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Abstract We consider the class of quadratically-constrained quadratic-programming
methods in the framework extended from optimization to more general variational
problems. Previously, in the optimization case, Anitescu (SIAM J. Optim. 12,
949–978, 2002) showed superlinear convergence of the primal sequence under the
Mangasarian-Fromovitz constraint qualification and the quadratic growth condition.
Quadratic convergence of the primal-dual sequence was established by Fukushima,
Luo and Tseng (SIAM J. Optim. 13, 1098–1119, 2003) under the assumption of con-
vexity, the Slater constraint qualification, and a strong second-order sufficient condi-
tion. We obtain a new local convergence result, which complements the above (it is
neither stronger nor weaker): we prove primal-dual quadratic convergence under the
linear independence constraint qualification, strict complementarity, and a second-
order sufficiency condition. Additionally, our results apply to variational problems
beyond the optimization case. Finally, we provide a necessary and sufficient condi-
tion for superlinear convergence of the primal sequence under a Dennis-Moré type
condition.
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1 Introduction

Given sufficiently smooth mappings F : �n → �n and g : �n → �m (precise
smoothness requirements will be specified later, within the statements of our con-
vergence results), we consider the following variational problem [7]:

Find x ∈ D s.t. 〈F(x), y − x〉 ≥ 0 ∀y ∈ (x + T (x;D)), (1)

where

D = {x ∈ �n | gi(x) ≤ 0, i = 1, . . . ,m}
and T (x;D) is the (standard) tangent cone to D at x ∈ D. When for some smooth
function f : �n → � it holds that

F(x) = f ′(x), x ∈ �n, (2)

then (1) describes (primal) first-order necessary optimality conditions for the opti-
mization problem

min f (x) s.t. x ∈ D. (3)

We consider the following iterative procedure. (As will be seen below, in the case
of the optimization problem (3) it reduces to the sequential quadratically-constrained
quadratic-programming method, e.g., [1, 8, 19]. In the variational setting, this method
appears to be new.) If xk ∈ �n is the current iterate, then the next iterate xk+1 is ob-
tained as a solution of an approximation of the variational problem (1) of the follow-
ing form:

Find x ∈ Dk s.t. 〈Fk(x), y − x〉 ≥ 0 ∀y ∈ (x + T (x;Dk)), (4)

where

Fk(x) = F(xk) + F ′(xk)(x − xk), x ∈ �n,

Dk =
{

x ∈ �n

∣∣∣∣ gi(x
k) + 〈g′

i (x
k), x − xk〉 + 1

2 〈g′′
i (xk)(x − xk), x − xk〉 ≤ 0,

i = 1, . . . ,m

}
,

and T (x;Dk) is the tangent cone to Dk at x ∈ Dk . Subproblem (4) can be consid-
ered as a “one-step-further” approximation when compared to the classical Josephy-
Newton method for variational inequalities [7, 10], where at every step the mapping
F is approximated to the first order (as in (4)), but the set D is not being simplified
(unlike in (4)). Specifically, given the current iterate xk , the Josephy-Newton method
solves the following subproblem:

Find x ∈ D s.t. 〈Fk(x), y − x〉 ≥ 0 ∀y ∈ (x + T (x;D)). (5)

It is clear that subproblem (4) is structurally simpler than (5) (in (5) the constraints
are general nonlinear, while in (4) they are quadratic). Thus, in principle, (4) should
be easier to solve. That said, we shall not be concerned here with specific methods for
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solving subproblems of the structure of (4) (at the very least, the same techniques as
for (5) can be used). In the case of optimization, as discussed below, specific methods
are readily available.

For optimization problems (3), an iteration of the sequential quadratically-
constrained quadratic-programming method (SQCQP) consists of minimizing a
quadratic approximation of the objective function subject to a quadratic approxi-
mation of the constraints. Specifically, if xk ∈ �n is the current iterate, then the next
iterate xk+1 is obtained as a solution of the following approximation of the original
problem:

min fk(x) := 〈f ′(xk), x − xk〉 + 1

2
〈f ′′(xk)(x − xk), x − xk〉 s.t. x ∈ Dk. (6)

Note that taking into account (2), the variational subproblem (4) describes (primal)
first-order necessary optimality conditions for (6). Therefore, SQCQP for optimiza-
tion is a special case in our framework.

As some previous work on SQCQP and related methods, we mention [1, 8, 11,
16, 17, 19, 21]. In the convex case, subproblem (6) can be cast as a second-order
cone program [12, 15], which can be solved efficiently by interior-point algorithms
(such as [14, 20]). In [1], nonconvex subproblems (6) were also handled quite effi-
ciently by using other nonlinear programming techniques. Even though quadratically
constrained subproblems are computationally more difficult than those that are lin-
early constrained (which is the case for the more traditional SQP methods, [2]), they
are manageable by modern computational tools and the extra effort in solving them
may be worthwhile. In other words, at least in some situations, one may expect that
fewer subproblems will need to be solved, when compared to SQP. Some numerical
validation of this can be found in the computational experiments of [1].

In order to guarantee global convergence, SQCQP methods require some modifi-
cations to subproblem (6), as well as a linesearch procedure for an adequately chosen
penalty function. (See, for example, [8, 19].) But under certain assumptions, locally
all those modifications reduce precisely to (6). Moreover, the unit stepsize satisfies
the linesearch criteria under very mild conditions [19, Proposition 8] (in particular,
no second-order sufficiency is needed for this), which is one of the attractive fea-
tures of SQCQP. Thus, what is relevant for local convergence analysis is precisely
the method given by (6), and this is the subject of this paper (except that we consider
the more general variational setting of (4)). Note that, as a consequence of accep-
tance of the unit stepsize, the Maratos effect [13, 18] does not occur in SQCQP. (We
note that Maratos effect can also be avoided in SQP methods that use second-order
corrections, or use, for example, an augmented Lagrangian merit function.)

