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Abstract. We consider the problem of minimizing nonsmooth convex functions, defined piece-
wise by a finite number of functions each of which is either convex quadratic or twice continuously
differentiable with positive definite Hessian on the set of interest. This is a particular case of functions
with primal-dual gradient structure, a notion closely related to the so-called VU space decomposition:
At a given point, nonsmoothness is locally restricted to the directions of the subspace V , while along
the subspace U the behavior of the function is twice differentiable. Constructive identification of
the two subspaces is important, because it opens the way to devising fast algorithms for nonsmooth
optimization (by following iteratively the manifold of smoothness on which superlinear U-Newton
steps can be computed). In this work we show that, for the class of functions in consideration, the
information needed for this identification can be obtained from the output of a standard bundle
method for computing proximal points, provided a minimizer satisfies the nondegeneracy and strong
transversality conditions.
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1. Introduction. Consider the problem

(1.1) min
x∈�n

f(x),

where the objective function f : �n → � is convex. If f is not differentiable at a
solution x̄ of (1.1), constructing fast practical algorithms to compute x̄ is a challenge.
Essentially, this has to do with the intrinsic difficulty in using (or even defining!)
appropriate “second-order” objects that capture the behavior of f around x̄. One
line of research (e.g., [2, 15, 16, 19, 25]) suggests introducing second-order information
about f by means of its Moreau–Yosida regularization, which is a smooth function.
The other line of research parts from the viewpoint that nonsmoothness in practical
applications is usually “structured” [7, 17, 20, 26, 27]. Nonsmooth functions may
behave smoothly and even have appropriate second-order representations on certain
manifolds along certain directions. If this structure can be constructively identified
and if the relevant manifold can be “followed” iteratively, this opens the potential for
designing algorithms with fast local convergence.
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In this work we contribute to the second line of research and, in particular, to con-
structing the so-called VU-decomposition [14] for functions with primal-dual gradient
(PDG) structure [20, 21, 22, 23] (see section 2 below for definitions and a summary of
relevant details). This development is important for the following reasons. In [21, 23]
it is shown that if f has PDG structure and f satisfies at x̄ the strong transversality
condition stated in (2.5) below, then for points close to x̄ the proximal map gener-
ates points on the manifold of smoothness M, called “fast track.” Since proximal
points can be approximated arbitrarily well by bundle techniques, [24] proposes a
fast VU-algorithm that performs a corrector-predictor step at each iteration. More
precisely, by means of the bundle subroutine, a (corrector) proximal step is made in
order to bring the iterate to the fast track M. Then the U-Newton (predictor step)
is performed to gain superlinear decrease of the distance to solution. A geometrical
study of such methods, including relations with sequential quadratic programming,
can be found in [18]. While computing the U-Newton step certainly requires approxi-
mating the proximal point well enough, [24] shows that this computational effort can
be worthwhile when compared to standard bundle methods that stop this approxima-
tion much earlier (as soon as sufficient descent of the objective function is attained).
This is especially true in cases where high precision is required. Standard forms of
bundle methods may be quite slow (even sublinear) when approaching a solution,
which makes obtaining high precision impossible. This is where the U-Newton super-
linear steps are most important. We refer the reader to [24] for a comparison of an
overall computational behavior of a usual bundle method and a VU-algorithm, where
practical superlinear convergence of the latter had been verified.

While [24] suggests a way of generating a basis for U in the process of comput-
ing the proximal point by the bundle subroutine, the fact that this construction is
“correct” is essentially stated as an assumption, albeit a clearly reasonable one. In
what follows, we prove that, for the given class of functions, if x is close enough to
x̄, then the subspace V (and, hence, also U) at the proximal point p of x can indeed
be recovered from the objects generated by the bundle subroutine in the process of
computing p. Numerical results presented in section 4 confirm this assertion.

In summary, the main motivation of this work is to provide some building blocks
in order to design (and implement) fast VU-algorithms. Our objective is to determine
a basis for the V-space (thus also U-space) at points of the fast track M so that a su-
perlinear U-Newton step can be computed. Under the strong transversality condition
(see (2.5) below), locally the set of such points coincides with the active manifold M
which, under the nondegeneracy condition (see (2.8) below), contains proximal points
of points that are close enough to the solution x̄. As a consequence, this manifold
can be iteratively followed by an implementable algorithm and can be combined with
superlinear U-Newton steps as will be explained in what follows.

Our notation is fairly standard. We shall denote by Bε(x̄) the open ball with
center x̄ ∈ �n and radius ε > 0. For x, y ∈ �n, 〈x, y〉 stands for the inner product of
x and y. Given a convex function f : �n → �, we denote by ∂f(x) its subdifferential
at the point x ∈ �:

(1.2) ∂f(x) = {g ∈ �n : f(y) − f(x) ≥ 〈g, y − x〉 for all y ∈ �n}.

For any set C ⊂ �n, linC stands for its linear hull (the smallest subspace of �n

that contains C) and aff C for its affine hull (the smallest affine manifold of �n that
contains C). For a convex set C, by riC we denote its relative interior (its interior for
the topology relative to aff C). Finally, the cardinality of a (finite) set I is denoted
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822 A. DANIILIDIS, C. SAGASTIZÁBAL, AND M. SOLODOV

by |I|. The canonical simplex in the space �|I| is then given by

Δ|I| =

{
t ∈ �|I| : t ≥ 0 ,

∑
i∈I

ti = 1

}
.

2. Analytic description of the function structure. We consider the class
of convex functions defined piecewise by a finite collection of twice continuously dif-
ferentiable convex functions. Specifically, for all x ∈ �n,

(2.1)
f(x) ∈ {fj(x), j = 0, . . . ,m},

where f is convex and fj : �n → �, j = 0, . . . ,m, are convex of class C2.

We shall refer to the functions fj, j = 0, 1, . . . ,m, as structure functions. For some of
our results we shall eventually assume that, in addition to the above, each structure
function fj either is quadratic or has positive definite Hessian in a relevant neighbor-
hood of a minimizer of f . Those assumptions do not introduce any restrictions that
are truly relevant with respect to the task at hand—identification of the smoothness
structure of (structured) nonsmooth functions.

