u1(1 + u2)v2 + σ(u)v1 = 0,

4u21(1 + u2) + 4u1(1 + u2)v1 + 4u21v2 + σ(u)v2 = 0,

and we are interested in those u that are close to some solution distinct from (0, −1), say, to
ū = (0, 0). Then it makes sense to consider u = (u1, 0) with u1 ̸= 0 but close to 0. Solving
the iteration system above, we then obtain

v1 = −u1 − u1v2 −
σ(u)

4u1
v2,(

u21 +
σ(u)

2
+
σ(u)

4u21
+

(σ(u))2

16u21

)
v2 = −u

2
1

2
− σ(u)

4
. (3.19)

Let σ(u) = ∥Φ(u)∥θ with θ ≥ 4. Then σ(u) = (2u1)
θ + o(uθ1) = O(u41) as u1 → 0, and

from (3.19) we have (
u21 + (2u1)

θ−2 + o(u21)
)
v2 = −u

2
1

2
+ o(u21),

implying that v2 is separated from 0 by some negative constant independent of u1 close
enough to 0. This demonstrates that the claim of Theorem 3.2 is not valid for θ ≥ 4, as the
next iterate will not stay in B(ū, δ) with any pre-fixed small δ > 0, no matter how close u1
is to 0.

Running the LM method with θ ≥ 4 on this example, the iterative sequences are observed
to converge to the unique critical solution (0, −1) (rather than to any solution close to a
starting point), at a linear (rather than quadratic) rate with the asymptotic common ratio
1/2, the typical behavior of the pure Newton method when converging to a critical solution;
see [41], and also [43] and references therein.

We now briefly discuss local convergence results for projected LM methods under the
smoothness requirements of this section, and with P being convex. Local quadratic con-
vergence was established in [50] for the regularization parameter function σ(·) satisfying
(3.9) with θ = 2, and under the assumption that (3.2) holds as u → ū, where u need not
be restricted to P . Beyond the unconstrained case, this assumption is very restrictive, in
particular, because it subsumes that Φ−1(0) ⊂ U near ū. The same conclusion under the
same restrictive assumption was derived in [37], however for a larger regularization parameter
satisfying (3.9) with θ = 1.

The restrictive error bound assumption in [50] and [37] was relaxed in [10], where it was
replaced by the combination of (3.2) as u ∈ P tends to ū and the unconstrained error bound

dist(u, Φ−1(0)) = O(∥Φ(u)∥)

as u → ū. It is well-known that the regularity condition rankΦ′(ū) = q is sufficient for
the unconstrained error bound to hold. Related necessary conditions can be found in [7].
However, under the specified assumptions, only local R-linear convergence was established in
[10] for the regularization parameter satisfying (3.9) with θ = 1. This result was sharpened
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in [9], where it was shown that R-linear convergence holds under the constrained error bound
only, i.e., without additionally assuming the unconstrained error bound to hold.

The work [27] provides superlinear convergence of the projected LM method under the
same assumptions as in [50] and [37], but for all θ ∈ (0, 2], and involving an interiority
assumption for obtaining the exact convergence rate estimate in some cases.

For unconstrained equations (i.e., when P = Rp), the particular cases of the results
discussed in this section can be found in [17, 28, 31, 32, 37, 63, 65].

We now turn our attention to local convergence of the LPN method under the smoothness
requirements of this section, and assume that G(u) = Φ′(u) for u ∈ Rp close enough to ū.
Since Assumptions 1 and 3 are not algorithm-related, and are shown above to be satisfied
in the current setting, it remains to verify that Assumption 2 holds under the constrained
error bound (3.2) as u ∈ P tends to ū by demonstrating that the LPN step v from the
current iterate u belongs to F(u, Γ) with fixed Γ > 0 large enough, for u ∈ P close enough
to ū. Considering the relation between the set-valued mapping F defined in (2.6) and the
constraints in (1.4), it is sufficient to show that the optimal value γ(u) of (1.4) is bounded
from above for u ∈ P near ū.

To do that, observe first that γ(u) = 0 for any u ∈ U . Furthermore, for u ∈ P \U , define
û ∈ U as above (i.e., satisfying (3.4)), and then, as in (3.6), we obtain that

∥Φ(u) + Φ′(u)(û− u)∥ = O(∥û− u∥2) = O((dist(u, U))2) = O(∥Φ(u)∥2),

and
∥û− u∥ = dist(u, U) = O(∥Φ(u)∥)

as u ∈ P tends to ū, where the last estimates in these two chains of relations follow from
(3.2). This implies the existence of Γ > 0 such that (û − u, Γ) is feasible in (1.4) for u ∈ P
near ū, and hence, γ(u) ≤ Γ for such u.

Applying now Theorem 2.2 we obtain the following counterpart of [23, Theorem 1]. In
the latter, the assumption that γ(u) is bounded for u ∈ P near ū (actually equivalent to
Assumption 2, as pointed out in [34]) was imposed directly, together with Assumption 3, and
thus avoiding the need to use the specific G.

Theorem 3.3 Let Φ : Rp → Rq be a given mapping, P ⊂ Rp a nonempty closed set, and
ū ∈ U . Assume that Φ is differentiable near ū with Φ′ being Lipschitz-continuous. Let (3.2)
hold as u ∈ P tends to ū.

Then, for every u0 ∈ P , there exists a sequence {uk} such that for every k, the pair
(uk+1 − uk, γk) with some real γk is a solution of (1.4) with u = uk and G(u) = Φ′(uk). For
any δ > 0, if u0 ∈ P is close enough to ū, then any such sequence is contained in B(ū, δ)
and converges to some u∗ ∈ U , and the rate of convergence is quadratic.

Local convergence of some quasi-Newton versions of the LPN method was investigated in
[54, 55].