We next survey the previous local rate of convergence results and compare them to
ours. As already mentioned, in the variational setting our method appears to be new.
Therefore, we limit our discussion to the case of optimization. In [1], local primal
superlinear rate of convergence of a trust-region SQCQP method is obtained under
the Mangasarian-Fromovitz constraint qualification (MFCQ) and a certain quadratic
growth condition. We note that, under MFCQ, quadratic growth is equivalent to
the second-order sufficient condition for optimality (SOSC), see [3, Theorem 3.70].
Quadratic convergence of the primal-dual sequence is obtained in [8] (the dual part
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of the sequence is formed by the Lagrange multipliers associated to solutions of (6)).
The assumptions in [8] are as follows: convexity of f and of g, the Slater condition
(equivalent to MFCQ in the convex case) and a strong second-order sufficient condi-
tion (implying quadratic growth). This set of assumptions is stronger than in [1], but
the assertions in the two papers are different and not comparable to each other. Thus,
neither of the two results implies the other one. To complement the picture, in this pa-
per we prove a third local convergence result, which is in the same relation to the two
previous ones: it neither follows from them nor implies them. Specifically, we shall
establish primal-dual quadratic convergence under the linear independence constraint
qualification (LICQ), strict complementarity condition, and SOSC. Compared to [8],
our assumptions are essentially different (we do not make any convexity assump-
tions; while [8] makes weaker regularity assumptions). Our assertions are stronger
than in [8], because in addition to primal-dual quadratic convergence we also prove
superlinear primal convergence. Compared to [1], our assumptions are more restric-
tive, of course. But our assertions are stronger as well: we prove quadratic primal-dual
convergence and superlinear primal convergence instead of superlinear primal con-
vergence only. In addition, we shall exhibit a Dennis-Moré type [6] necessary and
sufficient condition for superlinear convergence of the primal sequence in the case
when the primal-dual convergence is given.

A few words about our notation. For a matrix M of arbitrary dimensions, MI de-
notes the submatrix of M with rows indexed by I . When in matrix notation, vectors
are considered columns, and for a vector x we denote by xI the subvector of x with
coordinates indexed by I . By 〈·, ·〉 we denote the Euclidean inner product, with ‖ · ‖
being the associated norm (the space will always be clear from the context). We use
the notation φ(t) = o(t) for any function φ : �+ → �p such that limt→0 t−1φ(t) = 0.
For a function � : �n ×�m → �p , we denote by � ′(x̄, μ̄) the full derivative of � at
the point (x̄, μ̄), and by � ′

x(x̄, μ̄) the partial derivative of � with respect to x at the
same point.

If � : �s ×�p → �p is Lipschitz continuous in a neighborhood of a point (σ̄ , ξ̄ ) ∈
�s ×�p , by ∂�(σ̄ , ξ̄ ) we denote the Clarke generalized Jacobian of � at (σ̄ , ξ̄ ), i.e.,

∂�(σ̄ , ξ̄ ) = conv
{

lim
l→∞�′(σ l, ξ l) | (σ l, ξ l) → (σ̄ , ξ̄ ), (σ l, ξ l) ∈N�

}
,

where conv denotes convex hull of a set, and N� is the set of points at which � is
differentiable (by Rademacher’s Theorem, � is differentiable almost everywhere in
a neighborhood of (σ̄ , ξ̄ )). In the sequel, we shall make use of the following Implicit
Function Theorem.

Theorem 1 ([4, p. 256]) Let � : �s × �p → �p be Lipschitz continuous in a neigh-
borhood of a point (σ̄ , ξ̄ ) ∈ �s × �p such that �(σ̄ , ξ̄ ) = 0.

Suppose that the set of p ×p matrices M , for which there exists a p × s matrix N

such that [N,M] ∈ ∂�(σ̄ , ξ̄ ), has full rank.
Then there exist a neighborhood U0 of σ̄ , a neighborhood �0 of ξ̄ , and the unique

Lipschitz continuous function ξ : U0 → �0 such that �(σ, ξ(σ )) = 0 for all σ ∈ U0.
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2 Primal-dual quadratic convergence

As is well-known, under adequate constraint qualifications (which would be the case
here), the solution of variational problem (1) is equivalent to the solution of the
Karush-Kuhn-Tucker (KKT) system: find (x,μ) ∈ �n × �m such that

F(x) +
m∑

i=1

μig
′
i (x) = 0,

gi(x) ≤ 0, μi ≥ 0, μigi(x) = 0, i = 1, . . . ,m.

(7)

For the same reason, solutions of subproblem (4) are described by the following
mixed complementarity problem [7] in (x,μ) ∈ �n × �m:

F(xk) + F ′(xk)(x − xk) +
m∑

i=1

μi(g
′
i (x

k) + g′′
i (xk)(x − xk)) = 0, (8)

and for all i = 1, . . . ,m, it holds that

gi(x
k) + 〈g′

i (x
k), x − xk〉 + 1

2
〈g′′

i (xk)(x − xk), x − xk〉 ≤ 0, (9)

μi ≥ 0, (10)

μi(gi(x
k) + 〈g′

i (x
k), x − xk〉 + 1

2
〈g′′

i (xk)(x − xk), x − xk〉) = 0. (11)

Note that in the case of the optimization problem (3), i.e., when (2) holds, the above
are precisely the optimality conditions for SQCQP subproblem (6).

