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Abstract At each iteration of the augmented Lagrangian algorithm, a nonlin-
ear subproblem is being solved. The number of inner iterations (of some/any
method) needed to obtain a solution of the subproblem, or even a suitable
approximate stationary point, is in principle unknown. In this paper we show
that to compute an approximate stationary point sufficient to guarantee local
superlinear convergence of the augmented Lagrangian iterations, it is enough
to solve two quadratic programming problems (or two linear systems in the
equality-constrained case). In other words, two inner Newtonian iterations are
sufficient. To the best of our knowledge, such results are not available even
under the strongest assumptions (of second-order sufficiency, strict comple-
mentarity, and the linear independence constraint qualification). Our analysis
is performed under second-order sufficiency only, which is the weakest assump-
tion for obtaining local convergence and rate of convergence of outer iterations
of the augmented Lagrangian algorithm. The structure of the quadratic prob-
lems in question is related to the stabilized sequential quadratic programming
and to second-order corrections.
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1 Introduction

Given twice continuously differentiable f : Rn → R and g : Rn → R
m, we

consider the general nonlinear constrained optimization problem

min f(x)
s.t. gi(x) = 0, i = 1, . . . , l

gi(x) ≤ 0, i = l + 1, . . . ,m,
(1)

where 1 ≤ l ≤ m. Let L : Rn × Rm → R denote the usual Lagrangian of
problem (1), i.e.,

L(x, µ) = f(x) + 〈µ, g(x)〉.

The Karush–Kuhn–Tucker (KKT) system characterizing stationary points and
Lagrange multipliers of problem (1) is given by

0 =
∂L

∂x
(x, µ),

0 = gi(x), i = 1, . . . , l
0 ≤ µi, gi(x) ≤ 0, µigi(x) = 0, i = l + 1, . . . ,m.

(2)

For a given stationary point x̄ of problem (1), we denote by M(x̄) the set of
the associated Lagrange multipliers, i.e., the set of µ that satisfy (2) for x = x̄.

To measure violation of the KKT conditions (2), we shall use the natural
residual function r : Rn ×Rm → R+, which is given by

r(x, µ) =

(∥∥∥∥∂L∂x (x, µ)

∥∥∥∥2

+

l∑
i=1

(gi(x))2 +

m∑
i=l+1

(µi −max{0, µi + gi(x)})2

)1/2

.

(3)
Note that (x̄, µ̄) is a solution of (2) if and only if r(x̄, µ̄) = 0.

We say that the second-order sufficient optimality condition (SOSC) holds
at (x̄, µ̄), µ̄ ∈M(x̄), if〈

∂2L

∂x2
(x̄, µ̄)u, u

〉
> 0 ∀u ∈ C \ {0}, (4)

where C = C(x̄) is the critical cone of problem (1) at x̄, i.e.,

C =

{
u ∈ Rn

∣∣∣∣ 〈f ′(x̄), u〉 = 0, 〈g′i(x̄), u〉 = 0 for i ∈ {1, . . . , l},
〈g′i(x̄), u〉 ≤ 0 for i ∈ {l + 1, . . . ,m} with gi(x̄) = 0

}
. (5)

Recall that SOSC (4) at (x̄, µ̄) implies that the natural residual r(x, µ)
provides the local (Lipschitzian) error bound [14,10,23], i.e., there exists a
constant β > 0 such that

‖x− x̄‖+ dist(µ,M(x̄)) ≤ β r(x, µ), (6)

for all (x, µ) close enough to (x̄, µ̄). Moreover, this error bound is equivalent
to the noncriticality property of the multiplier µ̄ [16], [18, Proposition 1.43]
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(see [18, Definition 1.41] for the definition of critical/noncritical multipliers).
In particular, SOSC implies noncriticality.

One of the fundamental methods for problem (1) is the augmented La-
grangian algorithm; see the classical [15,21,22], and the recent book [4] among
many others. The augmented Lagrangian function L̄ : Rn×Rm× (0,∞)→ R
is given by

L̄(x, µ;σ) = f(x) +

l∑
i=1

(
µigi(x) +

1

2σ
gi(x)2

)

+
σ

2

m∑
i=l+1

(
max

{
0, µi +

1

σ
gi(x)

}2

− µ2
i

)
,

where σ > 0 is the penalty parameter.
Given the current primal-dual iterate (xk, µk) ∈ Rn×Rm and the penalty

parameter σk > 0, the exact augmented Lagrangian method generates the
next iterate (xk+1, µk+1) according to the following scheme:

xk+1 is a solution of minimize
x∈Rn

L̄(x, µk;σk),

µk+1
i = µki +

1

σk
gi(x

k+1), i = 1, . . . , l,

µk+1
i = max

{
0, µki +

1

σk
gi(x

k+1)

}
, i = l + 1, . . . ,m.

(7)

For practical reasons, minimization of the augmented Lagrangian in the first
step in (7) is performed approximately. In fact, rather than a minimizer, an
approximate stationary point is computed: at the k-th iteration, xk+1 satisfy-
ing ∥∥∥∥∂L̄∂x (xk+1, µk;σk)

∥∥∥∥ ≤ εk (8)

is obtained. For purposes of global convergence, {εk} can be any exogenous
sequence of scalars converging to zero; see, e.g., [2], [1]. For purposes of estab-
lishing convergence rates, however, this sequence certainly cannot be arbitrary
and should be appropriately controled [9].