One observation is in order regarding the unconstrained case. The first order necessary
optimality condition (1.5) for the unconstrained (P = Rp) LM subproblem (1.3) with Eu-
clidean norms takes the form of the linear equation

((G(u))⊤G(u) + σ(u)I)v = −(G(u))⊤Φ(u), (3.20)
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and this condition is also sufficient for optimality in (1.3), due to the convexity of the objective
function of the latter. At the same time, the LPN subproblem

minimize γ subject to ∥Φ(u) +G(u)v∥∞ ≤ γ∥Φ(u)∥2,
∥v∥∞ ≤ γ∥Φ(u)∥,
γ ≥ 0,

is still a linear programming problem, and solving it is in general more costly than solving
the linear system (3.20).

The convergence rate estimate in Theorem 3.2 is sharp even in the unconstrained case,
and even when the solution ū in question is isolated. This is demonstrated by the following
simple example, also showing that the error bound condition (3.2) cannot be dropped in
Theorems 3.1 and 3.2.

Example 3.2 Let p = q = 1, P = R, Φ(u) = au+u2, with a being a real parameter. For any
value of this parameter, ū = 0 is a solution of (1.1), and since Φ′(0) = a, the unconstrained
local Lipschitzain error bound condition holds at this solution provided a ̸= 0.

The LM subproblem (1.5) with G(u) = Φ′(u) = a+ 2u reduces to the equation

(a+ 2u)(au+ u2 + (a+ 2u)v) + σ(u)v = 0,

and if σ(u) > 0, its unique solution is

v(u) = −(a+ 2u)(a+ u)u

(a+ 2u)2 + σ(u)
.

Then

u+ v(u) =
((a+ 2u)2 + σ(u)− (a+ 2u)(a+ u))u

(a+ 2u)2 + σ(u)
=
au2 + σ(u)u+ 2u3

(a+ 2u)2 + σ(u)
.

Take σ(u) = |Φ(u)|θ = |au+ u2|θ with some θ > 0. Thus, for u ̸= 0, we have

u+ v(u) =
|au+ u2|θu+ au2 + 2u3

(a+ 2u)2 + |au+ u2|θ
.

If a ̸= 0, since the denominator above tends to a2 as u → 0, the iterative sequence
generated this way converges to 0 superlinearly, with theQ-order being precisely min{θ+1, 2}.

On the other hand, if a = 0, then

u+ v(u) =
u2θ+1 + 2u3

u2θ + 4u2
=
u2θ + 2u2

u2θ + 4u2
u.

If θ > 1, this yields linear convergence with asymptotic common ratio 1/2. If θ = 1, the rate
is still linear but with asymptotic common ratio 3/5. Finally, if 0 < θ < 1, the convergence
rate is sublinear. In particular, none of these cases agrees with the assertions of Theorems 3.1
and 3.2, and the reason is that the unconstrained local Lipschitzain error bound does not
hold at ū = 0 when a = 0. Observe that the convergence rate estimate for θ > 1 agrees
with the one obtained in [43] (under the stronger restriction θ ≥ 3/2) for the case of singular
solutions of unconstrained equations satisfying some 2-regularity condition, which holds in
this example when a = 0.
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To conclude this section, we provide some clarification to the observation above that
Theorem 2.2 was derived in [22] under the additional error bound condition. In fact, under the
smoothness assumptions of this section, and in the unconstrained case, not only Assumption 2
is implied by the error bound condition (3.2) as u → ū (a fact demonstrated above in this
section), but the converse implication is true as well. We show this next.

We can assume, without loss of generality, that ū = 0. Let Π be the orthogonal projector
onto (imΦ′(0))⊥. We make use of the uniquely defined decomposition of every u ∈ Rp into
the sum u = u1 + u2, with u1 ∈ (kerΦ′(0))⊥ and u2 ∈ kerΦ′(0). Following the Lyapunov–
Schmidt procedure (see, e.g., [40, Chapter VII]), one can replace the equation in (1.1) by the
equivalent system

(I −Π)Φ(u1 + u2) = 0, ΠΦ(u1 + u2) = 0, (3.21)

and consider the first equation in (3.21) with respect to u1, with u2 treated as a parameter.
By the classical Implicit Function Theorem, for every u2 close enough to 0, this equation has
the unique near 0 solution u1(u2) ∈ (kerΦ′(0))⊥, the function u1(·) inherits the smoothness
of Φ, and necessarily u1(0) = 0, and u′1(0) = 0. Then one substitutes u1 = u1(u2) into the
second equation, and obtains an equation with respect to u2 only.

Let {uk2} ⊂ kerΦ′(0) be any sequence convergent to 0, and such that for every k it holds
that Φ(uk) ̸= 0, where we set uk = u1(u

k
2)+uk2. Suppose further that for every k there exists

vk ∈ Rp such that

Φ(uk) + Φ′(uk)vk = O(∥Φ(uk)∥2), vk = O(∥Φ(uk)∥)

as k → ∞. Since Φ(uk) = ΠΦ(uk), from the first estimate we then have

Φ(uk)

∥Φ(uk)∥
= −ΠΦ′(uk)

vk

∥Φ(uk)∥
+O(∥Φ(uk)∥),

where the norm of the left-hand side equals 1, while the sequence {vk/∥Φ(uk)∥} is bounded.
Moreover, {ΠΦ′(uk)} → 0, and hence the right-hand side tends to 0. This yields a contra-
diction.

Therefore, Assumption 2 may only hold provided Φ(u1(u2) + u2) = ΠΦ(u1(u2) + u2) = 0
for all u2 ∈ kerΦ′(0) close enough to 0. But this property implies that the solution set
Φ−1(0) coincides near 0 with S = {u ∈ Rp | u1 = u1(u2)}. Indeed, by this property, S near
0 is contained in Φ−1(0). On the other hand, if we suppose that there exists u ∈ Φ−1(0),
arbitrarily close to 0, and such that u1 ̸= u1(u2), we have that this u1 solves the first equation
in (3.21) for the given u2, yielding a contradiction with the fact that u1(u2) is the unique
near 0 solution of that equation for u2 close enough to 0.