Let (x̄, μ̄) ∈ �n × �m be some fixed solution of the KKT system (7), which by
virtue of further assumptions will be locally unique.

We say that LICQ holds at x̄ if

{g′
i (x̄), i ∈ I } is a linearly independent set, (12)

where

I = I (x̄) = {i = 1, . . . ,m | gi(x̄) = 0}
is the index set of constraints active at x̄ ∈ D. Under LICQ, the multiplier μ̄ associ-
ated to the given x̄ is unique by necessity. We shall also use the following partitioning
of I :

I+ = I+(x̄, μ̄) = {i ∈ I | μ̄i > 0}, I0 = I0(x̄, μ̄) = {i ∈ I | μ̄i = 0} = I \ I+,

corresponding to strongly and weakly active constraints, respectively. Define

� : �n × �m → �n, �(x,μ) = F(x) +
m∑

i=1

μig
′
i (x), (13)
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which is the mapping appearing in the pure equality part of the KKT system (7). We
say that (x̄, μ̄) satisfies the second-order sufficiency condition (SOSC) if

〈� ′
x(x̄, μ̄)d, d〉 = 0 ∀d ∈ K \ {0}, (14)

where

K = K(x̄) = {d ∈ �n | 〈g′
i (x̄), d〉 ≤ 0, i ∈ I0; 〈g′

i (x̄), d〉 = 0, i ∈ I+}. (15)

Note that since the cone K is convex, (14) means that the quadratic form has the
same nonzero sign for all d ∈ K \ {0}. The word “sufficiency” should not be taken
literally in the setting of a general KKT system; it is used here by analogy with the
optimization case, where conditions of this form (with the positive sign) are sufficient
for optimality. In the case of the optimization problem corresponding to (2), K is the
standard critical cone of (3) at x̄, and

�(x,μ) = L′
x(x,μ),

where

L : �n × �m → �, L(x,μ) = f (x) +
m∑

i=1

μigi(x)

is the Lagrangian of (3). Then (14) with the positive sign reduces to the classical
second-order sufficient condition for optimality

〈L′′
xx(x̄, μ̄)d, d〉 > 0 ∀d ∈ K \ {0}.

Finally, we say that strict complementarity holds at (x̄, μ̄) if I0 = ∅, i.e.,

μ̄i > 0 ∀i ∈ I. (16)

We are now in position to state our first convergence result. Since we are not
making any convexity/monotonicity type assumptions, even under the stated below
conditions at (x̄, μ̄), the mixed complementarity problem (8–11) (or the optimization
subproblem (6)) may have solutions “of no interest”, far from xk (or x̄). We therefore
talk about the specific solution closest to xk . This is typical in results of this nature.

Theorem 2 Let (x̄, μ̄) ∈ �n × �m be a solution of the KKT system (7). Suppose that
F is differentiable and g is twice differentiable in some neighborhood of x̄, and that
the first derivative of F and the second derivative of g are Lipschitz continuous in
this neighborhood. Suppose further that LICQ (12), SOSC (14) and the strict com-
plementarity condition (16) are satisfied.

Then there exists a neighborhood U of x̄ such that if xk ∈ U , then the mixed com-
plementarity problem (8–11) has a solution (xk+1,μk+1) ∈ �n × �m. Moreover, if
x0 ∈ U and, for each k ≥ 0, xk+1 is the closest to xk solution of (8–11), then there ex-
ists a neighborhood V of μ̄ such that (8–11) defines unique sequence {(xk+1,μk+1)}
which stays in U × V and converges quadratically to (x̄, μ̄).
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Proof We first prove existence of a solution for the mixed complementarity problem
(8–11), starting with (8) and (11). To this end, we shall apply the Implicit Function
Theorem (Theorem 1) to the mapping � : �n × �n × �m → �n × �m defined by

�(x;y,μ) =

⎛
⎜⎜⎜⎝

�(x,μ) + � ′
x(x,μ)(y − x)

μ1(g1(x) + 〈g′
1(x), y − x〉 + 1

2 〈g′′
1 (x)(y − x), y − x〉)

...

μm(gm(x) + 〈g′
m(x), y − x〉 + 1

2 〈g′′
m(x)(y − x), y − x〉)

⎞
⎟⎟⎟⎠ , (17)

where � is given by (13). Thinking of x ∈ �n as a parameter, the system
�(x;y,μ) = 0 has n + m equations and n + m unknowns (y,μ) ∈ �n × �m .

Since (x̄, μ̄) is a solution of the KKT system (7), we have that �(x̄; x̄, μ̄) = 0. By
our smoothness hypotheses on F and g, � is Lipschitz continuous in a neighborhood
of (x̄; x̄, μ̄). Moreover, since � is continuously differentiable with respect to y and μ,
it easily follows that ∂�(x̄; x̄, μ̄) is the set of matrices [N,M], where M is given by

M = (�′
y,�

′
μ)(x̄; x̄, μ̄) =

⎛
⎜⎜⎜⎜⎜⎝

� ′
x(x̄, μ̄) g′

1(x̄) g′
2(x̄) . . . g′

m(x̄)

μ̄1g
′
1(x̄)� g1(x̄) 0 . . . 0

μ̄2g
′
2(x̄)� 0 g2(x̄) . . . 0
...

...
. . .

...

μ̄mg′
m(x̄)� 0 . . . 0 gm(x̄)

⎞
⎟⎟⎟⎟⎟⎠ , (18)

and

N ∈ conv
{

lim
l→∞�′

x(x
l;yl,μl) | (xl;yl,μl) → (x̄; x̄, μ̄), (xl;yl,μl) ∈ N�

}
.