A classical example of (2.1) is the finite max-function f(x) = maxj=0,...,m fj(x),
where fj are convex of class C2. One important practical application stems from the
Lagrangian relaxation [13] of mixed integer linear or quadratic programs. Consider
the problem

(2.2)
max

y

{
〈Ay, y〉 + 〈a, y〉

}
s.t. Dy = d, y ∈ Y ∩ Z,

where Dy = d represents “hard” constraints (without them maximization would be
relatively easy to carry out), the set Y represents “easy” constraints, and Z is a finite
set (e.g., contains 0-1 constraints). In this situation, a widely used approach is to
relax the hard constraints and solve the Lagrangian dual of the above problem, i.e.,
solve (1.1) with the objective function given by

(2.3) f(x) = max
y∈Y ∩Z

{
〈Ay, y〉 + 〈a, y〉 + 〈x,Dy − d〉

}
,

which is a finite max-function.
However, the class of convex piecewise defined functions is not restricted to finite

max-functions. For example, the piecewise defined function

(2.4) f(x) =

⎧⎪⎨
⎪⎩

x2
1 if x2 ≤ 1

2
x2

1,

1
2
x2

(
1 +

x2
1

2x2

)2

otherwise

cannot be written as a finite max-function [20].
Before proceeding, let us make some comments concerning the possible use of se-

quential quadratic programming (SQP) methods in our setting. The first issue is that
SQP methods require converting the problem to the form of constrained optimization,
which can be done for a finite max-function but not for the piecewise defined func-
tion (2.4), for example. Another issue is that each SQP iteration requires computing
the function and gradient values of all the structure functions. In some applications,
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this can be numerically expensive or simply impossible. For example, in the case of
Lagrangian relaxation for problem (2.2) discussed above, computing all the gradients
of structure functions requires finding all the maximizers in (2.3). This is, in general,
an impossible task. By contrast, the bundle-based approach presented in this paper
requires the gradient of only one (active) structure function, which means computing
one maximizer in (2.3).

2.1. Primal-dual gradient structure and space decomposition. Given a
convex function of the form (2.1), its subdifferential at a point x ∈ �n is the convex
combination of the derivatives of the structure functions that are active at x. More
precisely,

∂f(x) =

⎧⎨
⎩g ∈ �n : g =

∑
j∈I(x)

tjf
′
j(x), t ∈ Δ|I(x)|

⎫⎬
⎭ ,

where

I(x) =
{
j ∈ {0, . . . ,m} : f(x) = fj(x)

}
is the set of “active” indices at x. Let x̄ ∈ �n be a solution to (1.1), where f has the
form of (2.1). By continuity of the structure functions, there exists a ball Bε(x̄) ⊆ �n

such that

∀x ∈ Bε(x̄), I(x) ⊆ I(x̄).

Let the cardinality of I(x̄) be m1 + 1. For convenience, we reorder the structure
functions, if necessary, so that I(x̄) = {0, 1, . . . ,m1}. From now on, we consider that

∀x ∈ Bε(x̄), f(x) ∈ {fj(x), j = 0, . . . ,m1}.
The class of functions (2.1) belongs to the PDG-structured family (see [23]; see

also [20, 22]). More precisely, following the terminology and notation of [23], a function
f satisfying (2.1) has a PDG structure at x̄ relative to the set Bε(x̄) with primal
functions fj, j = 0, . . . ,m1, and dual multiplier set Δm1+1. We note that PDG
structures are closely related to the so-called VU-space decomposition (see [14, 20,
22, 23]), which shall be the focus of our analysis. Given a point x ∈ �n and any
subgradient g ∈ ∂f(x), the VU-space decomposition at x is given by

V(x) = lin{∂f(x) − g}, U(x) = V(x)⊥.

The nonsmoothness of the function f at x is reflected by its V -shaped graph along the
subspace V , while along the subspace U the function appears to behave smoothly [14].
Roughly speaking, the function f is “partly smooth” with respect to some “active”
manifold M containing x̄, in a way that for every x ∈ M the U-space of the VU-
space decomposition at x is the tangent space of the manifold M at x (see the precise
terminology in [17] and also [18, 4] for more details).

When the function f has a PDG structure (thus, in particular, in the case of
(2.1)), for every x ∈ �n and any fixed l ∈ I(x) it holds that

V(x) = lin{f ′
j(x) − f ′

l (x), j ∈ I(x)}.
We say that f satisfies at x̄ the condition of strong transversality if

(2.5) the set { f ′
j(x̄) − f ′

0(x̄), j = 1, . . . ,m1} is linearly independent.

The following properties are consequences of strong transversality:
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– The set

{f ′
j(x̄) − f ′

0(x̄), j = 1, . . . ,m1}
is a basis for the subspace V(x̄) (of dimension dimV(x̄) = |I(x̄)| − 1 = m1).

– For any x ∈ Bε(x̄) and any fixed l ∈ I(x), the set

{f ′
j(x) − f ′

l (x), j ∈ I(x) \ {l}}
is linearly independent and forms a basis for the subspace V(x) (of dimension
dimV(x) = |I(x)| − 1 ≤ m1).

– For all x ∈ Bε(x̄), “interior” subgradients are generated by “interior simplicial
multipliers” in the sense that, for any p ∈ Bε(x̄) such that I(p) = I(x̄), it
holds that

(2.6) ri∂f(p) :=

⎧⎨
⎩g ∈ �n : g =

m1∑
j=0

tjf
′
j(p), t ∈ Δm1+1 , t > 0

⎫⎬
⎭ ;

see [11, Rem. III.2.1.4].

2.2. Connections with smooth manifolds and proximal points. Since the
subspaces U and V generate the whole space �n, every vector can be decomposed along
its VU-components. In particular, any z ∈ �n can be expressed as

�n  z = zV(x̄) ⊕ zU(x̄) ∈ �dimV(x̄) ×�dimU(x̄).

As is shown in [23, Thm. 3.1], a PDG-structured function that satisfies the strong
transversality condition (2.5) at x̄ has a smooth primal track which assigns for each
sufficiently small u ∈ U(x̄) an element χ(u) of the active manifold M. Since along the
track the U(χ(u))-component of the subdifferential of f is a singleton [23, Thm. 4.1(ii)],
the restriction of the function f along the track (active manifold) appears to be
smooth. (Moreover, let us recall that in [21] the smooth primal track from [23] allow-
ing a second-order expansion of f along the U-subspace was called “fast track.”)

The active manifold M is theoretically defined as follows:

(2.7) M = {p ∈ Bε(x̄) : fj(p) = f(p), j = 0, 1, . . . ,m1}
or equivalently,

M = {p ∈ Bε(x̄) : I(p) = I(x̄)} .
Note that the latter, in view of (2.5), yields that M is a smooth manifold. It is

easy to verify that in this case f is also partly smooth with respect to the manifold M,
according to the terminology introduced in [17] (see [18] for details). Furthermore,
the Riemannian gradient of the restriction of f on M at a point x = χ(u) ∈ M is
the projection of the subdifferential ∂f(x) on the U-space at x, while the normal cone
NM(x) is the V(x)-subspace.