Observe, finally, that since u′1(0) = 0, the set S is a smooth manifold near 0 (hence
Clarke-regular at 0) with the tangent subspace at 0 equal to kerΦ′(0). Indeed, it holds that
S = F−1(u), with F : Rp → (kerΦ′(0))⊥, F (u) = u1 − u1(u2), and

F ′(0)v = v1 − u′1(0)v2 = v1, v ∈ Rp,

implying that imF ′(0) = (kerΦ′(0))⊥, kerF ′(0) = {v ∈ Rp | v1 = 0} = kerΦ′(0), yielding
the need conclusion about S. According to [44, Definition 1], this conclusion further means
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that 0 is a noncritical solution of the equation in (1.1), which is equivalent to saying that the
local Lipschitzian error bound holds at 0 (see [44, Theorem 1]).

For constrained equations, the question whether the constrained error bound is implied
by Assumption 2 remains open.

4 Local convergence in the piecewise smooth case

Our goal in this section is to relax the smoothness assumptions of Section 3. Specifically,
we consider the constrained equation (1.1) with a mapping Φ being piecewise smooth near a
solution ū. This means that there exists a finite collection of selection mappings Φ1, . . . , Φs :
Rp → Rq which are continuously differentiable near ū, such that

Φ(u) ∈ {Φ1(u), . . . , Φs(u)} ∀u ∈ Rp,

and Φ is continuous near ū. In particular, taking s = 1 brings us back to the smooth case
considered in Section 3.

For every u ∈ Rp, we define the set

A(u) = {j ∈ {1, . . . , s} | Φ(u) = Φj(u)} (4.1)

of indices of all selection mappings active at u. Let G be any mapping such that

G(u) ∈ {(Φj)′(u) | j ∈ A(u)} (4.2)

for u ∈ Rp close enough to ū. In the discussion below, we do not assume any control of the
choice of the specific value of G(u) when there is more than one active selection mapping
(i.e., A(u) is not a singleton). This is consistent with the black-box paradigm in nonsmooth
optimization; see, e.g., [16, Part II].

The algorithm with the subproblem (1.3) employing G defined by (4.1) and (4.2), is nat-
urally referred to as the constrained piecewise LM method. Observe that with this definition
of G, for any u ∈ Rp close enough to ū, the subproblem (1.3) can be written in the form

minimize
1

2
∥Φj(u) + (Φj)′(u)v∥2 + 1

2
σ(u)∥v∥2 subject to u+ v ∈ P, (4.3)

with some j ∈ A(u), and this can be seen as the subproblem of the LM method applied to a
smooth constrained equation

Φj(u) = 0, u ∈ P. (4.4)

Needless to say, the index j can vary from one iteration to another.
We are now going to establish local quadratic convergence of the constrained piecewise

LM method by means of Theorem 2.2. To that end, we need to provide conditions ensuring
the fulfilment of Assumptions 1–3, and to demonstrate that the method fits the framework of
that theorem. This discussion essentially follows the exposition in [34], which in turn relies
on the results in [22, 23]. To begin with, since a mapping that is piecewise smooth near some
point is necessarily Lipschitz-continuous near that point [42, Theorem 2.1], Assumption 1 is
automatically satisfied in our current setting.
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From now on in this section, we assume that (Φj)′ is Lipschitz-continuous near ū for all
j ∈ A(ū). In order to verify Assumption 3, we observe first that, by continuity of Φ and its
smooth selections at ū, from (4.1) it follows that A(u) ⊂ A(ū) for all u ∈ Rp close enough to
ū. For any such u, picking up j ∈ A(u) such that G(u) = (Φj)′(u) (see (4.2)), and employing
again the Mean-Value Theorem [45, Theorem A.10], for any v ∈ Rp satisfying (2.7), we obtain
that

∥Φj(u+ v)∥ ≤ ∥Φj(u) + (Φj)′(u)v∥+ ∥Φj(u+ v)− Φj(u)− (Φj)′(u)v∥
= ∥Φ(u) +G(u)v∥+O(∥v∥2)
≤ t2 +O(∥v∥2)
= O(t2) (4.5)

as u→ ū and t→ 0+.
At this point we need to introduce an additional requirement on the piecewise smooth

structure of Φ: let
∥Φ(u)∥ = O(∥Φj(u)∥) ∀ j ∈ A(ū) (4.6)

as u ∈ P tends to ū. Combined with (4.5), this readily yields the fulfilment of Assumption 3.
In order to get a better understanding of the nature of condition (4.6), we next recall the

P -property at ū, introduced in [34, p. 434]. It consists of saying that near ū the constraint set
P excludes all zeroes of smooth selections active at ū, which are not zeroes of Φ. Formally
it means that Uj ⊂ U near ū for all j ∈ A(ū), where Uj stands for the solution set of (4.4).
Obviously, the P -property at ū is implied by (4.6) as u ∈ P tends to ū. As demonstrated
in [34, Example 2], the converse implication does not hold in general, but it holds under the
additional requirement that

dist(u, Uj) = O(∥Φj(u)∥) ∀ j ∈ A(ū) (4.7)

as u ∈ P tends to ū. This is the constrained error bound for each active selection. For any
j ∈ A(ū) and u ∈ P , let ûj stand for a metric projection of u onto Uj :

∥u− ûj∥ = dist(u, Uj). (4.8)

From (4.7) we then obtain that

∥u− ûj∥ = O(∥Φj(u)∥)

as u ∈ P tends to ū. Evidently, ûj → ū as u → ū, and hence, the P -property at ū implies
that ûj ∈ U provided u is close enough to ū. Therefore, by the Lipschitz-continuity of Φ near
ū, and by (4.8), we obtain the estimate

∥Φ(u)∥ = ∥Φ(u)− Φ(ûj)∥ = O(∥u− ûj∥) = O(∥Φj(u)∥),

i.e., (4.6) holds as u ∈ P tends to ū.
As a side observation, employing again the inclusion A(u) ⊂ A(ū) for u ∈ Rp close enough

to ū, one can easily see that the P -property at ū, and the condition (4.7) as u ∈ P tends to
ū, imply the constrained error bound (3.2) as u ∈ P tends to ū.
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We finally need to verify Assumption 2 by showing that v ∈ F(u, Γ) holds for a step v
of the constrained piecewise LM method, provided Γ > 0 is fixed large enough and u ∈ P is
close enough to ū.