To apply Theorem 1, it remains to show that M is nonsingular. Suppose that
M(

v
w

) = 0, where v ∈ �n and w ∈ �m. Then we have

� ′
x(x̄, μ̄)v +

m∑
i=1

wig
′
i (x̄) = 0, (19)

μ̄i〈g′
i (x̄), v〉 + wigi(x̄) = 0, i = 1, . . . ,m. (20)

Since gi(x̄) < 0 and μ̄i = 0 for all i ∈ I ; and by the strict complementarity condi-
tion (16), gi(x̄) = 0 and μ̄i > 0 for all i ∈ I , it follows from (20) that

〈g′
i (x̄), v〉 = 0, ∀i ∈ I,

wi = 0, ∀i /∈ I.
(21)

Since strict complementarity means that I0 = ∅, from (15) and (21) we have that
v ∈ K . Multiplying both sides in (19) by v, we obtain

0 = 〈� ′
x(x̄, μ̄)v, v〉 +

∑
i∈I

wi〈g′
i (x̄), v〉 +

∑
i /∈I

wi〈g′
i (x̄), v〉

= 〈� ′
x(x̄, μ̄)v, v〉,
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where the second equality follows from (21). Since v ∈ K , SOSC (14) implies that
v = 0. Now by (19) and (21), using also that v = 0, we obtain that

0 =
∑
i∈I

wig
′
i (x̄).

Then LICQ (12) implies that wi = 0 for all i ∈ I . Taking into account (21), we con-
clude that w = 0, so that (v,w) = 0. Hence, M is nonsingular.

Then, by Theorem 1, there exist a neighborhood U0 of x̄ in �n, a neighborhood
�0 of (x̄, μ̄) in �n × �m, and a Lipschitz continuous function ξ : U0 → �0 such
that �(x; ξ(x)) = 0 for all x ∈ U0, where ξ(x) = (y(x),μ(x)) and ξ(x̄) = (x̄, μ̄).
Furthermore, ξ is unique in the sense that if x̂ ∈ U0, (ŷ, μ̂) ∈ �0 and �(x̂; ŷ, μ̂) = 0,
then (ŷ, μ̂) = ξ(x̂).

Using the continuity of y and μ at x̄ and the strict complementarity condition (16),
it follows that the sets

U1 =
{
x ∈ U0 | gi(x)

+ 〈g′
i (x), y(x) − x〉 + 1

2
〈g′′

i (x)(y(x) − x), y(x) − x〉 < 0,∀i /∈ I

}
,

U2 = {x ∈ U0 | μi(x) > 0,∀i ∈ I },
are nonempty and open (and they contain x̄). Furthermore, since �0 is a neighbor-
hood of (x̄, μ̄), there exist a neighborhood W of x̄ in �n and a neighborhood V of μ̄

in �m such that W × V ⊂ �0. Let

U3 = {x ∈ U1 ∩ U2 | ξ(x) ∈ W × V }.
If x ∈ U3, then (y(x),μ(x)) ∈ W × V , and since �(x; ξ(x)) = 0, using the defin-

itions of U1 and U2, we conclude that

0 = gi(x) + 〈g′
i (x), y(x) − x〉 + 1

2
〈g′′

i (x)(y(x) − x), y(x) − x〉, ∀i ∈ I,

(22)
0 = μi(x), ∀i /∈ I.

Now, combining �(x; ξ(x)) = 0 with (22) and with the definitions of U1 and U2, we
obtain that (y(x),μ(x)) is a solution of the mixed complementarity problem (8–11).

Now let xk ∈ U3, k ≥ 0. We next show that if xk+1 is the solution of (8–11) closest
to xk and μk+1 is the associated multiplier, then these are uniquely defined by xk+1 =
y(xk) and μk+1 = μ(xk). First, note that the gradients of constraints in (9) that are
active at y(xk) form the set {g′

i (x
k)+g′′

i (xk)(y(xk)− xk), i ∈ I }. For xk sufficiently
close to x̄, this is a small perturbation of the linearly independent set in the LICQ
condition (12). Thus, it is linearly independent itself, which implies that μ(xk) is in
fact the unique multiplier associated to y(xk). Taking U0 sufficiently small (so that
U3 is sufficiently small), it can also be seen that the solution closest to xk (among all
the solutions of (8–11)) is precisely y(xk), since it is the only solution in W . From
now on, xk ∈ U3, xk+1 = y(xk) and μk+1 = μ(xk).
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By (8), we have that

0 = F(xk) +
m∑

i=1

μk+1
i g′

i (x
k)

+
(

F ′(xk) +
m∑

i=1

μk+1
i g′′

i (xk)

)
(xk+1 − xk)

= F(xk) +
∑
i∈I

μk
i g

′
i (x

k) +
∑
i∈I

(μk+1
i − μk

i )g
′
i (x

k)

+
(

F ′(xk) +
∑
i∈I

μk
i g

′′
i (xk)

)
(xk+1 − xk)

+
∑
i∈I

(μk+1
i − μk

i )g
′′
i (xk)(xk+1 − xk), (23)

where we have taken into account that μk+1
i = 0 for all i /∈ I .

By (22), we also have that

0 = gi(x
k) + 〈g′

i (x
k), xk+1 − xk〉 + 1

2
〈g′′

i (xk)(xk+1 − xk), xk+1 − xk〉, ∀i ∈ I.