For all p close enough to x̄ it holds (see [7, Thm. 5.15] and [23, Thm. 5.3]) that

p ∈ M ⇐⇒ p = χ(u(p)) with u(p) = (p− x̄)U(x̄).

It follows that the concepts “fast track” χ(u) and “smooth manifold” M describe
in a different manner the same object that identifies the smoothness structure of f .
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However, since both χ(u) and M are defined implicitly, their computation is far from
being straightforward. It is at this stage that the important connection with proximal
points comes into play as discussed next.

In what follows, the following notion will be needed. We say that f satisfies at
its minimizer x̄ the nondegeneracy condition if

(2.8) 0 ∈ ri∂f(x̄).

This nondegeneracy condition is not very restrictive; see the discussion in [8, sect. 4].
The situation when a given minimizer of f has 0 in the “extreme boundary” of its
subdifferential, as, for instance, for the function

f(x) =
{
x1 if x1 ≥ 0,
0 if x1 < 0, x ∈ �n,

where ∂f(0) = [0, 1] × {0n−1}, is unstable and generically not present in practice.
On the other hand, condition (2.8) ensures a certain stability in the behavior of the
subdifferential mapping. Indeed, it has been shown that if f is a strongly transversal
PDG-structured lower semicontinuous (respectively, convex) function, the condition
stated in (2.8) is transmitted to some specific continuous selections of subgradients
(parameterized by u); see [23, Thm. 4.2] (respectively, [21, Thm. 5.2]). More specifi-
cally, the following holds (see [4, Lem. 20]).

Lemma 2.1 (persistence and stability of the nondegeneracy condition). Let f be
a convex PDG-structured function, and let M be the active manifold along which f
admits a fast track.

Then for any continuous selection

p �→ g(p), p ∈ M,

of the affine space mapping

p �→ aff(∂f(p)), p ∈ M,

which satisfies g(x̄) ∈ ri∂f(x̄) for x̄ ∈ M, it holds that g(p) ∈ ri ∂f(p) for all p ∈ M
near x̄.

Given a point x ∈ �n and a prox-parameter μ > 0, the proximal point of f at x,
denoted by pμ(x), is given by

pμ(x) = arg min
y∈�n

{
f(y) +

μ

2
‖y − x‖2

}
.

(Clearly, the mapping pμ is single-valued by the strict convexity of the norm.)
The relevance of proximal points in our context is twofold.

– When x is sufficiently close to x̄ and the nondegeneracy condition (2.8) holds,
pμ(x) lies on the fast track (active manifold M); see [4, 7, 21, 23]. Since
pμ(x) ∈ M, by definition of the smooth manifold, we see that

(2.9) I(pμ(x)) = I(x̄) or, equivalently, f(pμ(x)) = fj(pμ(x)), j = 0, 1, . . . ,m1.

– A sequence of null steps of a bundle subroutine can approximate proximal
points within any desired accuracy [3] (see also [10] for the nonconvex case).
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Therefore, under the condition (2.8), the theoretical concepts of fast track and active
manifold of a partly smooth function f can be locally related to the set of proximal
points of f , opening the way to implementable and fast VU-algorithms. Essentially,
these algorithms follow a trajectory of proximal points leading to x̄, with superlinear
Newtonian acceleration at those points. This acceleration is possible due to the fact
that proximal points belong to the active manifold M on which f has second-order
expansion along U(p), and so at such points a fast (superlinear) U-Newton step can
be computed, provided the subspaces V and U are known or sufficiently well approx-
imated [24].

3. Identifying structure by the bundle technique. We proceed to analyze
the computation of the proximal point pμ(x) of a given x ∈ Bε(x̄) for a convex function
f of the form (2.1). We show that a basis for the subspace V at pμ(x) is obtained as
a by-product of computing pμ(x) by the bundle technique.

We start with the following remark: Complete knowledge of the subdifferential
∂f(p) at the proximal point p = pμ(x) ∈ M is certainly sufficient for determining the
V-space of VU-decomposition at p. However, such information is considered prohibited
(impossible to obtain) in practice. Indeed, apart from the point p being unknown (it
needs to be computed by an iterative procedure), the typical practical requirement in
computational nonsmooth optimization (referred to as black-box information, see, e.g.,
[1, part II]) gives access to only one subgradient at each point and not to the whole
subdifferential. Information about the relevant subspaces of the VU-decomposition
should therefore be built iteratively in the process of computing the proximal point.
The practical way of computing proximal points is the bundle method [1, 11, 12]. We
next show how this procedure can be used to build a basis for the V-space at p. Let
us first state formally what we mean by the black-box information, specifically for a
convex function f of the form (2.1) :
(3.1)

Given xi ∈ �n (input), an index ji in I(xi) is available (in principle, only one).

This information gives one affine function

fji(x
i) + 〈f ′

ji
(xi), y − xi〉, y ∈ �n,

which supports the graph of f from below. The bundle method approximates the
proximal point p of x by iteratively computing proximal points of the cutting-planes
approximations of f defined by the previously accumulated affine functions. Specifi-
cally, if x0(= x), x1, . . . , xk−1 are the previous iterates, then the kth iterate is given
by

(3.2) xk = arg min
y∈�n

{
ψk−1(y) +

μ

2
‖y − x‖2

}
,

where

(3.3) ψk−1(y) = max
i=0,1,...,k−1

{
fji(x

i) + 〈f ′
ji

(xi), y − xi〉 , ji ∈ I(xi)
}

is the cutting-planes model of f . This problem is solved via its quadratic programming
(QP) reformulation

min
(y,r)∈�n+1

{
r +

μ

2
‖y − x‖2

}
s.t. fji(x

i) + 〈f ′
ji

(xi), y − xi〉 ≤ r, i = 0, 1, . . . , k − 1.
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By the optimality condition for (3.2), it holds that

(3.4) xk = x− 1
μ
gk, where gk ∈ ∂ψk−1(xk).