Let the regularization parameter satisfy (3.1) as u ∈ P tends to ū. For u ∈ Rp close to ū,
and for j ∈ A(u) ⊂ A(ū) such that G(u) = (Φj)′(u) (see (4.2)), we have that Φj(u) = Φ(u)
(see (4.1)). Then (3.1) implies the estimates

∥Φj(u)∥2 = O(σ(u)), σ(u) = O(∥Φj(u)∥2) (4.9)

as u ∈ P tends to ū.
As discussed above, an iteration of the constrained piecewise LM method can be in-

terpreted as an iteration of the usual constrained LM method for the smooth constrained
equation (4.4), with the subproblem (4.3). Using (4.9), we can now apply the corresponding
argument in Section 3 with Φ substituted by Φj , to derive the estimates

∥v∥ = O(dist(u, Uj))

and
∥Φj(u) + (Φj)′(u)v∥ = O((dist(u, Uj))

2)

as u ∈ P \ U tends to ū. To obtain the needed conclusion, it remains to recall again (4.7)
and the equalities Φj(u) = Φ(u) and G(u) = (Φj)′(u).

Putting together all the ingredients above, we arrive to the following local convergence
result for the constrained piecewise LM method, corresponding to [34, Theorems 1, 2].

Theorem 4.1 Let Φ : Rp → Rq be a given mapping, P ⊂ Rp a nonempty closed set, and
ū ∈ U . Assume that Φ is piecewise smooth near ū, and the derivatives of its smooth selection
mappings Φ1, . . . , Φs : Rp → Rq are Lipschitz-continuous near ū. Let the P -property at ū
and condition (4.7) be satisfied as u ∈ P tends to ū. Moreover, let G : Rp → Rq×p be a fixed
mapping satisfying (4.2), and assume that the function σ : P → R+ satisfies (3.1) as u ∈ P
tends to ū.

Then, for every u0 ∈ P , there exists a sequence {uk} such that for every k, the displace-
ment uk+1 − uk is a solution of (1.3) with u = uk, and with the additional convention that
uk+1 = uk if uk ∈ U . For any δ > 0 small enough, if u0 ∈ P is close enough to ū, then
any such sequence is contained in B(ū, δ) and converges to some u∗ ∈ U , and the rate of
convergence is quadratic.

Although Theorem 2.2 does not impose any explicit differentiability condition on the
mapping Φ, it is difficult to apply this theorem for cases beyond piecewise smoothness of
Φ when there are solutions that are nonisolated and at which Φ is not differentiable. If
Φ is a nonsmooth (but not piecewise smooth) reformulation of a complementarity system,
i.e., when the nondifferentiability comes from the complementarity function, we know about
just two approaches [11] and [38] to get superlinear convergence by means of LM methods.
Both approaches, employing the Fischer–Burmeister complementarity function, allow signif-
icantly larger steps (if compared to Theorem 2.2). Whereas the former approach is based on
longer steps for the multipliers of a Karush-Kuhn-Tucker system associated to a variational
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inequality, the article [38] exploits the freedom in the very recent framework described in
Theorem 2.1 and allows significantly larger steps without a restriction to a special class of
variables. Based on this and on a new error bound condition allowing again certain problems
with nonisolated solutions, an LM method for complementarity systems is shown to exhibit
superlinear convergence.

We now turn our attention to the piecewise LPN method, that is, the algorithm with the
subproblem (1.4) employing G defined by (4.1), (4.2). Similarly to the constrained piecewise
LM method, the subproblem (1.4) can then be written in the form

minimize γ subject to ∥Φj(u) + (Φj)′(u)v∥ ≤ γ∥Φj(u)∥2,
∥v∥ ≤ γ∥Φj(u)∥,
u+ v ∈ P, γ ≥ 0,

(4.10)

with some j ∈ A(u), and this is the subproblem of the LPN method applied to a smooth
constrained equation (4.4).

In order to derive local quadratic convergence of the piecewise LPN method from The-
orem 2.2, we first recall yet again that Assumptions 1 and 3 are established above, under
the appropriate requirements. Assumption 2 is established through the interpretation (4.10)
of the piecewise LPN subproblem, similarly to how this is done above for the piecewise LM
method, but employing the related argument for the LPN method before Theorem 3.3. The
result obtained this way corresponds to [34, Theorems 1, 2].

Theorem 4.2 Let Φ : Rp → Rq be a given mapping, P ⊂ Rp a nonempty closed set, and
ū ∈ U . Assume that Φ is piecewise smooth near ū, and the derivatives of its smooth selection
mappings Φ1, . . . , Φs : Rp → Rq are Lipschitz-continuous near ū. Let the P -property at ū
and condition (4.7) be satisfied as u ∈ P tends to ū. Moreover, let G : Rp → Rq×p be a fixed
mapping satisfying (4.2).

Then, for every u0 ∈ P , there exists a sequence {uk} such that for every k, the pair
(uk+1−uk, γk) with some real γk is a solution of (1.4) with u = uk. For any δ > 0, if u0 ∈ P
is close enough to ū, then any such sequence is contained in B(ū, δ) and converges to some
u∗ ∈ U , and the rate of convergence is quadratic.

Let us finally mention that the P -property, required in Theorems 4.1 and 4.2, can be easily
guaranteed for reformulations of complementarity systems by means of the “min” (natural
residual) complementarity function, see [23, 34].