(24)
Defining

H : �n × �|I | → �n × �|I |, H(z) =
(

F(x) + ∑
i∈I μig

′
i (x)

gI (x)

)
, z = (x,μI ),

relations (23) and (24) can be written as

0 = H(zk) + H ′(zk)(zk+1 − zk) + Ek,k+1, (25)

where

Ek,k+1 =
( ∑

i∈I (μ
k+1
i − μk

i )g
′′
i (xk)(xk+1 − xk)

1
2 〈g′′

i (xk)(xk+1 − xk), xk+1 − xk〉, i ∈ I

)
.

Note that (25) is not a Newton equation, as it is not linear with respect to zk+1.
However, we shall relate it, a posteriori, to a specially perturbed Newton type iterative
process. The rest of the proof makes this precise and establishes the quadratic rate of
convergence.

First, note that H(z̄) = 0. By a proof similar to that for the nonsingularity of the
matrix M defined in (18), it can be seen that the matrix

H ′(z̄) =
(

� ′
x(x̄, μ̄) g′

I (x̄)�

g′
I (x̄) 0

)

is nonsingular (in the above formula for H ′(z̄), we have used the fact that μ̄i = 0 for
all i /∈ I ). Since H ′(z̄) is nonsingular, there exists a constant η > 0 such that

z̄ ∈ Ũ4 = {z ∈ �n+|I | | ‖H ′(z)−1‖ < η}.
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Since F ′ and g′′
i , i = 1, . . . ,m, are Lipschitz continuous functions in a neighborhood

of x̄, taking ρ > 0 sufficiently small, there exists a constant L > 0 such that ‖H ′(w)−
H ′(z)‖ ≤ L‖w − z‖ for all w,z ∈ B(z̄, ρ), where B(z̄, ρ) denotes the open ball in
�n+|I | with center at z̄ and radius ρ.

We next show that if zk ∈ B(z̄, ρ) then there exists a constant c > 0 such
that ‖Ek,k+1‖ ≤ c‖zk+1 − zk‖2 for all k ≥ 1, where zk = (xk,μk

I ). Since g′′
i , i =

1, . . . ,m, are continuous at x̄, there exists a constant γ > 0 such that ‖g′′
i (x)‖ ≤ γ ,

i = 1, . . . ,m, for all x ∈ �n such that ‖x − x̄‖ ≤ ρ. Since zk ∈ B(z̄, ρ) implies
‖xk − x̄‖ < ρ, we have that

‖Ek,k+1‖ ≤ √
nγ ‖μk+1

I − μk
I‖ ‖xk+1 − xk‖ + γ

2

∑
i∈I

‖xk+1 − xk‖2

≤ √
nγ (max{‖μk+1

I − μk
I‖,‖xk+1 − xk‖})2 + γm

2
‖xk+1 − xk‖2

≤ √
nγ ‖zk+1 − zk‖2 + γm

2
‖xk+1 − xk‖2

≤ γ (
√

n + m/2)‖zk+1 − zk‖2

= c‖zk+1 − zk‖2, (26)

where the monotonicity of the norm has been used repeatedly.
Let r = 1/(2η(L+4c)), and define U5 = {x ∈ U3 | ‖y(x)− x̄‖2 +‖μ(x)− μ̄‖2 <

r2}, Ũ5 = U5 × �|I |. Then there exists δ > 0 such that B(z̄, δ) ⊂ Ũ4 ∩ Ũ5.
Let ε = min{δ, r, ρ}, and define

U = {x ∈ �n | ‖y(x) − x̄‖2 + ‖μ(x) − μ̄‖2 < ε2}.
Then x0 ∈ U implies that ‖z1 − z̄‖ < ε.

Now, proceeding by induction, we will show that if ‖zk − z̄‖ < ε then ‖zk+1 − z̄‖ <

ε. By the construction of the set U , if ‖zk − z̄‖ < ε then the following properties hold:

‖H ′(zk)−1‖ < η, (27)

‖zk − z̄‖ < r = 1

2η(L + 4c)
, (28)

‖zk+1 − z̄‖ < r <
1

4ηc
, (29)

where in (27) we use that zk ∈ Ũ4, (28) holds since ε ≤ r , and (29) follows from
xk ∈ U5. Also, because xk ∈ U3, by (25) it follows that

zk+1 = zk − H ′(zk)−1(H(zk) − H(z̄) + Ek,k+1),

where H(z̄) = 0 was also taken into account. We further obtain

‖zk+1 − z̄‖ = ‖zk − z̄ − H ′(zk)−1(H(zk) − H(z̄) + Ek,k+1)‖
≤ ‖H ′(zk)−1‖‖H ′(zk)(zk − z̄) + H(z̄) − H(zk) − Ek,k+1‖
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≤ η

∥∥∥∥
∫ 1

0
[H ′(zk) − H ′(z̄ + t (zk − z̄))](zk − z̄)dt − Ek,k+1

∥∥∥∥
≤ η

(
L‖zk − z̄‖2

∫ 1

0
(1 − t)dt + c‖zk+1 − zk‖2

)

≤ ηL

2
‖zk − z̄‖2 + 2ηc‖zk+1 − z̄‖2 + 2ηc‖zk − z̄‖2

≤ η

(
L

2
+ 2c

)
‖zk − z̄‖2 + 1

2
‖zk+1 − z̄‖,

where the second inequality follows from (27) and the Mean-Value Theorem, in the
third inequality we use the Lipschitz continuity of H ′ and (26), for the fourth inequal-
ity we use that ‖zk+1 − zk‖2 ≤ 2(‖zk+1 − z̄‖2 + ‖zk − z̄‖2), and the fifth inequality
follows from 2ηc‖zk+1 − z̄‖ < 1

2 , which is ensured by (29).
Now, rearranging terms in the relation above, we deduce that

‖zk+1 − z̄‖ ≤ η(L + 4c)‖zk − z̄‖2. (30)

Then, by (28), we have ‖zk+1 − z̄‖ < 1
2‖zk − z̄‖ < ε.