Since the model ψk−1 is a convex max-function, its subgradients at xk are convex
combinations of the derivatives of its active pieces at xk, with coefficients given by
the multipliers (dual solutions) of the QP. Eliminating all the indices corresponding
to zero multipliers (including active ones if there exist zero multipliers corresponding
to active QP constraints), we can write

(3.5) gk =
∑
i∈Ĩk

tki f
′
ji

(xi), tk ∈ Δ|Ĩk|, tk > 0,

where

Ĩk =
{
i ∈ {0, 1, . . . , k − 1} : tki > 0

}
⊂

{
i ∈ {0, 1, . . . , k − 1} : ψk−1(xk) = fji(x

i) + 〈f ′
ji

(xi), xk − xi〉
}
.

We note that to ensure convergence, for the (k + 1)-iteration it is sufficient to
keep in the bundle memory only those affine functions that correspond to indices in
Ĩk at the kth iteration, permanently deleting all the rest (but adding the new affine
function computed at xk). Without introducing this feature explicitly in the analysis,
we shall make the following (related) assumption:

(H) The cardinality of Ĩk, k = 0, 1, . . . , is uniformly bounded in k.
While there is no formal argument to justify this assumption, as a practical matter
it is very natural. In fact, many (active set) QP solvers choose linearly independent
bases, i.e., work with “minimal” representations. In the representation of gk ∈ �n in
(3.5), this means that the QP solver gives a solution such that |Ĩk| ≤ n + 1 (such a
solution always exists by the Carathéodory theorem). A similar assumption/property
for a QP solver had been used, for a different QP-based method, in [6, sect. 5].

Our development below relies on the PDG structure of f at x̄ relative to Bε(x̄).
For this reason, we first ensure that iterates do not leave the relevant set.

Proposition 3.1 (localization of the bundle iterates). Let f be a convex func-
tion, and let {xk} be a sequence generated according to (3.2)–(3.3), with x0 = x ∈
Bε(x̄).

Then for every δ ∈ (0, ε) there exists μ̄ > 0 such that if μ ≥ μ̄ and x ∈ Bε−δ(x̄),
then {xk} ⊂ Bε(x̄).

Furthermore, if f satisfies at x̄ the nondegeneracy condition (2.8), then

(3.6) I(xk) ⊆ I(x̄) = I(pμ(x)) for all k.

Proof. For any index k, the cutting-planes model ψk given in (3.3) has the same
Lipschitz constant as f , say, L > 0. Since, by (3.4), gk = μ(x−xk) ∈ ∂ψk−1(xk), this
means that μ‖xk − x‖ ≤ L for all k. Hence,

‖xk − x̄‖ ≤ ‖xk − x‖ + ‖x− x̄‖ ≤ L

μ
+ ε− δ,

and the assertion follows taking μ ≥ μ̄ = L/δ.
The inclusion in (3.6) follows from the continuity of the structure functions, while

the equality is a consequence of (2.8) (see (2.9)).
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From now on, the prox-parameter μ > 0 is assumed to be sufficiently large to
ensure that {xk} ⊂ Bε(x̄) and (3.6) holds. Therefore, any bundle index ji ∈ I(xi)
belongs to the set I(x̄) = {0, 1, . . . ,m1}. For each k, we define the “accumulation” of
the simplicial multipliers in (3.5), corresponding to the same structure function fl as
follows:

(3.7) qk
l =

∑
i∈Ĩk ; ji=l

tki , l = 0, 1, . . . ,m1.

(We formally set the result of summing up over an empty set to be 0.) Clearly, these
multipliers satisfy

qk := (qk
0 , . . . , q

k
m1

) ∈ Δm1+1 for all k.

The following result concerns asymptotic approximation of the specific subgradient
μ(x−p) ∈ ∂f(p), p = pμ(x), by the sequence {gk} produced by the bundle procedure.

Proposition 3.2 (asymptotic behavior of the bundle procedure). Let f be a
convex function of the form (2.1), and assume that it satisfies at x̄ the nondegeneracy
condition (2.8).

Let a sequence {xk} be generated according to (3.2)–(3.3), and let p = pμ(x).
Then for all k ≥ 0 there exist τi ∈ [0, 1], i ∈ Ĩk, such that

(3.8)
∑
i∈Ĩk

tki 〈f ′′
ji

(xi + τi(p− xi))(p− xi), p− xi〉 → 0 as k → ∞,

(3.9) gk =
m1∑
l=0

qk
l f

′
l (p)−

∑
i∈Ĩk

tki

∫ 1

0

f ′′
ji

(xi+θ(p−xi))(p−xi)dθ → μ(x−p) as k → ∞.

Proof. As is well known (e.g., [3, Prop. 4.1]), for iterates generated by the bun-
dle procedure it holds that ψk−1(xk) ↗ f(p) and xk → p as k → ∞. Therefore,
taking into account also that the sequence {gk} is evidently bounded (by (3.4) and
Proposition 3.1), we deduce that

(3.10) lim
k→∞

(
ψk−1(xk) + 〈gk, p− xk〉

)
= f(p).

By the definition of Ĩk and since tk ∈ Δ|Ĩk|, we have that

ψk−1(xk) =
∑
i∈Ĩk

tki (fji(x
i) + 〈f ′

ji
(xi), xk − xi〉).

Together with (3.5), this gives

ψk−1(xk) + 〈gk, p− xk〉 =
∑
i∈Ĩk

tki (fji(x
i) + 〈f ′

ji
(xi), xk − xi + p− xk〉)

=
∑
i∈Ĩk

tki (fji(x
i) + 〈f ′

ji
(xi), p− xi〉).(3.11)

By the mean-value theorem, for each i ∈ Ĩk there exists τi ∈ [0, 1] such that

fji(x
i) + 〈f ′

ji
(xi), p− xi〉 = fji(p) −

1
2
〈f ′′

ji
(xi + τi(p− xi))(p− xi), p− xi〉

= f(p) − 1
2
〈f ′′

ji
(xi + τi(p− xi))(p− xi), p− xi〉,
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where we have used that fji(p) = f(p) (by (2.9) and the fact that, by Proposition 3.1,
ji ∈ I(p) for all i ∈ Ĩk and all k ≥ 0).

Combining now the latter relation with (3.11), we obtain that

ψk−1(xk) + 〈gk, p− xk〉 =
∑
i∈Ĩk

tki

(
f(p) − 1

2
〈f ′′

ji
(xi + τi(p− xi))(p− xi), p− xi〉

)

= f(p) − 1
2

∑
i∈Ĩk

tki 〈f ′′
ji

(xi + τi(p− xi))(p − xi), p− xi〉,

where we have used again that tk ∈ Δ|Ĩk|. Relation (3.8) now follows from (3.10).
By the mean-value theorem (for vector functions), for each i ∈ Ĩk we can also

write

f ′
ji

(p) = f ′
ji

(xi) +
∫ 1

0

f ′′
ji

(xi + θ(p− xi))(p− xi)dθ.

