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Abstract 

We consider the method for constrained convex optimization in a Hilbert space, consisting 
of a step in the direction opposite to an ek-subgradient of  the objective at a current iterate, fol- 
lowed by an orthogonal  projection onto the feasible set. The normalized stepsizes ek are exog- 
enously given, satisfying ~ = 0  c~k ec, ~ = 0  c~ < ec, and ek is chosen so that ek ~</~k for some 
# > 0. We prove that the sequence generated in this way is weakly convergent to a minimizer if 
the problem has solutions, and is unbounded otherwise. Among  the features of  our conver- 
gence analysis, we mention that it covers the nonsmooth  case, in the sense that we make no 
assumption of  differentiability o f f ,  and much less of  Lipschitz continuity of  its gradient. Also, 
we prove weak convergence of  the whole sequence, rather than just boundedness of  the se- 
quence and optimality of  its weak accumulation points, thus improving over all previously 
known convergence results. We present also convergence rate results. © 1998 The Mathema-  
tical Programming Society, Inc. Published by Elsevier Science B.V. 

Keywords :  Convex optimization; Nonsmooth  optimization; Projected gradient method; 
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1. Introduction 

We consider in this paper an extension of the projected subgradient method for 
convex optimization in a Hilbert space H. Let C be a closed and convex subset of 
H and f : H ---+ ~ a convex and continuous function. The problem under consider- 
ation is 
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min f ( x )  (1) 

s.t. x C C. (2) 

The projected subgradient method consists of  generating a sequence {xk}, by tak- 
ing from x ~ a step in the direction opposite to a subgradient o f f  at x k and then pro- 
jecting the resulting vector orthogonally onto C. When C = H and f is differentiable 
this is just the steepest descent method. Different variants of  the method arise accord- 
ing to the rule used to choose the stepsizes. Frequently, these are chosen so as to en- 
sure functional decrease at each iteration, e.g. through either exact one dimensional 
minimization or an Armijo-type search. The first option cannot be implemented in 
actual computation and the second one works only when f is smooth. In the non- 
smooth case the only reasonable alternative seems to be exogenously given stepsizes. 

oo 2 In this paper we use stepsizes e~ satisfying ~ = 0  ~k = oc, }-~,k=0 c~k < oc. This selection 
rule has been considered several times in the literature (e.g. [1,2]). 

We also generalize the projected subgradient method by allowing inexact compu- 
tation of the subgradient: the kth direction need not be a subgradient o f f  at x k but 
rather an ek-subgradient, where {~k} is a nonincreasing sequence of nonnegative 
numbers satisfying ek ~</~e for some # > 0. We remark that these two features (ex- 
ogenously given stepsizes and inexact subgradients) have as a consequence that the 
sequence of functional values need not be decreasing, which provokes considerable 
complications in the convergence analysis. Nevertheless, we establish that the se- 
quence {x k} is always a "minimizing" one (in the sense that l i m i n f k ~ f ( x  k) 

= in fx~c f  (x) ), that it is weakly convergent to a solution of (1) and (2) when this 
problem has solutions, and that it is unbounded otherwise. 

We emphasize three features of  our convergence analysis. 

1. We make no differentiability assumptions on f ,  and much less on Lipschitz con- 
tinuity of  its gradient. Convexity and continuity o f f  are enough. We also need 
no boundedness assumption either on C or on the level sets o f f ;  in fact the so- 
lution set might even be unbounded. 

2. We prove weak convergence of the whole sequence to a solution (provided that 
a solution exists) rather than just boundedness of  the sequence and optimality of  
all its weak accumulation points. 

3. All our results hold in a Hilbert space (of course, in the finite dimensional case 
we get strong, rather than weak, convergence). 

In Section 2, after a formal statement of  the algorithm, we will compare our result 
with other related results in the literature, particularly in connection with the fea- 
tures mentioned above. 