In consequence, if x0 ∈ U then (xk+1,μk+1) ∈ U × V for all k ≥ 0, and since
μk+1

i = μ̄i = 0 for all i /∈ I , we have

‖(xk+1,μk+1) − (x̄, μ̄)‖ = ‖zk+1 − z̄‖ <
1

2
‖zk − z̄‖ < · · · <

(
1

2

)k

‖z1 − z̄‖,

so that {(xk+1,μk+1)} converges to (x̄, μ̄). Then, by (30), we conclude that the rate
of convergence is quadratic. �

3 Primal superlinear convergence

As is well known, quadratic convergence of {(xk,μk)} to (x̄, μ̄) does not imply even
superlinear or linear convergence of {xk} to x̄. Assuming that some type of conver-
gence occurs, we next give necessary and sufficient conditions for superlinear con-
vergence of the primal sequence. This condition is of the Dennis-Moré type [6], and
allows for derivative approximations. Specific rules for quasi-Newton updates are
certainly of great interest, but these are beyond the scope of this paper. But we note
that our analysis covers the situations where computing the derivatives involves com-
putational work and the precision of approximation can be controlled. Such is the
case, for example, when the derivatives are approximated by finite-difference proce-
dures. The accuracy parameter can be controlled using estimates for the distance to
the solution via error bounds (see [7] for a discussion of error bounds for variational
problems and [5, 9] for detailed comparisons in the context of KKT systems specif-
ically). In particular, those estimates give some idea of how precise should be the
approximation in order to conform to conditions (37) or (38) below.

Let Hk be some approximation of F ′(xk) and Gi,k be some approximation of
g′′

i (xk) (of course, this includes the possibility of exact derivatives, as in the setting
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of Sect. 2). We consider a sequence {(xk,μk)} generated by the following process.
Given xk ∈ �n, Hk ∈ �n×n and Gi,k ∈ �n×n, i = 1, . . . ,m, find (xk+1,μk+1) ∈
�n × �m such that

F(xk) + Hk(x
k+1 − xk) +

m∑
i=1

μk+1
i (g′

i (x
k) + Gi,k(x

k+1 − xk)) = 0, (31)

and for all i = 1, . . . ,m, it holds that

gi(x
k) + 〈g′

i (x
k), xk+1 − xk〉 + 1

2
〈Gi,k(x

k+1 − xk), xk+1 − xk〉 ≤ 0, (32)

μk+1
i ≥ 0, (33)

μk+1
i (gi(x

k) + 〈g′
i (x

k), xk+1 − xk〉 + 1

2
〈Gi,k(x

k+1 − xk), xk+1 − xk〉) = 0. (34)

In the sequel, we shall consider separately the two possible cases in SOSC (14)
(i.e., when (14) holds with the positive sign and when it holds with the negative sign).
Note also that since the cone K is closed, those two cases can be stated as follows:
there exists t > 0 such that

〈� ′
x(x̄, μ̄)d, d〉 ≥ t‖d‖2 ∀d ∈ K, (35)

or

−〈� ′
x(x̄, μ̄)d, d〉 ≥ t‖d‖2 ∀d ∈ K. (36)

Theorem 3 Let (x̄, μ̄) ∈ �n × �m be a solution of the KKT system (7). Suppose that
F is differentiable and g is twice differentiable in some neighborhood of x̄. Suppose
further that a sequence {(xk,μk)}, generated according to (31–34) with uniformly
bounded Gi,k , i = 1, . . . ,m, converges to (x̄, μ̄).

If {xk} converges superlinearly to x̄ then

PK [(� ′
x(x̄, μ̄) − Mk)(x

k+1 − xk)] = o(‖xk+1 − xk‖), (37)

where PK [·] denotes the orthogonal projector onto the cone K defined in (15) and

Mk = Hk +
m∑

i=1

μk+1
i Gi,k.

Conversely, if LICQ (12) and SOSC (14) are satisfied, then the rate of convergence
of {xk} to x̄ is superlinear if (35) and (37) hold, or if (36) holds and

PK [(Mk − � ′
x(x̄, μ̄))(xk+1 − xk)] = o(‖xk+1 − xk‖). (38)

Proof Denote dk = xk+1 − xk . By (31), we have that

0 = F(xk) + Hkd
k +

m∑
i=1

μk+1
i (g′

i (x
k) + Gi,kd

k) = �(xk,μk+1) + Mkd
k. (39)
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Also, we have that

�(xk, μ̄) = �(xk,μk+1) +
m∑

i=1

(μ̄i − μk+1
i )g′

i (x
k)

= �(xk,μk+1) +
m∑

i=1

(μ̄i − μk+1
i )g′

i (x̄) + o(‖xk − x̄‖)

= −Mkd
k +

m∑
i=1

(μ̄i − μk+1
i )g′

i (x̄) + o(‖xk − x̄‖), (40)

where the last equality is by (39).
Suppose first that {xk} converges to x̄ superlinearly, i.e., xk+1 − x̄ = o(‖xk − x̄‖).