Note that the next primal iterate xk+1 is obtained by applying some algo-
rithm to the unconstrained problem in (7), until inner iterations of this algo-
rithm generate a point satisfying the approximate stationarity condition (8).
In principle, computational effort of this inner loop is unknown. To the best
of our knowledge, it is unkown even locally, i.e., close to a solution of problem
(1), and regardless of the assumptions imposed (at least natural assumptions
not involving convexity). In this paper, we show that close to a solution of (1),
solving two quadratic programs (QPs) is sufficient to minimize the augmented
Lagrangian accurately enough to ensure superlinear convergence of the overall
algorithm under the second-order sufficient condition only, which is the weak-
est assumption for convergence rates of (outer iterations of) the augmented
Lagrangian algorithm, even in the case of exact solution of subproblems. To
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the best of our knowledge, the cost of solving those subproblems had not been
determined previously, even under much stronger assumptions (such as adding
to second-order sufficiency strict complementarity and the linear independece
constraint qualification). Thus, we show that the augmented Lagrangian algo-
rithm can be locally reduced to a kind of two-step Newton process, converging
superlinearly. Here, it must be commented that the idea of trying to (approxi-
mately) solve the augmented Lagrangian subproblems by some Newton steps,
at least asymptotically, is certainly not new. We shall mention here only [3],
as an example, where “ultimate acceleration” is attempted by making at most
five Newton steps to solve the subproblem. In fact, ideally, one would hope
that one Newton step might be enough, which would then give “pure” su-
perlinear convergence in the classical Newtonian sense. However, we are not
aware of any analysis showing that one or any other fixed number of Newton
steps do the job under any reasonable assumptions, and we have reasons to
believe that one Newton step is not enough. Thus, our two-step development
provided below.

Some words about our notation. We use 〈·, ·〉 to denote the Euclidean
inner product, ‖ · ‖ the associated norm, B the closed unit ball, and I the
identity matrix (the space and dimensions are always clear from the context).
By |I| we denote the cardinality of an index set I. For any matrix M , MI
denotes the submatrix of M with rows indexed by the set I. When in matrix
notation, vectors are considered columns, and for a vector x we denote by xI
the subvector of x with coordinates indexed by I. For a set S ⊂ Rq and a point
z ∈ Rq, the distance from z to S is defined by dist(z, S) = infs∈S ‖z−s‖. Then
ΠS(z) = {s ∈ S | dist(z, S) = ‖z − s‖} is the set of all points in S that have
minimal distance to z. Recall that for any closed convex set S the mapping ΠS

is monotone, i.e., 〈ΠS (z)−ΠS (w) , z−w〉 ≥ 0 for all z, w ∈ Rq. For a cone K ⊂
R
q, its polar (negative dual) is K◦ = {ξ ∈ Rq | 〈z, ξ〉 ≤ 0 ∀z ∈ K}. For any

function ψ : R+ → Rq we use the notation ψ(t) = o(t) if limt→0+ t
−1ψ(t) = 0

and ψ(t) = O(t) if lim supt→0+ ‖t−1ψ(t)‖ < +∞.

We finish this section by recalling the superlinear convergence result of
[9] for the augmented Lagrangian method (7)–(8). Our main result would be
obtained by showing that after two Newton steps for the subproblem, the
obtained point satisfies the needed assumptions. The following is essentially
[9, Theorem 3.4 (iii)] (with the penalty parameter ρk = 1/σk), stated here in
a slightly different form, more convenient for our application in the sequel.

Theorem 1 Let ψ : R+ → R+ be any function such that ψ(t) = o(t), ĉ > 0
be a constant, and let {(xk, µk)} be any sequence satisfying∥∥∥∥∂L̄∂x (xk+1, µk;σk)

∥∥∥∥ ≤ ψ(σk),

∥∥∥∥[ xk+1 − xk
µk+1 − µk

]∥∥∥∥ ≤ ĉ σk, (9)

where σk = r(xk, µk) with r given by (3), µk+1
i = µki + 1

σk
gi(x

k+1) for i =

1, . . . , l and µk+1
i = max{0, µki + 1

σk
gi(x

k+1)} for i = l + 1, . . . ,m.
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If (x̄, µ̄) satisfies SOSC (4), then there exists ε̄ > 0 such that whenever
(x0, µ0) ∈ (x̄, µ̄) + ε̄B with µ0

i ≥ 0 for i = l + 1, . . . ,m, then the sequence
{(xk, µk)} converges Q-superlinearly to (x̄, µ̂) with some µ̂ ∈M(x̄).

We note that in the case of the equality-constrained problem (no inequality
constraints), SOSC (4) can be replaced by the weaker assumption that the
multiplier µ̄ is noncritical [17].

2 Two Newton steps for the augmented Lagrangian subproblem

We are now ready to describe our two Newton steps scheme for the augmented
Lagrangian iteration. The key ingredients are the following.

The first step identifies active (inequality) constraints, including strongly
and weakly active, using the technique proposed in [6], also used in [5], among
many others. Note that this step is not needed in the equality-constrained
case, when there are no inequalities in (1). Let α ∈ (0, 1) be fixed, and define
the following index sets:

A1(x, µ)={1, . . . , l}∪{i∈{l+1, . . . ,m}| gi(x) ≥ −(r(x, µ))α, µi ≥ (r(x, µ))α},

A0(x, µ) = {i ∈ {l + 1, . . . ,m} | gi(x) ≥ −(r(x, µ))α, µi < (r(x, µ))α},

where r is the natural residual of the KKT system (2), defined in (3). Under
the error bound condition (6), locally the second part in A1(x, µ) correctly
identifies strongly active constraints (inequality constraints active at x̄ with
the associated multiplier µ̄i positive), while A0(x, µ) identifies weakly active
constraints (those with zero multiplier), see [6]. In particular, this holds true
under SOSC (4), since it implies the error bound.

Having A1(x, µ) and A0(x, µ), a QP is solved whose structure is closely re-
lated to that of the subproblem of stabilized sequential quadratic programming
(sSQP) [13,23,10,8], [18, Chapter 7.2]. The only difference is that inequality
constraints in the set A1(x, µ) are treated as equalities. After a stationary
point of this QP is computed, the multiplier estimates are updated as in the
usual augmented Lagrangian algorithm.