Then, using (3.5), we have that

gk =
∑
i∈Ĩk

tki

(
f ′

ji
(p) −

∫ 1

0

f ′′
ji

(xi + θ(p− xi))(p− xi)dθ
)

=
m1∑
l=0

qk
l f

′
l (p) −

∑
i∈Ĩk

tki

∫ 1

0

f ′′
ji

(xi + θ(p− xi))(p− xi)dθ.

Since xk → p as k → ∞, from (3.4) we have that gk = μ(x − xk) → μ(x − p), and
(3.9) follows.

Until now our analysis did not require any assumptions on the structure functions
fj other than twice continuous differentiability. For our main result, concerning the
construction of a basis for the subspace V by means of the active bundle gradients,
we assume that each structure function either is quadratic or its Hessian is positive
definite (on the set of interest).

Theorem 3.3 (asymptotic determination of the V-space). Let f be a convex
function of the form (2.1), and suppose that it satisfies at x̄ the nondegeneracy con-
dition (2.8) and the strong transversality condition (2.5). Suppose further that each
structure function fj, j = 0, 1, . . . ,m1, either is quadratic or its Hessian is positive
definite on the relevant set Bε(x̄). Assume, finally, that the hypothesis (H) is satisfied.

Then the representation (3.5) for gk (output of the bundle procedure) provides
asymptotically a particular basis of the V-space at p = pμ(x) (thus, implicitly, also of
the U-space at p) in the sense that

V(p) = lin{vl/sl − v0/s0, l = 1, . . . ,m1},

where

vl = lim
k→∞

∑
i∈Ĩk; ji=l

tki f
′
ji

(xi), 0 < sl = lim
k→∞

∑
i∈Ĩk; ji=l

tki , l = 0, 1, . . . ,m1.

Proof. Let x ∈ �n be sufficiently close to x̄ and μ > 0 be sufficiently large so that
the assertions of Propositions 3.1 and 3.2 hold.
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As already noted,

gk =
∑
i∈Ĩk

tki f
′
ji

(xi) → μ (x− p) ∈ ri ∂f(p),

where the inclusion holds by Lemma 2.1 (under the nondegeneracy condition (2.8) for
x close enough to x̄). Now taking into account (2.6), which holds under the strong
transversality condition (2.5), we have that

(3.12) μ(x− p) =
m1∑
j=0

sjf
′
j(p), s ∈ Δm1+1, s > 0,

where the “simplicial” multiplier vector s > 0 is uniquely defined.
The key idea is to show that the contribution of gradients of all those pieces i ∈ Ĩk

that are active at the (unknown) proximal point p, is present and “asymptotically
positive” in the representation of gk in (3.9). Specifically, with the notation of (3.7),
the sequence {qk

l } converges to a strictly positive number for each l = 0, 1, . . . ,m1,
while the second term in (3.9) vanishes.

Since, by the convexity of all structure functions fj , the matrices f ′′
j (·) are positive

semidefinite, we have that all the terms in the sum in (3.8) of Proposition 3.2 are
nonnegative. Since the sum tends to zero, it then follows that each of those terms
tends to zero:

(3.13) ∀ i ∈ Ĩk, 0 = lim
k→∞

tki 〈f ′′
ji

(xi + τi(p− xi))(p− xi), p− xi〉.

Next we show that

(3.14) ∀ i ∈ Ĩk, 0 = lim
k→∞

tki

∫ 1

0

f ′′
ji

(xi + θ(p− xi))(p− xi)dθ.

For i ∈ Ĩk such that limk→∞ tki = 0, the relation in (3.14) is obvious (since the
other term in the product is evidently bounded).

Now consider i ∈ Ĩk such that lim infk→∞ tki > 0. For such i, the relation (3.13)
implies that

(3.15) 〈f ′′
ji

(xi + τi(p− xi))(p − xi), p− xi〉 = 0.

For each j ∈ {0, 1, . . . ,m1} such that j = ji, i ∈ Ĩk, occurs infinitely often, we
next consider separately the case when fj is quadratic and the case when the Hessian
of fj is positive definite.

Case 1 (fji(·) is quadratic). Let

fji(x) =
1
2
〈Ajix, x〉 + 〈aji , x〉 + cji ,

where cji ∈ �, aji ∈ �n, and Aji is an n× n symmetric positive semidefinite matrix.
Since f ′′

ji
(·) = Aji , we obtain from (3.15) that

〈Aji (p− xi), p− xi〉 = 0,

which means that p− xi is a minimizer of the nonnegative quadratic form 〈Ajiy, y〉,
y ∈ �n. Hence, its gradient is zero at this point:

2Aji(p− xi) = 0.

Recalling again that f ′′
ji

(·) = Aji , this implies (3.14).
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Case 2 (f ′′
ji

(·) is positive definite). Under this assumption, we immediately obtain
from (3.15) that

p− xi = 0,

which again implies (3.14).
Now recalling that |Ĩk| is uniformly bounded (assumption (H)) and summing up

(3.14) for all i ∈ Ĩk, we obtain that

0 = lim
k→∞

∑
i∈Ĩk

tki

∫ 1

0

f ′′
ji

(xi + θ(p− xi))(p − xi)dθ;

i.e., the second term in (3.9) asymptotically vanishes, and we have that

(3.16) μ(x− p) = lim
k→∞

gk = lim
k→∞

m1∑
l=0

qk
l f

′
l (p).

As the multiplier s in (3.12) is unique, it then follows from (3.16) and (3.12) that

(3.17) lim
k→∞

qk
l = sl > 0, l = 0, 1, . . . ,m1.

Moreover, using the mean-value theorem, (3.17) and (3.14), we have that, for all
l = 0, 1, . . . ,m1, it holds that

slf
′
l (p) = lim

k→∞
qk
l f

′
l (p)

= lim
k→∞

∑
i∈Ĩk; ji=l

tki f
′
ji

(p)

= lim
k→∞

⎛
⎝ ∑

i∈Ĩk; ji=l

tki

(
f ′

ji
(xi) +

∫ 1

0

f ′′
ji

(xi + θ(p− xi))(p− xi)dθ
)⎞

⎠
= lim

k→∞

∑
i∈Ĩk; ji=l

tki f
′
ji

(xi) = vl.