5 Effect of inexactness

Solving the constrained LM subproblems exactly can be computationally costly, or even
impossible. The goal of this section is to characterize the “level” of controllable inexactness
that does not interfere with local convergence and rate of convergence properties of the LM
method established in Section 3. To that end, we shall restrict ourselves in this section to the
smoothness requirements of Section 3, i.e., Φ is differentiable near a solution ū of (1.1) and Φ′

is Lipschitz-continuous near ū. That said, we note that Algorithm 5.1 and Theorem 5.1 below,
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coming from [22], can actually be extended to the piecewise smooth setting of Section 4, and
even to more general kinds of nonsmoothness. For those extensions, as well as for the original
source of Algorithm 5.1 and Theorem 5.1, we refer the reader to [22].

Algorithm 5.1 Choose the parameters γ > 0 and Θ > 1. Choose u0 ∈ P , and set k = 0.

1. If Φ(uk) = 0, stop.

2. Set σ(uk) = ∥Φ(uk)∥2. If there exists v ∈ P − uk such that

∥Φ(uk) + Φ′(uk)v∥2 + σ(uk)∥v∥2 ≤ γ2∥Φ(uk)∥4, (5.1)

define vk as any such v, and go to Step 4.

3. Compute vk as the solution of (1.3) with u = uk, G(u) = Φ′(uk), and set

γ = Θ

√
∥Φ(uk) + Φ′(uk)vk∥2 + σ(uk)∥vk∥2

∥Φ(uk)∥2
. (5.2)

4. Set uk+1 = uk + vk, increase k by 1 and go to Step 1.

The idea of this algorithm can be explained as follows: the process of solving the LM
subproblem (1.3) is terminated once the value of the objective function of this subproblem
becomes small enough; specifically, once the condition (5.1) at Step 2 is achieved. If this
never happens for a given k, then the subproblem would need to be solved exactly at Step 3.
But as will be demonstrated in Theorem 5.1 below, Step 2 always takes effect from some
point on at least (thus skipping solving the subproblem exactly at Step 3).

According to the analysis preceding Theorem 3.1, under the hypotheses therein, Assump-
tions 1–3 are necessarily satisfied. Observe that the subproblem (1.3) in Step 3 of Algo-
rithm 5.1 is always (uniquely) solvable. Hence, for every k, the algorithm successfully defines
a step vk. Moreover, the mentioned analysis also shows that if this vk is indeed produced
using Step 3, it belongs to F(uk, Γ∗) with some fixed Γ∗ > 0, for all u ∈ P close enough to ū.
Therefore, in order to apply Theorem 2.2 to Algorithm 5.1, it is sufficient to show that there
exists Γ ≥ Γ∗ such that for each k, if vk is produced using Step 2, it belongs to F(uk, Γ).
This can be done by induction, assuming that u0 is close enough to ū.

The key ingredients of the proof are as follows. If vk is taken satisfying (5.1), then

max{∥Φ(uk) + Φ′(uk)vk∥2, σ(uk)∥vk∥2} ≤ ∥Φ(uk) + Φ′(uk)vk∥2 + σ(uk)∥vk∥2 ≤ γ2∥Φ(uk)∥4,

and according to (2.6) and the definition of σ(uk) at Step 2, this implies that vk ∈ F(uk, γ),
and γ stays unchanged. On the other hand, if vk is the constrained LM direction defined at
Step 3, then according to the inclusion vk ∈ F(uk, Γ∗), (2.6), (3.1), and (5.2), the new value of
γ satisfies γ ≤

√
2ΘΓ∗. Therefore, as long as uk stays close enough to ū, the values of γ remain

bounded above by Γ = max{γ0,
√
2ΘΓ∗}, with γ0 being the value of this parameter taken

at initialization of the algorithm. It remains to remove the requirement that uk stays close
enough to ū, and this is what is done by induction, employing also the claim in Theorem 2.2
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that {uk} is contained in B(ū, δ). This completes the proof of the fact that vk ∈ F(uk, Γ)
for all k.

For the sake of formal consistency, we shall adopt the convention that when Algorithm 5.1
is terminated at Step 1 for some k, it is considered to still generate an infinite sequence with
all the subsequent elements equal to uk. The same convention will be used for the algorithms
discussed in Section 6.

Theorem 5.1 Under the assumptions of Theorem 3.1, Algorithm 5.1 successfully generates
a sequence {uk}. For any δ > 0, if u0 is close enough to ū, then any such sequence is
contained in B(ū, δ) and converges to some u∗ ∈ U , and the rate of convergence is quadratic.
Moreover, starting from some k, Step 3 of Algorithm 5.1 is always avoided.

The last claim of this theorem is obtained by the following reasoning. The fraction in
the right-hand side of (5.2) is greater than the current value of γ, since otherwise, the exact
constrained LM direction would satisfy (5.1). Since Θ > 1, this implies that the sequence of
values of γ is nondecreasing, and since this sequence was demonstrated to be bounded above
(by the specified Γ), γ can be changed a finite number of times only. This means that, from
some iteration on, Step 3 of the algorithm is never activated.

We proceed with the analysis from [8], for the case when the regularization parameter
satisfies the requirements in (3.9) with some θ ∈ (0, 2] (i.e., not necessarily for θ = 2).
Assume now that P is convex, and let the norms used in (1.3) be Euclidean. Recall that
in this case, the first-order necessary optimality condition for (1.3) has the form (1.5). We
consider the version of the inexact constrained LM method, with inexactness measured by the
violation of (1.5). Specifically, the process of solving the subproblem (1.3) with G(u) = Φ′(u)
is terminated once

(Φ′(u))⊤(Φ(u) + Φ′(u)v) + σ(u)v +NP (u+ v) ∋ w (5.3)

is satisfied with some w ∈ Rp smaller than the given tolerance. Even more specifically, we
assume that the “size” of inexactness conforms with the exponent θ in (3.9) to the requirement

w = O(∥Φ(u)∥θ+1) (5.4)

as u ∈ P tends to ū.
One essential trick in [8] is to observe that (5.3) is a necessary and sufficient optimality

condition for the following convex optimization problem, which is a perturbation of (1.3):

minimize
1

2
∥Φ(u) + Φ′(u)v∥2 + 1

2
σ(u)∥v∥2 − ⟨w, v⟩ subject to u+ v ∈ P. (5.5)

Then we follow the argument used above to prove (3.7), but taking into account that now
the objective function of (5.5) has an extra term involving w.