Since �(x̄, μ̄) = 0, it holds that

�(xk, μ̄) = �(x̄, μ̄) + � ′
x(x̄, μ̄)(xk − x̄) + o(‖xk − x̄‖)

= −� ′
x(x̄, μ̄)dk + � ′

x(x̄, μ̄)(xk+1 − x̄) + o(‖xk − x̄‖)
= −� ′

x(x̄, μ̄)dk + o(‖xk − x̄‖). (41)

Combining (41) and (40), we obtain

(� ′
x(x̄, μ̄) − Mk)d

k =
m∑

i=1

(μk+1
i − μ̄i)g

′
i (x̄) + o(‖xk − x̄‖). (42)

Taking into account that each Gi,k is uniformly bounded and using the continuity
argument in (34), we conclude that for all sufficiently large k, it holds that μk+1

i −
μ̄i = 0,∀i /∈ I , and μk+1

i − μ̄i = μk+1
i ≥ 0, ∀i ∈ I0. Then, by (42), for all v ∈ K it

holds that

〈(� ′
x(x̄, μ̄) − Mk)d

k − o(‖xk − x̄‖), v〉 =
m∑

i=1

(μk+1
i − μ̄i)〈g′

i (x̄), v〉

=
∑
i∈I

(μk+1
i − μ̄i)〈g′

i (x̄), v〉

=
∑
i∈I0

(μk+1
i − μ̄i)〈g′

i (x̄), v〉

=
∑
i∈I0

μk+1
i 〈g′

i (x̄), v〉 ≤ 0, (43)

where we have used that 〈g′
i (x̄), v〉 = 0, ∀i ∈ I+, 〈g′

i (x̄), v〉 ≤ 0, ∀i ∈ I0 (see (15)).
By properties of projection operator onto a convex cone, inequality (43) means that

PK [(� ′
x(x̄, μ̄) − Mk)d

k − o(‖xk − x̄‖)] = 0.



156 D. Fernández, M. Solodov

Then, by nonexpansiveness of the projection operator, it follows that

‖PK [(� ′
x(x̄, μ̄) − Mk)d

k]‖ = ‖PK [(� ′
x(x̄, μ̄) − Mk)d

k − o(‖xk − x̄‖)]
−PK [(� ′

x(x̄, μ̄) − Mk)d
k]‖

= o(‖xk − x̄‖).
It remains to show that o(‖xk − x̄‖) = o(‖dk‖). For this, note that

o(‖xk − x̄‖)
‖dk‖ ≤ o(‖xk − x̄‖)

‖xk − x̄‖ − ‖xk+1 − x̄‖ = o(‖xk − x̄‖)
‖xk − x̄‖ − o(‖xk − x̄‖)

= o(‖xk − x̄‖)/‖xk − x̄‖
1 − o(‖xk − x̄‖)/‖xk − x̄‖ → 0 as k → ∞.

This concludes the proof of (37).
We now prove the sufficiency part, assuming LICQ and SOSC. Denote

�i,k = gi(x
k) + 〈g′

i (x
k), dk〉 + 1

2
〈Gi,kd

k, dk〉.

By the continuity argument (taking also into account uniform boundedness of Gi,k),
{�i,k} converges to gi(x̄), as k → ∞. Thus for all k sufficiently large, taking into
account (34), we have that

�i,k < 0, μk+1
i = 0, ∀i /∈ I,

�i,k = 0, μk+1
i > 0, ∀i ∈ I+.

(44)

By the Mean-Value Theorem, for each i = 1, . . . ,m, there exists a vector zi,k in the
line segment joining xk and x̄, such that

gi(x
k) = gi(x̄) + 〈g′

i (x̄), xk − x̄〉 + 1

2
〈g′′

i (zi,k)(xk − x̄), xk − x̄〉.

Note that {zi,k} converges to x̄ when k → ∞. For i ∈ I , we then obtain

�i,k = gi(x̄) + 〈g′
i (x̄), xk − x̄〉 + 1

2
〈g′′

i (zi,k)(xk − x̄), xk − x̄〉

+ 〈g′
i (x

k), dk〉 + 1

2
〈Gi,kd

k, dk〉

= 〈g′
i (x̄), xk+1 − x̄〉 + wk

i , (45)

where

wk
i = 〈g′

i (x
k) − g′

i (x̄), dk〉 + 1

2
〈g′′

i (zi,k)(xk − x̄), xk − x̄〉 + 1

2
〈Gi,kd

k, dk〉.

Clearly,

wk
i = o(‖xk − x̄‖) + o(‖dk‖).
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By LICQ (12), for each k, there exists uk ∈ �n such that

g′
I (x̄)uk = wk

I , where uk = o(‖xk − x̄‖) + o(‖dk‖). (46)

Let vk = xk+1 − x̄ + uk . Then by (46) and (45), we have

〈g′
i (x̄), vk〉 = 〈g′

i (x̄), xk+1 − x̄〉 + wk
i = �i,k ∀i ∈ I. (47)

Since �i,k = 0, ∀i ∈ I+ (by (44)) and �i,k ≤ 0, ∀i ∈ I0 (by (32)), relation (47) shows
that vk ∈ K . Since �(x̄, μ̄) = 0, we have that

0 = 〈�(x̄, μ̄), vk〉 = 〈F(x̄), vk〉 +
∑
i∈I+

μ̄i〈g′
i (x̄), vk〉 = 〈F(x̄), vk〉.

We then obtain

〈�(x̄,μk+1), vk〉 = 〈F(x̄), vk〉 +
m∑

i=1

μk+1
i 〈g′

i (x̄), vk〉

=
∑
i /∈I

μk+1
i 〈g′

i (x̄), vk〉 +
∑
i∈I

μk+1
i �i,k

= 0, (48)

where we have used (47) for the second equality, and (44) with (34) for the last
equality.