Given that V(p) = lin{f ′
l (p) − f ′

0(p), l = 1, . . . ,m1} and taking into account that
sl > 0 for all l = 0, 1, . . . ,m1, this verifies our claim.

4. Numerical benchmark on max-type functions. In order to assess from
a practical point of view the theoretical statement of Theorem 3.3, we hereby present
some numerical results on a collection of functions having the form (2.1).

We consider 180 randomly generated functions, which are all defined as pointwise
maxima of a finite collection of convex quadratic functions. The test-set is defined in
such a way that

– for each problem the minimum is attained at x̄ = 0 ∈ �n ;
– strong transversality (2.5) and nondegeneracy (2.8) are satisfied at x̄.

We have performed numerical tests using four different variants of the stopping
rules for approximating the proximal point. The results are reported in the form
of tables and performance profiles [5] for different criteria, including accuracy and
number of iterations.
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4.1. Generating strongly transversal structured functions. We have used
the test-set in the max-quad family created in [9], with test functions defined as
pointwise maxima of a finite collection of quadratic functions:

(4.1) f(x) := max
{
fj(x) :=

1
2
〈Ajx, x〉 + 〈aj , x〉 + cj , j = 0, 1, . . . ,m

}
,

where Aj are (n × n)-positive definite matrices, aj ∈ �n, and cj ∈ �. This family of
functions belongs to the class considered in (2.1) and allows us to create many different
examples by choosing the dimension of the space n and the number of structure
functions m and then randomly generating m objects Aj , aj , and cj determining the
structure functions (Aj is generated by adding to a random matrix its transpose and
then the identity matrix multiplied by one plus the absolute value of the smallest
eigenvalue). In this setting, taking x̄ = 0 ∈ �n and fixing the dimension m1 of the
V(x̄)-space, we have (reordering indices if necessary) that

f(0) = cj = C for j = 0, 1, . . . ,m1, cj < C for j = m1 + 1, . . . ,m,

∂f(0) = conv{aj : j = 0, . . . ,m1}.
If the random vectors aj , j = 0, . . . ,m1, are generated so that they are affinely
independent and

∑m1
j=0 t̄jaj = 0 for some t̄ > 0, then conditions (2.5) and (2.8) are

satisfied.
For comparison purposes, we generate problems for which the proximal point p

and the V-space at p are computed a priori. We proceed as follows. For each function,
we start by fixing the desired proximal point to be a small vector p, close enough to
x̄ = 0 and satisfying (2.9). We then set the proximal parameter μ = 1.01L + 1 for
the Lipschitz constant

L = max{‖Aj‖ : j = 0, 1, . . . ,m}.
Having this information, we take as the starting point of the iterative process

(4.2) x = x0 = p+
1
μ
γ for γ ∈ conv{Ajp+ aj : j = 0, . . . ,m1},

a choice equivalent to having p = pμ(x0). We further set the values of ε and δ
(cf. Proposition 3.1) equal to ‖x0‖ and ‖x0‖/2, respectively, and we check whether
μ ≥ 2L/‖x0‖ (which guarantees that Proposition 3.1 holds true). If this is not the
case, the value of μ is increased and the process is repeated, until the desired relation
holds.

For our benchmark, we use 9 different combinations of the values of n, m, and
m1 and randomly generate 20 test functions for each combination. All components
of the matrices Aj , vectors aj , and scalars cj are chosen randomly within the interval
[−100, 500]. The values of n, m, andm1 are reported in Table 4.1 as well as the average
values of μ and the maximum number of iterations allowed in the corresponding runs.

In our runs, only active bundle elements are kept at each iteration. Hence, in (3.3)
the cutting-planes model is defined by taking the maximum of the affine functions for
i ∈ Ĩk−1. The quadratic program (3.2) is solved by the built-in matlab QP solver.

4.2. Assessing solution quality. In order to determine the quality of the VU-
subspaces obtained from the objects computed by the bundle technique, we use four
different criteria.
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Table 4.1

Some relevant data of the test-set.

Combination # 1 2 3 4 5 6 7 8 9
n 5 5 20 20 20 50 50 100 100
m 4 4 10 20 20 15 60 30 30

m1 = dimV(p) 3 1 3 3 15 8 8 5 25
μ 6129 5310 5456 13193 12642 15599 14067 18875 17187

MaxBB 100 100 300 300 300 400 400 400 400

4.2.1. Prox accuracy. The first measure is the one from [9] and is based on the
knowledge of the exact proximal point p = pμ(x0). More precisely, let xbest denote
the point triggering the stopping test of the analyzed variant at the iteration kbest.
Then the formula

(4.3) AC := − log10

(‖xbest − p‖
1 + ‖p‖

)

measures the accuracy in computing the actual proximal point. (Adding the term 1 to
‖p‖ in the numerator of (4.3) measures the absolute accuracy when ‖p‖ is small and
the relative accuracy otherwise—in our case p is close to x̄ = 0.) On this semilog scale,
a positive number (roughly) represents the number of digits of accuracy obtained with
the variant.

4.2.2. V-approximation. The next two measures estimate the quality of the
estimated V-subspace, where we use the short notation V to refer to V(p). An im-
portant point arises in relation to the amount of knowledge made available by the
black-box. For the max-quad family, the black-box (3.1) gives as its output an index
ji ∈ {0, 1, . . . ,m}, corresponding to some structure function yielding the maximum.1

As a result, knowing the structure functions fj, after each call to the black-box
- the function value f(xi) and
- a subgradient γi ∈ ∂f(xi)

are available, via the relations f(xi) = fji(xi) and γi = f ′
ji

(xi). In fact, the cutting-
planes models (3.3) can be built solely based on the pairs (f(xi), γi). No additional
knowledge (such as the identities f(xi) = fji(xi) and γi = f ′

ji
(xi) = Ajix

i + aji , or
the number of active structure functions m1 + 1) is used by the algorithm to define
the iterates in (3.2). The actual knowledge of the different indices ji is used only
to approximate the vectors vl/sl, l = 0, 1, . . . ,m1 (in the notation of Theorem 3.3),
that estimate a basis for V . Specifically, keeping in the bundle memory the structure
indices ji allows us to build the vectors

(4.4) wk
l :=

∑
i∈Ĩk; ji=l t

k
i f

′
ji

(xi)∑
i∈Ĩk; ji=l t

k
i

that asymptotically tend to vl/sl, l = 0, 1, . . . ,m1.
For other classes of functions, however, the corresponding black-box may provide

only f(xi) and γi ∈ ∂f(xi) but not the index ji. In such cases, when full structure
knowledge is not available, one can still build bundle iterates {xk} that approximate
the proximal point. Whether or not one can still approximate the V-space remains

1In our runs, iterates stay in the ball Bε(x̄) defined in Proposition 3.1, so in fact the output
indices belong to the subset {0, 1, . . . , m1}.
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an open theoretical question. A purely practical answer to this question would be to
estimate V by replacing the unknown vectors wk

l by the subgradients γi provided by
the black-box. Note that, by (3.17), for k sufficiently large the accumulated multipliers
qk
l are all positive. This means, in particular, that for each l ∈ {0, 1, . . . ,m1} there is

a bundle index il such that tkil
> 0 and f ′

jil
(xil) = f ′

l (x
il). Hence, from some iteration

on, all the relevant structure gradients are present in the bundle. This remark justifies
the variant Vγ below as an alternative approach, reasonable but heuristic, to estimate
the V-subspace.