2. Statement of the algorithm and discussion of related results 

Let H be a Hilbert space, C a closed and convex subset of H, and f : H ~ ~ a 

convex and continuous function. We assume that f is finite valued, so that its effec- 
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tive domain is H. We remind that for ~ ~> 0 the e-subdifferential of f at x is the set 
&f(x )  defined by 

O~f(x) = {u C H: f ( y )  - f ( x )  >~ (u,y - x) - e for all y E H}. (3) 

Since f is convex and continuous, and its effective domain is H, 0J'(x) is nonempty 
for all e ~> 0 and all x E H [3], Lemma, p. 174 and Theorem 9, p. 112. We also men- 
tion that a sufficient condition for continuity of a convex function f at any x in H is 
boundedness o f f  at some neighborhood of some ~ E H [3], Theorem 8, p. 110. We 
need the following boundedness assumption on O,:f. 
(A) O,f is bounded on bounded sets, i.e. UxcB &f(x )  is bounded for any bounded 

subset B of H. 
In connection with (A) we mention that & f  is always locally bounded (i.e. for any 
c H there exists a neighborhood V of_~ such that (-Jxcv O,f(x) is bounded). This fol- 

lows from local boundedness of Of [4], Theorem 1 and the fact that for all bounded B, 

diam(Uxc B O~f(x)) <~ diam(Ux~ 8 Of(x)) + e/diam(B), where diam(B) = sup { IIx -YlI" 
x ,y  E B} [5], Lemma 1. In finite dimension, this result implies, through an easy com- 
pactness argument, that (A) always holds, but this is not the case in a Hilbert space, as 

~-'~" '2 , - 1  / s2n the following example shows: let H = g2 and f ( x )  = 2_~=j ~ n) t,x~) . It is easy to 
check that f is well defined, convex and differentiable, with Vf(x)~  = (x,) 2" 1. Take 
now d E ,?2 defined as e{ = 2@ (Kronecker's delta) and observe that Ilgll = 2 for 
all j while IIVf(d)ll = 2 2j 1, i.e. V f  is unbounded in the ball with center at 0 and 
radius 2. A sufficient (indeed also necessary) condition for (A) to hold is that If1 
is bounded on bounded sets: in order to prove that I, JxcB OJ'(x) is bounded, take 

u E & f ( x ) ,  let x ' = x + u / l l u l l  and get, by definition of OJ', t l u l l = ( u , x ' - x )  
<~f(x') - f ( x )  + e <~ If(x')l + If(x)l + e. Let B' = {x ~ H: IIY - xll ~< 1 for some 

y E B}. Then B' is bounded and x' E B', so that we get a bound of Ilull in terms of e 
and the bounds of Ill on B and B'. We also remind that the subdifferential Of(x) of 
f coincides with Oof(x), i.e. the right hand side of Eq. (3) with e = 0. 

Take a sequence {c~k} of nonnegative real numbers satisfying 
oo 

~-~ek = oo, (4) 
k - 0  

o<3 

k - 0  

and a nonincreasing sequence of nonnegative real numbers {ek} such that there exists 
/z > 0 satisfying 

ee ~</*~ (6) 

for all k. Let Pc' : H --, C be the orthogonal projection onto C. The algorithm is de- 
fined as follows. 

Init ia l izat ion 

x ° E H.  (7) 
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Iterative step. Given x k, i f0  E Of(x k) then stop. Otherwise, take u k c O~kf(xk), U k ¢ O, 

let rlk = max{ l ,  ][ukll} and define 

X k+l= Pc(X  k --O~klgk~l~k J (8) 

with c~, ek, satisfying Eqs. (4)-(6). 