Next, a second QP is solved. It again has the same sSQP structure, but
now the constraints are linearized at the primal solution of the first QP, sim-
ilarly to what is called second-order corrections in SQP literature; see, e.g.,
[18, Chapter 4.3.6]. Another feature to point out is that the Hessian of the
Lagrangian in the second QP is computed at the old iterate xk but with the
new multiplier estimates obtained after solving the first QP. The primal part
of a stationary point of the second QP gives the next iterate xk+1, with µk+1

obtained by the usual augmented Lagrangian update using the old iterate µk

(not the intermediate estimates obtained after the first QP).
Specifically, the procedure is the following.

Algorithm 1 Choose α ∈ (0, 1) and (x0, µ0) ∈ Rn × Rm with µ0
i ≥ 0 for

i = l + 1, . . . ,m. Set k = 0.
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1. If r(xk, µk) = 0, stop.
Else, define A1 = A1(xk, µk), A0 = A0(xk, µk), σk = r(xk, µk).

2. Find a stationary point (ȳ, ν̄) of

minimize
(y,ν)

〈f ′(xk), y − xk〉+
1

2

〈
∂2L

∂x2
(xk, µk)(y − xk), y − xk

〉
+
σk
2
‖ν‖2

s.t. gi(x
k) + 〈g′i(xk), y − xk〉 − σk(νi − µki ) = 0, i ∈ A1,

gi(x
k) + 〈g′i(xk), y − xk〉 − σk(νi − µki ) ≤ 0, i ∈ A0.

Define x̃k = ȳ, µ̃ki = µki + 1
σk
gi(x̃

k) for i = 1, . . . , l,

and µ̃ki = max{0, µki + 1
σk
gi(x̃

k)} for i = l + 1, . . . ,m.

3. Find a stationary point (ȳ, ν̄) of

minimize
(y,ν)

〈f ′(xk), y − xk〉+
1

2

〈
∂2L

∂x2
(xk, µ̃k)(y − xk), y − xk

〉
+
σk
2
‖ν‖2

s.t. gi(x̃
k) + 〈g′i(xk), y − x̃k〉 − σk(νi − µki ) = 0, i ∈ A1,

gi(x̃
k) + 〈g′i(xk), y − x̃k〉 − σk(νi − µki ) ≤ 0, i ∈ A0.

Define xk+1 = ȳ, µk+1
i = µki + 1

σk
gi(x

k+1) for i = 1, . . . , l,

and µk+1
i = max{0, µki + 1

σk
gi(x

k+1)} for i = l + 1, . . . ,m.
4. Set k = k + 1 and go to step 1.

Note that in the equality-constrained case (no inequality constraints in
(1)), the two QPs in Algorithm 1 are also equality-constrained. In that case,
computing a stationary point and an associated Lagrange multiplier of a QP
is equavalent to solving a system of linear equations. Thus, in the equality-
constrained case, computing a suitable approximate solution of the augmented
Lagrangian subproblem would be achieved by solving just two linear equations.
Note also that in this case, the task of indices identification in Step 1 is not
needed.

As Algorithm 1 is related (in part) to sSQP, we next give a few brief re-
marks on the latter. First, sSQP is a “one-step” Newtonian method, locally su-
perlinearly convergent under SOSC only [8] (in the equality-constrained case,
even under the weaker assumption of noncriticality of the Lagrange multiplier,
see [18, Chapter 7.2]). However, while globally convergent algorithms which
attempt to use sSQP subproblems do exist [7,19,20,12,11], those construc-
tions are rather complicated and have certain drawbacks. That said, in [12,
11] it appears that solving one sSQP subproblem is locally enough within a
globally convergent primal-dual augmented Lagrangian algorithm (primal-dual
augmented Lagrangian function is different from the augmented Lagrangian).
In the case of the usual augmented Lagrangian method, we need two QP sub-
problems (Algorithm 1).

3 Convergence analysis

We shall show that the iterates of Algorithm 1 satisfy the conditions of The-
orem 1. This would imply that solving two QPs is enough to produce an
appropriate approximate solution of the augmented Lagrangian subproblem.
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The first order of business is to prove that the procedure is well-defined,
i.e., that the two QPs have solutions.

To simplify the notation, for each (x, µ) we shall use A to denote the index
set given by

A(x, µ) = A0(x, µ) ∪ A1(x, µ).

In the sequel, the points where A is evaluated are always clear from the con-
text. The identification of active constraints follows from [6, Theorem 2.2]. For
completeness, we state this result (in a form adapted for our purposes).

Theorem 2 Let x̄ be an isolated stationary point of problem (1), µ̄ ∈ M(x̄),
and let ρ : Rn × Rm → R+ be a continuous function, zero-valued on {x̄} ×
M(x̄), and satisfying

lim
(x,µ)→(x̄,µ̄)

(x,µ)/∈{x̄}×M(x̄)

ρ(x, µ)

‖x− x̄‖+ dist(µ,M(x̄))
= +∞.

Then, there exists a neighborhood V of (x̄, µ̄) such that

{i ∈ {l + 1, . . . ,m} | gi(x) ≥ −ρ(x, µ)} = {i ∈ {l + 1, . . . ,m} | gi(x̄) = 0},

for any (x, µ) ∈ V.

If (x̄, µ̄) satisfies SOSC (4), then the primal part x̄ of the solution is locally
unique and the error bound (6) holds. Thus, by Theorem 2, taking ρ(x, µ) =
(r(x, µ))α, α ∈ (0, 1), we obtain that for any (x, µ) close enough to (x̄, µ̄) it
holds that A(x, µ) = I, where

I = I(x̄) = {i ∈ {1, . . . ,m} | gi(x̄) = 0}

is the index set of all equality constraints and of inequality constraints active
at x̄.