We outline next two alternative approaches to compute V , called Vw and Vγ . We
emphasize that the developed theory covers the Vw variant, while Vγ is a heuristic.

At the final iteration kbest, the final active bundle indices Ĩkbest, defining gkbest

in (3.5), are available. The two alternative variants are the following.
Vw: Compute the vectors wkbest

l , given by (4.4), for all l ∈ Lbest, where

Lbest :=
{
l ∈ {0, 1, . . . ,m1} : ∃i ∈ Ĩkbest for which ji = l

}
.

Take l1 ∈ Lbest, and form a matrix V best
w such that

the columns of V best
w span the space lin

{
wkbest

l − wkbest
l1 , l ∈ Lbest \ {l1}

}
.

Vγ : Take i1 ∈ Ĩkbest, and form a matrix V best
γ such that

the columns of V best
γ span the space lin

{
γi − γi1 , i ∈ Ĩkbest \ {i1}

}
.

Matrices V best correspond to a basis of the subspace V(xbest), and the respective rank
gives the approximate V dimension. As for the U-subspace, in both cases we take

Ubest = (V best) ⊥.

Accordingly, the U-component of gk is given by gk
U = (Ubest) �gk, with k = kbest.

Our second measure of the quality of approximation computes the relative error
in the V-dimension:

(4.5) RE :=
dimV − dimV(xbest)

dimV .

Note that a negative (respectively, positive) value of RE indicates an underestimation
(respectively, overestimation) of the exact V-dimension.

A third measure, computed only if dimV = dimV(xbest), refers to the orthogo-
nality of the relevant subspaces in terms of absolute errors:

(4.6) AE := max
(
‖V �Ubest‖, ‖U�V best‖, ‖Ubest�V ‖, ‖V best�U‖

)
,

where the matrices V and U represent the exact subspaces V and U , respectively.
Specifically,

the columns of V span the space lin
{
f ′

j(p) − f ′
0(p), j = 1, . . . ,m1

}
,

and U = V ⊥.
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4.2.3. Quality of bundle approximation. We can also check closeness of
variants Vγ and Vw by measuring how well the final active bundle subgradients
γi, i ∈ Ĩkbest, approximate the accumulated vectors wkbest

l . At the final iteration, the
accumulated multipliers qkbest

l , l ∈ Lbest, are compared with the convex coefficients
solving the linear system[

f ′
0(p) . . . f ′

m1
(p)

1 . . . 1

]
q̄ =

(
μ(x0 − p)

1

)
.

The corresponding measure is

(4.7) CF := ‖qkbest − q̄‖∞.
Finally, when the stopping test is triggered, we also count those indices of relevant
structure functions that are absent in the final active bundle:

(4.8) HM := |{0, 1, . . . ,m1} \ Lbest| .
For the approximation to be good, we expect these last two measures to be small or
null: CF ≈ 0 and HM = 0.

4.3. Variants composing the benchmark. We consider four variants of rules
for stopping iterations.

Serious-step stopping test. This is the classical descent test in bundle meth-
ods, which stops iterations of approximating the proximal point pμ(x0) once
sufficient decrease with respect to f(x0) is achieved:

f(xk) − f(x0) ≤ σ̃
(
f(x0) − ψk−1(xk)

)
.

In our experiments, we take σ̃ = 0.99 (bundle methods usually employ smaller
values for this Armijo-like parameter, for example, σ̃ = 0.1; we set a higher
value here to strengthen the test). We refer to this variant as Ser99. At the
final iteration, the V subspace is estimated with variant Vw.
VU-stopping tests. Similar to [24], the iteration process stops when

f(xk) − ψk−1(xk) ≤ σ‖gk
U‖2

for some σ ∈ (0, 1). For σ = 10−4, we use Uw and Uγ and refer to the
respective variants as VU-w and VU-γ. At the final iteration, the V subspace
is estimated with the corresponding variant, namely, Vw or Vγ .
MaxBB-stopping test. The iteration process stops after the black-box is called
k =MaxBB times, with MaxBB given in Table 4.1. We shall refer to this variant
as MaxBB. At iteration MaxBB, the V subspace is estimated with variant Vw.

The last stopping rule, in particular, is meant to test the asymptotic convergence
result in Theorem 3.3. As such, it is expected to give the best performance.

4.4. Tables and performance profiles. Using (4.3)–(4.8), we calculated the
corresponding measures for each test run (180 total) on all the variants. In Table 4.2
we report the smallest, the mean, and the largest values obtained for measures (4.3),
(4.5), and (4.6) (for each test set and each variant) as well as the average number of
calls of the black-box (“BB mean”) and the number of failures (“bad run”), either by
false positives—finding a wrong V-dimension after triggering the stopping test—or by
reaching the maximum number of iterations.
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Table 4.2

Accuracy (AC) obtained in prox, relative error (RE) in V-dimension, absolute error (AE) in
VU-orthogonality, number of black-box (BB) calls, and failures (out of 180 runs).

AC RE AE BB Bad
Variant min mean max min mean max min mean max mean Run
Ser99 0.00 2.61 6.16 0.00 0.72 0.96 0.00 0.00 0.07 2 160
VU-γ 6.11 8.15 10.25 0.00 0.00 0.00 0.00 0.00 0.00 44 15
VU-w 6.11 8.15 10.25 0.00 0.00 0.00 0.00 0.00 0.00 44 15
MaxBB 6.11 8.43 10.26 0.00 0.00 0.00 0.00 0.00 0.00 300 0

In terms of accuracy of the approximate proximal point, results are very good
for VU-γ and VU-w. As expected, the highest accuracy was obtained with the
MaxBB variant, reflecting the asymptotic result stated in Theorem 3.3. By con-
trast, the Ser99 variant always stopped at the second iteration and gave rather poor
performances in all runs (we had set a minimum of 2 iterations at each run, and this
stopping test was always triggered at this minimum). Since in all runs the results ob-
tained with Ser99 correspond to x2, the corresponding mean accuracy can be taken
as an indication of the average number of exact digits already present in the starting
point x0.