We make now some remarks on Eqs. (7) and (8). First, note that c~ -- ek = 1/k 
satisfies Eqs. (4)-(6). Secondly, in connection with the stopping criterion, it is usually 
assumed, in the nonsmooth case, that an "oracle" is available which can provide an 
e-subgradient o f f  at any x E H. Our stopping criterion requires a little bit more: be- 

sides the oracle, we assume that we have a procedure which decides whether a given 
vector (the null vector in our case) is or is not a subgradient o f f  at x. This looks rea- 
sonable, since checking the subgradient inequality for a given vector should be easier 
than finding a vector which satisfies it, but if such a procedure is not available, then the 
iterative step should be rewritten as: "Take u k E O~k.f(x~); if u k = 0 stop, otherwise let 
r/~ . . . .  ". In this case two consequences follow. First, in the stopping case we can only 
ensure that x k is an ek-solution (meaning that f ( x  k) ~ f (x*)  + ek, where x* is a solution 
o f ( l )  and (2)). Secondly, the sequence can hit an exact solution at iteration k and nev- 
ertheless continue, converging eventually to the same solution or to another one. 

We discuss next convergence results on algorithms related to (7) and (8). First we 
mention that assuming differentiability o f f ,  finite dimension of H and Lipschitz con- 
tinuity of  V f  with constant L, it is rather straightforward to prove that {x k} is 
bounded and all its accumulation points are solutions of  (1) and (2), when the prob- 
lem has solutions. In this case (5) can be relaxed to c~ < 2L -I (see e.g. [2] for the finite 
dimensional case, i.e. H = ~ ) .  The unrestricted case (i.e. C = H) in a Hilbert space 
with nonsmooth f and exact subgradients (i.e. x ~+1 =xk--C~uk/lluk[I, with 
u k E Of(x~)) is considered in [6], where it is proved mainly that the sequence is min- 
imizing (i.e. liminfk_~oof(x k) = infxcuf(x))  but no results are given on convergence of 
{x~}. In this work Eq. (5) is relaxed to l i m ~ c~k  = 0. 

The constrained case with exact subgradients and the same rule for c~ (i.e. with 
l i m k ~ e k  = 0 instead of (5)) is studied in [7], but only in the case of  finite dimension- 
al H. In addition, boundedness of  C or of  the level sets o f f  is assumed. The result is 
the same as in [6], namely that {x k} is a minimizing sequence. 

In [8] the unrestricted case is considered in a Hilbert space with f differentiable 
and V f  Lipschitz or H61der continuous, c~ is given by explicit formulae in terms 
of the Lipschitz or H61der constants. Under  these hypotheses it is proved that if 
the problem has a sol'ution then {x k} is bounded and all its weak accumulation 
points are optimal. For  finite dimensional H,  convergence of  the whole sequence 
{x k} to a solution is established. The algorithm uses exact gradients (i.e. 

u ~ = Vf(xk)). This work, as well as [9], also presents convergence rate results, which 
are related to our results in Section 3. The constrained case with nonsmooth f ,  and 
ek satisfying (4) and lim~o~c~ = 0 (instead of  (5)), is studied in [9]. The iterative step 
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is given by a formula similar to (8) with u k E Of(xk), but an error term is allowed, 
as in [10], which we discuss below. It is assumed that Of is uniformly monotone, 

i.e. (u - v , x -  y) ) q~(llx- yll) for all x , y  E H, u C Of(x),  v E Of(y) ,  where 
~o : R+ --+ ~+ satisfies q~(0) = 0 and some additional regularity conditions. In fact, 
the algorithm is discussed in the context of variational inequalities and a general op- 
erator T is used instead of Of. We mention that uniform monotonicity of Of does 
not imply differentiability o f f ,  but it implies uniqueness of  the solution. Under this 
rather strong assumption on Of, it is possible to prove strong convergence of {x k } to 
the unique solution of the problem. 

The unconstrained case with exact subgradients and our rule for ~k (i.e. Eqs. (4) 
and (5)) is studied in [1]. The iteration is of the form x ~+1 = x k - ekuk/llu~ll with 
u k E Of(xk). In this work convergence of the whole sequence to a solution is proved 
(provided that the problem has solutions) without further assumptions on f ,  like 
those used in [8,9], but the result is obtained only in the finite dimensional case, pre- 
viously considered in [11,12]. In infinite dimension, it is only proved in [1] that {x k} is 
a minimizing sequence, like in [7,6]. 