Specifically, for a metric projection û of u ∈ P \ U onto U , and for the unique global
solution v of (5.5), similarly to (3.5) we obtain that

∥Φ(u)+Φ′(u)v∥2+σ(u)∥v∥2−2⟨w, v⟩ ≤ ∥Φ(u)+Φ′(u)(û−u)∥2+σ(u)∥û−u∥2−2⟨w, û−u⟩.
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Then, similarly to (3.6) (and in particular, making use of (3.4)), we derive the estimate

∥v∥2 ≤ 1

σ(u)

(
∥Φ(u) + Φ′(u)(û− u)∥2 + σ(u)∥û− u∥2 + 2⟨w, v⟩ − 2⟨w, û− u⟩

)
≤ 2∥w∥

σ(u)
(∥v∥+ dist(u, U)) +O((dist(u, U))2)

≤ O(∥Φ(u)∥(∥v∥+ dist(u, U))) +O((dist(u, U))2)

= O(dist(u, U)∥v∥) +O((dist(u, U))2), (5.6)

as u ∈ P \U tends to ū, where the next-to-the-last estimate is by (5.4) and the first relation
in (3.9), and the last one is by Assumption 1 that holds under the current smoothness
requirements. Evidently, (5.6) implies (3.7) as u ∈ P \ U tends to ū.

The remaining part of the argument in [8] consists of the reasoning used above to prove
Theorem 3.2, but with ω(u, v) defined in (3.14) replaced by ω(u, v) + w. Taking again into
account (5.4), we conclude that this modification does not affect (3.15) and the subsequent
analysis. This yields the full version of [8, Theorem 1].

Theorem 5.2 Under the assumptions of Proposition 3.1, let the function σ : P → R+ satisfy
(3.9) with some fixed θ ∈ (0, 2], and the function ψ : P → R+ satisfy ψ(u) = O(∥Φ(u)∥θ+1)
as u ∈ P tends to ū.

Then, for every u0 ∈ P , there exists a sequence {uk} such that for every k, the displace-
ment uk+1−uk is the solution of (5.3) with u = uk, with some w ∈ Rp satisfying ∥w∥ ≤ ψ(uk),
and with the additional convention that uk+1 = uk if uk ∈ U . For any δ > 0, if u0 ∈ P is
close enough to ū, any such sequence is contained in B(ū, δ) and converges to some u∗ ∈ U ,
and the rate of convergence is superlinear with the Q-order min{θ + 1, 2}.

Sharpness of the requirement (5.4) on allowed inexactness, used in Theorem 5.2, is demon-
strated by an example in [8, Section 5]. For instance, if θ = 2, quadratic convergence is pre-
served if inexactness is of order O(∥Φ(u)∥3), while if θ = 1, the allowed order for inexactness
preserving quadratic convergence is O(∥Φ(u)∥2).

For the unconstrained case, results on inexactness related to Theorem 5.2 can be found in
[17, 28, 30, 37]. In particular, [17] establishes quadratic convergence for θ = 2 if inexactness
is of order O(∥Φ(u)∥4), while in [28] the same is proven for θ = 1 if inexactness is of order
O(∥Φ(u)∥3). Therefore, these works employ more restrictive assumptions on the allowed level
of inexactness than those coming from Theorem 5.2. At the same time, in [37], θ = 1 and
allowed inexactness is of order O(∥Φ(u)∥2), thus agreeing with the claim of Theorem 5.2.
Moreover, [30] recovers results from [37] and as already mentioned in Section 3, it further
obtains superlinear convergence of the sequence {dist(uk, U)} to 0 for θ ∈ (2, 3), in the
inexact case as well.

We next discuss the relation between the two kinds of inexactness considered in Theo-
rems 5.1 and 5.2. Since in Theorem 5.1 the values of γ stay bounded, inexactness allowed by
(5.1) means that the corresponding value of the objective function of problem (1.3) must be
of order O(∥Φ(u)∥4). According to the analysis leading to Theorem 3.1, the optimal value of
(1.3) (corresponding to the exact LM step) is of the same order O(∥Φ(u)∥4). Therefore, that
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theorem allows to take any feasible direction keeping the order O(∥Φ(u)∥4) for the value of
the objective function of the constrained LM subproblem (1.3). Using this observation, it can
be easily shown that inexactness allowed by Theorem 5.2 for θ = 2 satisfies the requirements
on inexactness in Theorem 5.1. (That said, we emphasize again that Theorem 5.2 allows to
take smaller values of θ.)

The converse is not true, as demonstrated by the following simple example. Let p = q = 1,
P = R, Φ(u) = u, and let σ(u) = u2. Inexactness allowed by Theorem 5.1 is characterized
by the relation

(u+ v)2 + u2v2 = O(u4)

as u → 0. Obviously, any v = −u + O(u2) satisfies this requirement. At the same time,
inexactness allowed by Theorem 5.2 is characterized by the equality

u+ v + u2v = w

with some w = O(|u|3). Substituting v here by −u+O(u2) yields w = −u3+O(u2), and this
quantity does not need to be O(|u|3) as u→ 0.

To conclude this discussion, we mention that a projected LM method with inexact pro-
jections but R-linear convergence was considered in [10], and with superlinear convergence
under the very restrictive unconstrained error bound condition in [60].

Counterparts of Algorithm 5.1 and Theorem 5.1 for the LPN method can be found in
[22].

6 Globalization of convergence

In this section, we assume that P is convex and that Φ is differentiable on P . Furthermore,
let all the norms be Euclidean.

One natural approach to globalization of convergence of the constrained LM method is
some backtracking linesearch for the merit function φ defined as the squared residual of the
equation in (1.1), i.e., by (2.2) with ν = 2. We start with the following algorithm that is fully
hybrid in the sense of [45, Section 5.3]: it combines the constrained LM method as a local
phase with the projected gradient method as a global phase. Being considered with θ = 2,
this algorithm corresponds to [50, Algorithm 2.12].