The following auxiliary result is essential to proving solvability of the two
QPs in Algorithm 1; it is related to [8, Proposition 1].

Proposition 1 Assume that SOSC (4) holds at (x̄, µ̄). Then there exist con-
stants γc > 0 and εc > 0 such that if (y, ν) ∈ (x̄, µ̄) + εcB and (x, µ) ∈
(x̄, µ̄) + εcB, it holds that〈

∂2L

∂x2
(y, ν)u, u

〉
+ r(x, µ)‖v‖2 ≥ γc

(
‖u‖2 + r(x, µ)‖v‖2

)
(10)

for all (u, v) ∈ Ĉ(x, µ), where r is defined in (3) and

Ĉ(x, µ) =

{
(u, v) ∈ Rn ×R|A|

∣∣∣∣ 〈g′i(x), u〉 = r(x, µ)vi, i ∈ A1(x, µ)
〈g′i(x), u〉 ≤ r(x, µ)vi, i ∈ A0(x, µ)

}
. (11)
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Proof Suppose the contrary, i.e., that there exist {(yk, νk)}, {(xk, µk)} con-
verging to (x̄, µ̄) and (uk, vk) ∈ Ĉ(xk, µk) such that〈

∂2L

∂x2
(yk, νk)uk, uk

〉
+ rk‖vk‖2 <

1

k
(‖uk‖2 + rk‖vk‖2), (12)

where rk = r(xk, µk). In particular, rk → 0. Evidently, (12) subsumes that
(uk, vk) 6= 0. Define ηk = ‖(uk,√rkvk)‖ > 0. Passing onto a subsequence, if
necessary, we can assume that

1

ηk

[
uk√
rkv

k

]
→
[
ū
w̄

]
6= 0. (13)

By [6, Theorem 2.2], A(xk, µk) = I for all k large enough. Since A1(xk, µk) ∪
A0(xk, µk) = A(xk, µk) = I, passing onto a subsequence if necessary, we can
assume that A1(xk, µk) and A0(xk, µk) are fixed index sets, which we shall
denote by A1 and A0, respectively.

Observe that since rk → 0 and
√
rkv

k/ηk is bounded, it holds that

rk
vk

ηk
=
√
rk

√
rkv

k

ηk
→ 0. (14)

Since Ĉ(xk, µk) is a cone and (uk, vk) ∈ Ĉ(xk, µk), we conclude that
(uk/ηk, v

k/ηk) ∈ Ĉ(xk, µk). Dividing now relations in (11) by ηk, passing onto
the limit and taking into account (14), we obtain that

〈g′i(x̄), ū〉 = 0 ∀ i ∈ A1, 〈g′i(x̄), ū〉 ≤ 0 ∀ i ∈ A0. (15)

By the definition of A1 we conclude that

{1, . . . , l} ∪ {i ∈ {l + 1, . . . ,m} | µ̄i > 0} ⊂ A1. (16)

Then, from the KKT relations (2), using also (15) and (16), we obtain that

0 = 〈f ′(x̄) + (g′(x̄))>µ̄, ū〉 = 〈f ′(x̄), ū〉+

m∑
i=1

µ̄i〈g′i(x̄), ū〉 = 〈f ′(x̄), ū〉.

Together with (15), this shows that ū ∈ C.
On the other hand, dividing (12) by η2

k and taking limits, we obtain that〈
∂2L

∂x2
(x̄, µ̄)ū, ū

〉
+ ‖w̄‖2 ≤ 0. (17)

This shows that 〈∂
2L
∂x2 (x̄, µ̄)ū, ū〉 ≤ 0 for ū ∈ C. By SOSC (4), it then follows

that ū = 0. But then, from (17), we also have w̄ = 0. This contradicts (13). ut
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For a fixed (x, µ), define the cone

QA =
{
ν ∈ R|A| | νi ∈ R, i ∈ A1(x, µ); νi ≥ 0, i ∈ A0(x, µ)

}
.

Note that by the structure of QA, it holds that

ν = ΠQA(λ) ⇔ νi = λi for i ∈ A1(x, µ), νi = max{0, λi} for i ∈ A0(x, µ).
(18)

For parameters (x, µ) ∈ Rn×Rm, (x̂, µ̂) ∈ Rn×Rm, consider the function
φ : Rn → R given by

φ(y;x, µ, x̂, µ̂) = 〈f ′(x), y − x〉+
1

2

〈
∂2L

∂x2
(x, µ̂)(y − x), y − x

〉
+
r

2

∥∥∥∥ΠQA

(
µA +

1

r
gA(x̂) +

1

r
g′A(x)(y − x̂)

)∥∥∥∥2

,

where r = r(x, µ) defined in (3). The function φ is piecewise quadratic and con-
tinuously differentiable. Moreover, stationary points for the QPs in Algorithm
1 can be obtained from stationary points of φ.

Proposition 2 The quadratic problem

minimize
(y,ν)

〈f ′(x), y − x〉+
1

2

〈
∂2L

∂x2
(x, µ̂)(y − x), y − x

〉
+
r

2
‖ν‖2

s.t. gi(x̂) + 〈g′i(x), y − x̂〉 − r(νi − µi) = 0, i ∈ A1,
gi(x̂) + 〈g′i(x), y − x̂〉 − r(νi − µi) ≤ 0, i ∈ A0,

has a stationary point (ȳ, ν̄) if and only if

0 = φ′(ȳ;x, µ, x̂, µ̂) and ν̄ = ΠQA

(
µA +

1

r
gA(x̂) +

1

r
g′A(x)(ȳ − x̂)

)
.

Proof First, note that

φ′(y;x, µ, x̂, µ̂) = f ′(x) + (g′A(x))>ΠQA

(
µA + 1

r gA(x̂) + 1
r g
′
A(x)(y − x̂)

)
+
∂2L

∂x2
(x, µ̂)(y − x).