In terms of quality of the V-approximation, Ser99 failed 160 out of 180 cases
in finding the exact V-dimension. The remaining variants, by contrast, exhibit a
high level of precision, and at least for these runs, both VU-stopping tests seem to
offer a good compromise between the number of calls to the black-box and accurate
estimation of the V-subspace. In fact, both variants VU-γ and VU-w gave practically
identical results. Over the 180 runs, they always stopped at the same iteration,
differing only in the V-basis estimation. Both variants stop after an average of 44
iterations, having found the exact dimension of the subspace V = V(p), with very
similar bases V best

w and V best
γ . An explanation for the practically identical behavior of

variants VU-w and VU-γ is that, in our experiments, at the final iteration we have
that |Ĩkbest| = dimV + 1 and for each l = 0, . . . ,m1,

{i ∈ Ĩkbest : ji = l} = {il} =⇒ qkbest
l = tkbest

il
and wkbest

l = f ′
jil

(xil ).

In other words, the active bundle information proves to be rather economical, keeping
only one structure gradient per index l = 0, . . . ,m1.

To show in a graphical manner the degree of precision obtained by each variant,
we also present some performance profiles. The performance profile in Figure 4.1 uses
the scale (4.3) to plot the AC value on the x-axis versus the portion of tests which
successfully achieved this value on the y-axis. Hence, the location where a profile first
decreases from the y-axis value 1 describes the gain in accuracy the variant achieved
on every problem, while the location where a profile first obtains a y-axis value of 0
yields the best gain in accuracy achieved using that variant. More generally, variants
whose profiles are “higher” have outperformed algorithms with “lower” profiles.

We see in Figure 4.1 that both VU variants obtained at least 6 digits of accuracy
in all the runs. Since starting points were taken “close enough” for our (local) results
to hold, we analyze a posteriori the initial distance to the smooth manifold M. Thus,
for each one of the 180 starting points, we checked how many structure functions were
active. We observed that only 3 starting points satisfied I(x0) = I(p), namely, 2 and
1 starting points in combinations # 2 and # 3, respectively.

To determine the impact of the locality ball Bε(x̄), we made an additional test,
performing again 180 runs with the same functions, this time eliminating the checking
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Fig. 4.1. Performance profile of prox-accuracy.

Fig. 4.2. Performance profile of relative error in V-dimension.

of closeness of x0 to p. Since by (4.2), ‖x0−p‖ = γ/μ, for the same γ and p considered
in each one of the first 180 runs, we set μ = 1 to “push” the new starting point away
from the smooth manifold (by about a factor of 10000 with respect to the previous
runs, cf. Table 4.1). The corresponding results are highly instructive: Out of the 180
functions considered, variant VU-w succeeded in finding the exact V-dimension for
only 4 cases. Moreover, after having spent an average of 185 calls to the black-box,
neither of the VU variants reached more than two digits of accuracy in the prox
calculation.

With respect to the relative error in V-dimension, measured by the RE quotient
in (4.5), we observe in the performance profile in Figure 4.2 that variant Ser99 found
the exact dimension in about 10% of the runs, while the VU variants succeeded
in all the cases. This last result, in particular, means that the “bad run” column
in Table 4.2, showing 15 failures for the VU variants, corresponds to failures in
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Fig. 4.3. Performance profile of absolute error in VU-orthogonality.

triggering the stopping test before reaching MaxBB and not to failures in finding the
exact V-dimension.

Figure 4.3 assesses once more the excellent performance of the VU-variant. For
this performance profile, only successful runs (for which RE = 0) were considered,
and this is the reason why 0.11 (≈ (180 − 160)/180) instead of 1 is the maximum
value reached by the Ser99 variant on the y-axis.

Results using measures (4.7) and (4.8) again show that VU-γ and VU-w are
comparable. In all the 180 cases HM = 0, with an average value of CF = 0.02.

Since the bundle scheme incorporates the knowledge of only 1 subgradient at
each iteration, at the very least 1 + dimV iterations are needed for having any hope
of getting the right V-dimension. We computed the relation between the number of
calls to the black-box and the dimension of the V-space, again averaging only over
the cases where the stopping test was triggered and the right V-dimension was found:

BBcalls− 1 − dimV
1 + dimV .

We found that VU-w needed in average 8 iterations per structure gradient, so higher
V-dimensions may require a high number of iterations to yield satisfactory estimations.
It could then be thought that for higher dimensions a standard bundle method, like
the code n1cv2 derived from [16], might be preferable. The computational work of
n1cv2 per iteration is comparable to the variant Ser99 (it is actually slightly cheaper,
as Ser99 has the additional linear algebra calculations to compute the matrices V best

and Ubest). A VU-method, like the one in [24], is more expensive, as it solves a second
quadratic programming problem per iteration to make the U-Newton step. In spite
of this apparent handicap, it is important to keep in mind the fact that standard
bundle solvers tend to exhibit slow (linear or even sublinear) rates of convergence
when approaching the solution. A graph comparing the superlinear convergence of
the VU-algorithm with the sublinear convergence of n1cv2 (which is one of the most
efficient bundle solvers) can be found in [24, Fig. 1]. When high precision is of interest,
instead of making insignificant progress with many cheap iterations, it is preferable
to spend more effort per iteration to progress fast, using the VU-approach. Also,
when close to a solution, the accumulated bundle is usually rich enough to allow good
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approximation of the proximal point, needed in the VU-approach, at a reasonable
price.

5. Concluding remarks. We have shown that for a certain class of structured
nonsmooth convex functions, when close to a minimizer, the subspace along which
the function behaves smoothly (allows second-order approximation) can be recovered
from the objects generated by the bundle subroutine in the process of computing prox-
imal points. As a consequence, superlinear Newton steps can be computed, providing
an important ingredient for implementable second-order algorithms for nonsmooth
optimization. More precisely, such algorithms would iteratively follow the manifold
of smoothness by approximating proximal points, then obtain constructive character-
ization of the subspace along which the function allows second-order expansion, and
finally compute the corresponding Newton steps. The presented numerical experi-
ments support those conclusions.
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