Algorithm 6.1 Choose the parameters θ > 0, ρ ∈ (0, 1), ε ∈ (0, 1), and κ ∈ (0, 1). Choose
u0 ∈ P , and set k = 0.

1. If Φ(uk) = 0, stop.

2. Set σ(uk) = ∥Φ(uk)∥θ, and compute vk as the solution of (1.3) with u = uk, G(u) =
Φ′(uk).

3. If
∥Φ(uk + vk)∥ ≤ ρ∥Φ(uk)∥, (6.1)

set uk+1 = uk + vk, increase k by 1, and go to Step 1.
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4. Set α = 1. If the inequality

φ(uk + αvk) ≤ φ(uk) + ε⟨φ′(uk), πP (u
k − αφ′(uk))− uk⟩ (6.2)

is satisfied, set αk = α. Otherwise, replace α by κα, check the inequality (6.2) again,
etc., until (6.2) is satisfied.

5. Set uk+1 = πP (u
k − αkφ

′(uk)), increase k by 1 and go to Step 1.

Global convergence properties of Algorithm 6.1 are evidently inherited from those of the
projected gradient method in [15, Proposition 2.3.3]. Step 3 aims at eventual switching to full-
step LM iterations, thus accelerating convergence, at least from some point on. Convergence
and rate of convergence properties of Algorithm 6.1 are given by the following theorem that
corresponds to [50, Theorem 2.13] if θ = 2 is used.

Theorem 6.1 Let Φ : Rp → Rq be a given mapping, and P ⊂ Rp be a nonempty closed
convex set. Assume that Φ is continuously differentiable on P .

Then Algorithm 6.1 uniquely defines the sequence {uk}, and any accumulation point ū
of this sequence is a stationary point of the optimization problem (3.10), i.e., (3.11) holds
with u = ū. Moreover, if Algorithm 6.1 is run with θ ∈ (0, 2], if an accumulation point ū
satisfies Φ(ū) = 0, if the derivative of Φ is Lipschitz-continuous near ū, and if (3.2) holds as
u ∈ P tends to ū, then the entire sequence {uk} converges to ū, and the rate of convergence
is superlinear with the Q-order min{θ + 1, 2}.

To show that the last assertion of the theorem above follows from Theorem 3.2, one only
needs to demonstrate that the test (6.1) is always passed when uk is close enough to ū. But
this readily follows from the intermediate estimates in (3.16), from the Lipschitz-continuity
of Φ near ū, and from the constrained error bound condition (3.2) as u ∈ P tends to ū:

∥Φ(uk + vk)∥ = O(dist(uk + vk, U)) = o(dist(uk, U)) = o(∥Φ(uk)∥) ≤ ρ∥Φ(uk)∥

for uk ∈ P close enough to ū.
Close counterparts of Algorithm 6.1 and Theorem 6.1 can be found in [27], yet again

involving the extraneous interiority assumption.
Hybrid globalization strategies like the one in Algorithm 6.1 are theoretically attractive

because of their universality; see [45, Section 5.3]. For instance, [27, 50] also discuss hybrid
globalization of the projected (rather than the constrained) LM method, similar to that
in Algorithm 6.1. At the same time, practical features of hybrid globalizations are always
questionable, in particular, because there are no general reasons to expect that most (or at
least many) iterations of Algorithm 6.1 would be LM steps. Instead, it might happen that
most would be the projected gradient steps, switching to the LM steps only at some very late
iterations. To that end, we next present the “pure” linesearch globalization of the constrained
LM method, developed in [36], and free from any hybrid ingredients.

Algorithm 6.2 Choose the parameters θ > 0, ε ∈ (0, 1), and κ ∈ (0, 1). Choose u0 ∈ P ,
and set k = 0.
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1. If Φ(uk) = 0, stop.

2. Set σ(uk) = ∥Φ(uk)∥θ, and compute vk as the solution of (1.3) with u = uk, G(u) =
Φ′(uk).

3. Set α = 1. If the inequality

φ(uk + αvk) ≤ φ(uk)− εσ(uk)α∥vk∥2 (6.3)

is satisfied, set αk = α. Otherwise, replace α by κα, check the inequality (6.3) again,
etc., until (6.3) is satisfied.

4. Set uk+1 = uk + αkv
k, increase k by 1 and go to Step 1.

In order to show that Algorithm 6.2 is well defined, observe that when Φ(uk) ̸= 0 (implying
that σ(uk) > 0), the value of the objective function of the constrained LM subproblem (1.3)
with u = uk ∈ P at its unique solution vk is not larger than its value at 0 (since 0 is also a
feasible point of this subproblem). Hence,

φ(uk) + ⟨φ′(uk), vk⟩+ ∥Φ′(uk)vk∥2 + σ(uk)∥vk∥2 = ∥Φ(uk)∥2 + 2⟨Φ(uk), Φ′(uk)vk⟩
+∥Φ′(uk)vk∥2 + σ(uk)∥vk∥2

= ∥Φ(uk) + Φ′(uk)vk∥2 + σ(uk)∥vk∥2

≤ ∥Φ(uk)∥2

= φ(uk).

Therefore,
⟨φ′(uk), vk⟩ ≤ −σ(uk)∥vk∥2, (6.4)

and the definition of differentiability applied to φ at uk then yields that (6.3) is satisfied by all
α > 0 small enough. This means that the loop at Step 3 of Algorithm 6.2 will be terminated
after a finite number of backtracking steps, and the next iterate uk+1 will be successfully
generated. Observe also that since both uk and uk + vk belong to P , P is convex, and αk is
taken from (0, 1], it always holds that uk+1 ∈ P .

The following theorem corresponds to a combination of the results in [36, Theorems 5, 7],
where Algorithm 6.2 is stated with θ = 2, but as demonstrated below, this restriction can be
avoided.