Thus, the two equalities

0 = φ′(ȳ;x, µ, x̂, µ̂),

ν̄ = ΠQA

(
µA +

1

r
gA(x̂) +

1

r
g′A(x)(ȳ − x̂)

)
,

hold if and only if

0 = f ′(x) +
∂2L

∂x2
(x, µ̂)(ȳ − x) + (g′A(x))>ν̄,

ν̄i = µi +
1

r
gi(x̂) +

1

r
〈g′i(x), ȳ − x̂〉, i ∈ A1,

ν̄i = max

{
0, µi +

1

r
gi(x̂) +

1

r
〈g′i(x), ȳ − x̂〉

}
, i ∈ A0,
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where (18) was taken into account. The last two equations can be written as

gi(x̂) + 〈g′i(x), ȳ − x̂〉 − r(ν̄i − µi) = 0, i ∈ A1,

0 ≤ ν̄i, gi(x̂) + 〈g′i(x), ȳ − x̂〉 − r(ν̄i − µi) ≤ 0,

ν̄i (gi(x̂) + 〈g′i(x), ȳ − x̂〉 − r(ν̄i − µi)) = 0,
i ∈ A0.

It is then easy to see that the relations above are equivalent to the KKT
conditions of the quadratic problem in question, which are:

0 = f ′(x) +
∂2L

∂x2
(x, µ̂)(ȳ − x) + (g′A(x))>λ,

0 = rν̄ − rλ,
0 = gi(x̂) + 〈g′i(x), ȳ − x̂〉 − r(ν̄i − µi), i ∈ A1,

0 ≤ λi, gi(x̂) + 〈g′i(x), ȳ − x̂〉 − r(ν̄i − µi) ≤ 0,

λi (gi(x̂) + 〈g′i(x), ȳ − x̂〉 − r(ν̄i − µi)) = 0,
i ∈ A0.

ut

Hence, for the QPs in Algorithm 1, (ȳ, ν̄) is a stationary point of the QP in
step 2 if and only if 0 = φ′(ȳ;xk, µk, xk, µk), and (ȳ, ν̄) is a stationary point of
the QP in step 3 if and only if 0 = φ′(ȳ;xk, µk, x̃k, µ̃k). To show the solvability
of the two QPs in Algorithm 1, we shall prove the existence of stationary
points of φ, showing the existence of its minimizers.

Proposition 3 For any x ∈ Rn, x̂ ∈ Rn and µ ∈ Rm, µ̂ ∈ Rm such that
(x, µ) ∈ (x̄, µ̄) + εcB and (x, µ̂) ∈ (x̄, µ̄) + εcB, the function φ(· ;x, µ, x̂, µ̂) is
coercive.

Hence, this function has a minimizer, and thus a stationary point. Conse-
quently, the two QPs in Algorithm 1 have stationary points, and Algorithm 1
is well-defined.

Proof Suppose that φ is not coercive, i.e., there exist a sequence {yk} ⊂ Rn
with ‖yk‖ → +∞ and β ∈ R such that φ(yk;x, µ; x̂, µ̂) ≤ β for all k.

Taking a subsequence, if necessary, we can assume that

yk

‖yk‖
→ u 6= 0. (19)

Then,

0 = lim
k→+∞

β

‖yk‖2

≥ lim
k→+∞

1

‖yk‖2
φ(yk;x, µ, x̂, µ̂)

=
1

2

〈
∂2L

∂x2
(x, µ̂)u, u

〉
+
r

2

∥∥∥∥ΠQA

(
1

r
g′A(x)u

)∥∥∥∥2

.
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Define v = ΠQA

(
1
r g
′
A(x)u

)
. Then, taking into account (18), it is seen that

(u, v) ∈ Ĉ(x, µ), where Ĉ(x, µ) is defined in (11). Hence, by Proposition 1 (in
particular, (10)), it holds that

0 ≥
〈
∂2L

∂x2
(x, µ̂)u, u

〉
+ r‖v‖2 ≥ γc(‖u‖2 + r‖v‖2) ≥ γc‖u‖2.

This contradicts (19). ut

Next, we show that the primal-dual sequence generated by Algorithm 1
satisfies the conditions in Theorem 1 (in particular, the relations in (9)). We
start with a chain of results that end up providing a bound for the distance
between succesive iterates, needed in Theorem 1.

Recall that the error bound (6) holds. In particular, if µ̌ is the projection
of µ onto M(x̄), for any i /∈ I we have

|µi| = |µi − µ̌i| ≤ dist(µ,M(x̄)) ≤ β r(x, µ), (20)

where we use the fact that if µ̌ ∈M(x̄) then µ̌i = 0 for i /∈ I.

Proposition 4 Let (x̄, µ̄) satisfy SOSC (4). Let x̂ = x̂(x, µ) be such that
x̂− x = O(r(x, µ)), and µ̂ = µ̂(x, µ) be such that lim(x,µ)→(x̄,µ̄) µ̂ = µ̄.

Then there exist εe, ce > 0 such that if the point (x, µ) ∈ (x̄, µ̄) + εeB
satisfies r = r(x, µ) > 0 and µi ≥ 0 for i = l + 1, . . . ,m, and if y satisfies
φ′(y;x, µ, x̂, µ̂) = 0, it holds that

‖y − x‖+
∥∥ΠQA

(
µA + 1

r gA(x̂) + 1
r g
′
A(x)(y − x̂)

)
− µA

∥∥ ≤ ce r. (21)

Proof Suppose the contrary to the assertion. Then there exist sequences
{(xk, µk)}, {(x̂k, µ̂k)} and {yk} such that (xk, µk)→ (x̄, µ̄), rk=r(xk, µk) > 0,
µki ≥ 0 for i = l + 1, . . . ,m, {(x̂k − xk)/rk} is bounded, µ̂k → µ̄, 0 =
φ′(yk;xk, µk, x̂k, µ̂k), and they satisfy

rk
ηk
→ 0, (22)

where (using the fact that A(xk, µk) = I for k large enough), we denote
ηk = ‖yk − xk‖+ ‖νkI − µkI‖ with