Also,

�(xk+1,μk+1) = �(xk,μk+1) + � ′
x(x

k,μk+1)dk + o(‖dk‖)
= (� ′

x(x
k,μk+1) − Mk)d

k + o(‖dk‖)
= (� ′

x(x̄, μ̄) − Mk)d
k + (� ′

x(x
k,μk+1) − � ′

x(x̄, μ̄))dk + o(‖dk‖)
= (� ′

x(x̄, μ̄) − Mk)d
k + o(‖dk‖), (49)

where (39) has been used in the second equality, and the last equality is by the con-
tinuity of � ′

x . Let pk = vk/‖vk‖. Multiplying both sides in (49) by pk (which is
bounded), we conclude that

〈�(xk+1,μk+1),pk〉 = 〈(� ′
x(x̄, μ̄) − Mk)d

k,pk〉 + o(‖dk‖). (50)

On the other hand,

〈�(xk+1,μk+1),pk〉 = 〈�(x̄,μk+1),pk〉
+〈� ′

x(x̄,μk+1)(xk+1 − x̄),pk〉 + o(‖xk+1 − x̄‖)
= 〈� ′

x(x̄,μk+1)(xk+1 − x̄),pk〉 + o(‖xk+1 − x̄‖)
= 〈� ′

x(x̄, μ̄)(xk+1 − x̄),pk〉 + o(‖xk+1 − x̄‖), (51)
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where the second equality follows from (48), and the last follows from the continuity
of � ′

x and boundedness of {pk}.
Combining (50) and (51), we conclude that

〈� ′
x(x̄, μ̄)(xk+1 − x̄),pk〉 = 〈(� ′

x(x̄, μ̄) − Mk)d
k,pk〉 + o(‖dk‖) + o(‖xk+1 − x̄‖).

(52)
Suppose now that SOSC holds. Then for the case (36) and (38), by (52) and (46),

we have

t‖vk‖ ≤ −〈� ′
x(x̄, μ̄)vk,pk〉

= 〈� ′
x(x̄, μ̄)(x̄ − xk+1),pk〉 − 〈� ′

x(x̄, μ̄)uk,pk〉
= 〈(Mk − � ′

x(x̄, μ̄))dk,pk〉 + o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)
≤ 〈PK [(Mk − � ′

x(x̄, μ̄))dk],pk〉 + o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)
= o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖),

where the second inequality follows from the fact that for any closed convex cone C

and v ∈ C, it holds that 〈x, v〉 ≤ 〈PC[x], v〉∀x. Similarly, for the case (35) and (37)
we obtain

t‖vk‖ ≤ 〈� ′
x(x̄, μ̄)vk,pk〉

= 〈(� ′
x(x̄, μ̄) − Mk)d

k,pk〉 + o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)
≤ 〈PK [(� ′

x(x̄, μ̄) − Mk)d
k],pk〉 + o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)

= o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖).
Summarizing, in both cases vk = o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖).

Since xk+1 − x̄ = vk −uk = o(‖xk+1 − x̄‖)+o(‖xk − x̄‖)+o(‖dk‖), there exists
a sequence {tk} converging to 0 such that

‖xk+1 − x̄‖ ≤ tk(‖xk+1 − x̄‖ + ‖xk − x̄‖ + ‖dk‖)
≤ 2tk(‖xk+1 − x̄‖ + ‖xk − x̄‖).

(53)

Since tk < 1/2 for k sufficiently large, rearranging terms in (53) we obtain

‖xk+1 − x̄‖
‖xk − x̄‖ ≤ 2tk

1 − 2tk
→ 0 as k → ∞.

In consequence, xk+1 − x̄ = o(‖xk − x̄‖), i.e., {xk} converges superlinearly to x̄. �

In particular, Theorem 3 shows superlinear convergence of {xk} to x̄ in the set-
ting of Theorem 2, where Hk = F ′(xk),Gi,k = g′′

i (xk), i = 1, . . . ,m, so that Mk =
Hk +∑m

i=1 μk+1
i Gi,k → F ′(x̄)+∑m

i=1 μ̄ig
′′
i (x̄) = � ′

x(x̄, μ̄) as k → ∞. In this case,
conditions (37) and (38) are automatically satisfied.
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We also note that in the setting of Theorem 2 (or more generally, when cone K is
a subspace), we do not have to consider separately the two cases of SOSC ((35) and
(36)) and the two cases of the Dennis-Moré condition ((37) and (38)). Indeed, when
K is a subspace, we have 〈x, v〉 = 〈PK [x], v〉 for all v ∈ K . We can further state the
SOSC (14) as

|〈� ′
x(x̄, μ̄)v, v〉| ≥ t‖v‖2 ∀v ∈ K,

and modify the corresponding parts of the proof of Theorem 3, as follows.
For the necessity part, note that for any x ∈ �n, there exists the unique decom-

position x = v + v∗ with v = PK [x] ∈ K and v∗ ∈ K⊥. Evidently, changing the
sign, one has −x = −v − v∗, where −v = PK [−x] ∈ K and −v∗ ∈ K⊥. Hence,
‖PK [x]‖ = ‖PK [−x]‖ for any x ∈ �n. It follows that in this case, conditions (37)
and (38) are equivalent.

For the sufficiency part, we have that

t‖vk‖ ≤ |〈� ′
x(x̄, μ̄)vk,pk〉|

≤ |〈(� ′
x(x̄, μ̄) − Mk)d

k,pk〉| + o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)
= |〈PK [(� ′

x(x̄, μ̄) − Mk)d
k],pk〉| + o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)

= o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖),
and the rest of the proof applies.

4 Concluding remarks

We have established a new result on the quadratic convergence of the primal-dual se-
quence of the sequential quadratically-constrained quadratic-programming method.
A necessary and sufficient characterization of the superlinear convergence of the pri-
mal sequence has also been provided. Additionally, the class of methods under con-
sideration has been extended from the optimization setting to the more general vari-
ational problems.
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