Theorem 6.2 Theorem 6.1 remains true with Algorithm 6.1 therein substituted by Algo-
rithm 6.2.

The proof that accumulation points of the generated sequence are stationary points for
the optimization problem (3.10) literarily repeats the argument in [36, Theorem 5]. The
remaining part of the claim of Theorem 6.1 will follow from Theorem 3.2, if we show that
αk = 1 is accepted at Step 3 of Algorithm 6.2 for uk ∈ P close enough to ū. But this again
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readily follows from the intermediate estimates in (3.16), from the Lipschitz-continuity of Φ
near ū, and from the constrained error bound condition (3.2) as u ∈ P tends to ū:

φ(uk + vk)− φ(uk) = ∥Φ(uk + vk)∥2 − ∥Φ(uk)∥2

= −∥Φ(uk)∥2 +O((dist(uk + vk, U))2)

= −∥Φ(uk)∥2 + o((dist(uk, U))2)

= −∥Φ(uk)∥2 + o(∥Φ(uk)∥2)
≤ −εσ(uk)∥vk∥2

for uk ∈ P close enough to ū, where the last inequality follows from the definition of σ(uk)
at Step 2 of Algorithm 6.2, and from (3.7), as the latter implies that for θ > 0

σ(uk)∥vk∥2 = O(∥Φ(uk)∥θ(dist(uk, U))2) = O(∥Φ(uk)∥2+θ) = o(∥Φ(uk)∥2)

as uk ∈ P tends to ū.
Algorithms 6.1 and 6.2 can certainly be applied in the unconstrained case (when P = Rp),

and related globalizations of the unconstrained LM method were proposed in [31, 63, 65].
Instead of (6.3), these works employ the standard Armijo linesearch test

φ(uk + αvk) ≤ φ(uk) + εα⟨φ′(uk), vk⟩.

According to (6.4), this condition is more (or at least no less) restrictive than (6.3). Appar-
ently as a consequence of this, all those works [31, 63, 65] also check the linear decrease test
(6.1) before the linesearch, in order to ensure asymptotic acceptance of the full LM step (as
in the hybrid Algorithm 6.1).

For the unconstrained case, some hybrid globalizations of the inexact LM method were
presented in [17, 28] and, more recently, in [4]. They also use a sufficient descent direction
test (apparently because of inexactness), like (6.4) with σ(uk) replaced by some small positive
constant, and switch to gradient descent when this test is not passed. In this sense, they
are “as hybrid as Algorithm 6.1”. A pure linesearch globalization of the inexact LM method
along the lines of [36] was recently discussed in [64].

In addition to linesearch globalizations, there also exist globalizations of the LM method
in the spirit of trust-region algorithms. Probably the first work in this direction for uncon-
strained equations (with p = q) is [26], where the regularization parameter was taken in the
form σ(u) = χ∥Φ(u)∥, with the scalar parameter χ > 0 controlled by means of the trust-region
technique. This approach was further developed in [2, 29, 57], with some more sophisticated
rules to control the regularization parameter. Moreover, [29] employs σ(u) = χ∥Φ(u)∥θ, with
superlinear convergence for θ ∈ (0, 1), and quadratic for θ ∈ [1, 2]. Another recent related
work is [13], where σ(u) = χ∥Φ(u)∥2 is used.

For the constrained case, some trust-region related techniques can be found in [53].
To conclude, we give some further comments on the rules that can be used for controlling

the regularization parameters. A modification of the basic choice σ(u) = ∥Φ(u)∥θ, suggesting
to take σ(u) = ∥(Φ′(u))⊤Φ(u)∥θ, stems from the analysis in [32]: it is shown there that the
growth behaviors of ∥Φ(·)∥ and of ∥(Φ′(·))⊤Φ(·)∥ are locally equivalent (are of the same order)
if the Lipschitzian error bound holds and Φ is continuously differentiable. For globalizations,
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the choices σ(u) = min{1, ∥Φ(u)∥θ} and σ(u) = ∥Φ(u)∥θ/(1 + ∥Φ(u)∥θ) become relevant, as
they prevent the regularization parameter from becoming too large far from solutions. All
of those choices can be with a multiplier χ > 0 somehow varying within positive bounds, or
even controlled in a special way in trust region-like globalizations; see the discussion above. A
sophisticated control of the regularization parameter using estimates of the Lipschitz constant
of the Jacobian is presented in [51].

As for the LPN method, a globalization strategy for it was developed in [33], employing
linesearch for the merit function φ defined according to (2.2) with the ∞-norm, and with the
exponent ν = 1. Moreover, it was demonstrated in [33] that this globalization technique is
applicable not only when Φ is smooth, but when it is only piecewise smooth as well. Some
improvements of global convergence properties for the latter case were developed in [35]. We
also mention the trust-region globalization in [5] and hybrid globalization in [20], the latter
coupling the potential reduction algorithm from [21, 58] with the LPN method.

7 Open questions

Below, we state some open questions to further complete the picture given in this paper.

• It was shown in the final part of Section 3 that in the unconstrained case and for a
smooth mapping Φ, the Lipschitzian error bound condition (3.2) follows from Assump-
tion 2. It remains an open question whether this holds true in the constrained case,
perhaps under Assumptions 1 and 3, or under appropriate smoothness.

• It would be interesting and important to achieve a full understanding of local conver-
gence and rate convergence properties for the exponent θ in the regularization parameter
of the LM method taking values in (2, 4).

• Can local convergence and rate of convergence properties be established in the piecewise
smooth case with the exponent of the regularization parameter satisfying (3.9) (i.e., not
only for θ = 2)? In light of the presentation above, it seems plausible, because each
step of the (constrained) piecewise LM method can be analyzed separately as in the
smooth case.

• Can one obtain the same results concerning inexact solution of subproblems for the
piecewise smooth case as for smooth mappings?

• The globalization of LM methods is well understood for the smooth case. Is it possible
to make significant improvements for the globalization of piecewise smooth problems?
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