νkI = ΠQA

(
µkI +

1

rk
gI(x̂k) +

1

rk
g′I(xk)(yk − x̂k)

)
. (23)

Taking a subsequence, if necessary, we can assume that

1

ηk

[
yk − xk
νkI − µkI

]
→
[
u
vI

]
6= 0. (24)

Also, sinceA0(xk, µk)∪A1(xk, µk) = I is finite, we can assume thatA1(xk, µk)
and A0(xk, µk) are some fixed index sets, say A1 and A0.
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We first show that u = 0. By (23) and (18), we have that

gi(x̂
k) + g′i(x

k)(yk − x̂k)− rk(νki − µki ) = 0, ∀i ∈ A1,
gi(x̂

k) + g′i(x
k)(yk − x̂k)− rk(νki − µki ) ≤ 0, ∀i ∈ A0.

(25)

Since x̂k − xk = O(rk) by the assumption, xk − x̄ = O(rk) by the error bound
(6), and rk = o(ηk) by (22), we conclude that

yk − x̂k = yk − xk + xk − x̂k = yk − xk + o(ηk),

and for i ∈ I,

gi(x̂
k) = gi(x̂

k)− gi(xk) + gi(x
k)− gi(x̄) = o(ηk).

Then, dividing by ηk in (25) and taking limits, we obtain that

〈g′i(x̄), u〉 = 0 ∀i ∈ A1, 〈g′i(x̄), u〉 ≤ 0 ∀i ∈ A0.

Then, the same way as in the proof of Propistion 1 (after (15) therein was
obtained), we conclude that u ∈ C.

By the definition of r in (3), it holds that

f ′(xk) + (g′(xk))>µk = O(rk) = o(ηk),

and by (20) we have |µki | = O(rk) = o(ηk) for any i /∈ I. Hence,

0 = φ′(yk;xk, µk, x̂k, µ̂k) = f ′(xk) +
∂2L

∂x2
(xk, µ̂k)(yk − xk) + (g′I(xk))>νkI

=
∂2L

∂x2
(xk, µ̂k)(yk − xk) + (g′I(xk))>(νkI − µkI) + o(ηk). (26)

Since µkI ∈ QA, by (23) and by the monotonicity of the projection mapping,
it holds that

〈νkI − µkI , gI(x̂k) + g′I(xk)(yk − x̂k)〉 ≥ 0.

Using that yk − x̂k = O(ηk), νkI − µkI = O(ηk) and gI(x̂k) = o(ηk), we obtain
from (26) that

0 = 〈φ′(yk;xk, µk, x̂k, µ̂k), yk − x̂k〉

≥
〈
∂2L

∂x2
(xk, µ̂k)(yk − xk), yk − x̂k

〉
+ o(η2

k)

=

〈
∂2L

∂x2
(xk, µ̂k)(yk − xk), yk − xk

〉
+ o(η2

k),

where the facts that yk− x̂k = yk−xk+o(ηk) and yk−xk = O(ηk) were taken
into account for the last equality. Dividing the inequality above by η2

k, taking
limits and using that µ̂k → µ̄ , yields

0 ≥
〈
∂2L

∂x2
(x̄, µ̄)u, u

〉
.
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Since u ∈ C, SOSC (4) implies that u = 0.
Now, dividing (26) by ηk, taking limits and using that u = 0 yields

vI ∈ K = ker (g′I(x̄))>.

Using that, by the assumption and by the error bound (6),

x̂k − x̄ = x̂k − xk + xk − x̄ = O(rk),

and that rk = o(ηk), we obtain

gI(x̂k) = gI(x̄) + g′I(x̄)(x̂k − x̄) +O(‖x̂k − x̄‖2) = g′I(x̄)(x̂k − x̄) + o(rkηk),

and
g′I(xk)(yk − x̂k) = g′I(x̄)(yk − x̂k) + o(rkηk).

Adding the last two relations, it follows that

gI(x̂k) + g′I(xk)(yk − x̂k) + o(rkηk) = g′I(x̄)(yk − x̄) ∈ im g′I(x̄) = K⊥.

Then, using the linearity of ΠK (since K is a subpspace) and closedness of
K⊥, it follows that

1

rkηk
ΠK

(
gI(x̂k) + g′I(xk)(yk − x̂k)

)
→ 0. (27)

Consider the indices i ∈ A0 with µki + 1
rk
gi(x̂

k) + 1
rk
〈g′i(xk), yk − x̂k〉 < 0.

Passing onto a subsequence if necessary, we can assume that there exists a
fixed set A` ⊆ A0 such that the latter inequality holds for all i ∈ A` and all k
(note that A` can be empty). Then, by (18),

νki = 0 for i ∈ A` and νki = µki +
1

rk
gi(x̂

k) +
1

rk
〈g′i(xk), yk − x̂k〉 for i /∈ A`.

Define the cone

Q` = {wI ∈ R|I| | wi ∈ R, i ∈ I\A`; wi ≥ 0, i ∈ A`}.

Then,

−(νkI − µkI) ∈ Q` and
1

rk
gI(x̂k) +

1

rk
g′I(xk)(yk − x̂k)− (νkI − µkI) ∈ Q◦` .

Dividing those relations by ηk and taking limits, we obtain that

−vI ∈ Q` and −ΠK (vI) ∈ {z | z = ΠK(ξI) for some ξI ∈ Q◦`},

where we use closedness of Q` and of its polar, (27), and the linearity of ΠK (·).
Since vI ∈ K, it follows that there exists ξI ∈ Q◦` such that −vI = ΠK(ξI).
Then,

0 ≥ 〈−vI , ξI〉 = 〈−vI , ΠK(ξI) +ΠK⊥(ξI)〉 = 〈−vI , ΠK(ξI)〉 = ‖vI‖2,

where we use that −vI ∈ Q`, ξI ∈ Q◦` and vI ∈ K, ΠK(ξI) = −vI . Combining
this relation with u = 0, we obtain that (u, vI) = 0, in contradiction with (24).

ut
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The next result gives a suitable bound on the primal-dual step. We shall
use [14, Lemma 2] (see also [18, Proposition 1.4.3]), which can be stated as
follows.

Theorem 3 Let (x̄, µ̄) satisfy SOSC (4). Then, there exist τ > 0 and a neigh-
borhood V of (x̄, µ̄) such that for any p = (q, s, t) ∈ Rn ×Rl ×Rm−l and any
(x(p), µ(p)) ∈ V, where (x(p), µ(p)) is a solution of the perturbed the KKT
system (2):

0 =
∂L

∂x
(x, µ) + q,

0 = gi(x) + si, i = 1, . . . , l
0 ≤ µi, gi(x) + ti ≤ 0, µi(gi(x) + ti) = 0, i = l + 1, . . . ,m,

(28)

it holds that
‖x(p)− x̄‖+ dist(µ(p),M(x̄)) ≤ τ‖p‖. (29)

We then obtain the following.

Proposition 5 Under the assumptions of Proposition 4, for (x, µ) close enough
to (x̄, µ̄) and such that r = r(x, µ) > 0, µi ≥ 0 for i = l + 1, . . . ,m, and
(y, λ) satisfying φ′(y;x, µ, x̂, µ̂) = 0, λi = µi + 1

r gi(y) for i = 1, . . . , l and
λi = max{0, µi + 1

r gi(y)} for i = l + 1, . . . ,m, it holds that

‖y − x‖+ ‖λ− µ‖ = O(r(x, µ)). (30)

Moreover, if νi = µi + 1
r gi(x̂) + 1

r 〈g
′
i(x), y − x̂〉 for i = 1, . . . , l and νi =

max{0, µi + 1
r gi(x̂) + 1

r 〈g
′
i(x), y − x̂〉} for i = l + 1, . . . ,m, it holds that

r(y, ν) = o(r(x, µ)). (31)

Proof Note that for (x, µ) close enough to (x̄, µ̄), as α ∈ (0, 1), it holds that

(r(x, µ))α ≥ cer(x, µ). (32)

As already argued above, A(x, µ) = A = I. And, by Proposition 4, we have
that (21) holds. In particular, by (6), by the hypothesis of the proposition,
and by (21),

‖x− x̄‖ = O(r(x, µ)), ‖x̂− x‖ = O(r(x, µ)), ‖y − x‖ = O(r(x, µ)). (33)

Hence, for i 6∈ A = I, by the continuity considerations it is easily seen that

r(x, µ)µi + max{gi(x̂) + 〈g′i(x), y − x̂〉, gi(y)} < 1
2gi(x̄) < 0. (34)

Next, using the definitions of A1 and of QA, (32) and (21), for all i ∈
{l + 1, . . . ,m} ∩ A1 we have that

µi ≥ (r(x, µ))α ≥ cer(x, µ) ≥
∣∣ 1
r gi(x̂) + 1

r 〈g
′
i(x), y − x̂〉

∣∣
≥ −

(
1
r gi(x̂) + 1

r 〈g
′
i(x), y − x̂〉

)
.
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Then, by the definition of ν, we conclude that for all i ∈ {l + 1, . . . ,m} ∩
A1(x, µ),

νi = µi + 1
r gi(x̂) + 1

r 〈g
′
i(x), y − x̂〉. (35)

By (34), νi = 0 for i /∈ I. Then, by (20), it holds that

|νi − µi| = |µi| = O(r(x, µ)) for i /∈ I.

Combining with (21), we obtain that

‖ν − µ‖ = O(r(x, µ)). (36)

Next, since gi, i = 1, . . . ,m, are twice continuously differentiable,

gi(x̂) = gi(x) + 〈g′i(x), x̂− x〉+ 1
2 〈g
′′
i (x)(x̂− x), x̂− x〉+ o(‖x̂− x‖2),

gi(y) = gi(x) + 〈g′i(x), y − x〉+ 1
2 〈g
′′
i (x)(y − x), y − x〉+ o(‖y − x‖2).

Then, for all i ∈ {1, . . . ,m} it holds that

gi(x̂) + 〈g′i(x), y − x̂〉 − gi(y) = 1
2 〈g
′′
i (x)(x̂− y), x̂− y〉+ o(‖x̂− x‖2)

+〈g′′i (x)(x̂− y), y − x〉+ o(‖y − x‖2).
(37)

Thus, using (33), we obtain that

‖ν − λ‖ ≤ 1

r
‖g(x̂) + g′(x)(y − x̂)− g(y)‖

=
1

r
O(r2) = O(r(x, µ)).

Hence, for the relation in (30), combining (33), (36) and the previous relation,
we conclude that

‖y − x‖+ ‖λ− µ‖ = ‖y − x‖+ ‖λ− ν‖+ ‖ν − µ‖ = O(r(x, µ)).

Finally, we show that (31) holds. Note that, for i ∈ {1, . . . , l} we have

0 = gi(x̂) + 〈g′i(x), y − x̂〉 − r(x, µ)(νi − µi) = gi(y) + si, (38)

where, by (33), (36) and (37),

si = gi(x̂) + 〈g′i(x), y − x̂〉 − gi(y)− r(x, µ)(νi − µi)
= O((r(x, µ))2) +O(r(x, µ)‖ν − µ‖) = o(r(x, µ)).

Analogously, for i ∈ {l + 1, . . . ,m}, define

ti = gi(x̂) + 〈g′i(x), y − x̂〉 − gi(y)− r(x, µ)(νi − µi).

Then, by (33), (36) and (37), ti = o(r(x, µ)). Moreover, by the definition of νi
it holds that

0 ≤ νi, gi(y) + ti ≤ 0, νi(gi(y) + ti) = 0, (39)

for all i ∈ {l + 1, . . . ,m}.
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Now, since νi = 0 for i /∈ I, we conclude that

0 = φ′(y;x, µ, x̂, µ̂) =
∂L

∂x
(x, ν) +

∂2L

∂x2
(x, µ̂)(y − x)

=
∂L

∂x
(y, ν) + q, (40)

where, by the hypothesis that µ̂→ µ̄, by (36) and (33), it holds that

q =
∂L

∂x
(x, ν) +

∂2L

∂x2
(x, µ̂)(y − x)− ∂L

∂x
(y, ν)

=

(
∂2L

∂x2
(x, µ̂)− ∂2L

∂x2
(x, ν)

)
(y − x) + o(‖y − x‖)

= o(r(x, µ)).

Combining (38)-(40), we obtain that (y, ν) solves the perturbed KKT sys-
tem (28) for p = (q, s, t) = o(r(x, µ)). Then, by the estimate (29), we conclude
that

‖y − x̄‖+ dist(ν,M(x̄)) ≤ τ‖p‖ = o(r(x, µ)).

Further, defining ν̌ to be the projection of ν onto M(x̄), from the fact that
r is locally Lipschitz-continuous and r(x̄, ν̌) = 0, from the latter estimate we
obtain that

r(y, ν) = r(y, ν)− r(x̄, ν̌) = o(r(x, µ)).

ut

Our final result puts all the pieces together. In particular, it shows that
solving the two QPs in Algorithm 1 provides an appropriate approximate
solution to the augmented Lagrangian subproblem, satisfying conditions (9)
in Theorem 1.

Theorem 4 Let (x̄, µ̄) satisfy SOSC (4).
Then there exists a neighborhood of (x̄, µ̄) such that for any (x, µ) in this

neighborhood satisfying r(x, µ) > 0 with µi ≥ 0 for i = l + 1, . . . ,m, it holds
that

∂L̄

∂x
(x+, µ; r) = o(r(x, µ)) and ‖x+ − x‖+ ‖µ+ − µ‖ = O(r(x, µ)), (41)

where (x+, µ+) is such that 0 = φ′(x+;x, µ, x̃, µ̃), µ+
i = µi + 1

r gi(x
+) for i =

1, . . . , l and µ+
i = max{0, µi + 1

r gi(x
+)} for i = l+ 1, . . . ,m, with r = r(x, µ);

and (x̃, µ̃) is such that 0 = φ′(x̃;x, µ, x, µ), µ̃i = µi + 1
r gi(x̃) for i = 1, . . . , l

and µ̃i = max{0, µi + 1
r gi(x̃)} for i = l + 1, . . . ,m.

Consequently, the iterates generated by Algorithm 1 satisfy conditions (9)
in Theorem 1, and thus any sequence {(xk, µk)} generated by Algorithm 1
converges Q-superlinearly to (x̄, µ̂) with some µ̂ ∈M(x̄).



On the cost of augmented Lagrangian subproblems 17

Proof Using Proposition 5 with x̂ = x and µ̂ = µ, we obtain for ν̃ = ν that

‖x̃− x‖+ ‖µ̃− µ‖ = O(r(x, µ)), r(x̃, ν̃) = o(r(x, µ)). (42)

Then, using again Proposition 5 with x̂ = x̃ and µ̂ = µ̃, we conclude that for
ν+ = ν

‖x+ − x‖+ ‖µ+ − µ‖ = O(r(x, µ)), r(x+, ν+) = o(r(x, µ)). (43)

To establish the first relation in (41), note that from (3) and (6) we have

‖x̃−x̄‖ = O(r(x̃, ν̃)), ‖x+−x̄‖ = O(r(x+, ν+)),

∥∥∥∥∂L∂x (x+, ν+)

∥∥∥∥ = O(r(x+, ν+)).

Thus,

x̃− x̄ = o(r(x, µ)), x+ − x̄ = o(r(x, µ)),
∂L

∂x
(x+, ν+) = o(r(x, µ)).

Since x+− x̃ = x+− x̄+ x̄− x̃ = o(r(x, µ)), from (37) with x̂ = x̃ and y = x+

(noting that with these choices, since x+− x̃ = o(r), the second-order term on
the right-hand side of (37) is of order O(r)o(r)), we conclude that

‖ν+ − µ+‖ ≤ 1

r
‖g(x̃) + g′(x)(x+ − x̃)− g(x+)‖

=
1

r
o(r2) = o(r(x, µ)).

Then, by the definition of the augmented Lagrangian L̄,

∂L̄

∂x
(x+, µ;σ) =

∂L

∂x
(x+, µ+)

=
∂L

∂x
(x+, ν+) + (g′(x))>(µ+ − ν+)

= o(r(x, µ)).

The equality above and the first relation in (43) mean that (41) is estab-
lished. This corresponds to (9) in Theorem 1. The conclusions follow. ut

4 Concluding Remarks

We have shown that locally, the cost of solving approximately the augmented
Lagrangian subproblems in constrained optimization can be reduced to just
two Newtonian inner iterations (two quadratic programming problems in the
general case, or two linear systems when there are equality constraints only).
Moreover, those two steps are sufficient for the overall fast convergence of the
augmented Lagrangian algorithm, under the weakest assumptions (of second-
order sufficiency, without any constraint qualifications and without strict com-
plementarity). We conjecture that in the equality-constrained case, it might
be posssible to relax second-order sufficiency to the weaker assumption of non-
criticality of the Lagrange multiplier associated to the solution.
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