The case of inexact subgradients is considered in [9,10]. The iteration in [9,10] is of 
the form x~+l= Pc(x ~ -  c~(uk+ vk)) with ukE 0f(xk). In [9] it is assumed that 
lim~_~v k = 0. In [10], on the other hand, the hypothesis is that I1¢11 ~< ~, i.e. an error 
of magnitude less that z is allowed in the computation of the subgradient. In [10] f is 
not assumed to be convex, just locally Lipschitzian, but in the convex case this algo- 
rithm is virtually identical to (7) and (8), since O~f(x) contains and is contained in the 
image through Of  of appropriate balls around x. Ref. [10] characterizes the set of at- 
tractors of the sequence {xk}, which is shown to consist of approximate solutions of 
the problem. 

Finally we mention briefly some similar results for the unconstrained and smooth 
case with an Armijo-type rule for the ek's. It is rather straightforward to prove 
boundedness of the sequence and optimality of the accumulation points assuming 
boundedness of the level sets o f  f and Lipschitz continuity of its gradient, and this 
result can be found in several text books (e.g. [13,2]). Without such assumptions, i.e. 
assuming just convexity and continuous differentiability o f f ,  together with existence 
of solutions, convergence of the whole sequence to one solution has been established 
in [14-16] for finite dimensional spaces, and in [17] for Hilbert spaces. Our analysis in 
this paper uses several results which appear in [15,17], particularly the notion of qua- 
si-Fej6r convergence. 

Some of the results presented here have been further extended by the authors in 
the subsequent paper [21], where convergence analysis for subgradient-type methods 
is developed for uniformly smooth and uniformly convex Banach spaces. 

3. Convergence analysis 

We need first two preliminary results unrelated to the algorithm. The first one is 
needed mainly to ensure uniqueness of the weak accumulation point of  {x~}. The sec- 
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ond one, on series of nonnegative real numbers, is related to conditions (4) and (5) 
on the c~'s. Loosely speaking, condition (5) ensures that the stepsizes are small en- 
ough to guarantee boundedness of {x~}, while Eq. (4) ensures that they are not 
too small, in which case {x ~ } could get stuck midway to the solution set, i.e. converge 
to a point which is not a solution. Our second preliminary result will be used together 
with Eq. (5) to establish that {x ~} is a minimizing sequence, i.e. that 
l i m i n f ~ f ( x  ~) = inf~ecf(x). In order to state our first result we need a definition. 

Definition 1. Let H be a Hilbert space and V a nonempty subset of H. A sequence 
{x k} c H is said to be quasi-Fej6r convergent to V iff for all ~ c V there exists k ~> 0 
and a sequence {6k} C N+ such that ~ - 0  6k < oc and II xk+l - ~l[ 2 ~< IIx k -  112 + 6~ 
for all k/>/c. 

This definition originates in [18] and has been further elaborated in [19]. 

Proposition 1. I f  (x k) is quasi-Fej& convergent to V then." 
1. {x k} is bounded, 
2. {llx k - 112} converges for all ~ E V, 
3. if all weak accumulation points o f  {x k } belong to V then {x k } is weakly convergent, 

i.e. it has a unique accumulation point. 

Proof. (i) Using recurrently Definition 1 for k >/c, I[x k - ~][2 ~< [ix ~ _ ~ll2 + }-~jk=~ 6j 
~< ilx f _Yll2 + ~ - 0  6j. So the tail of the sequence, i.e. {xk}~>~, is contained in a 
certain ball centered at ~, and the result follows. 

(ii) The sequence {[[x k -2112} is bounded by (i). Assume that it has two accumu- 
lations points, say v and 4. Take subsequences {x jk} and {x t~ } of {x ~} such that 
limk~oollx jk -~l l  2 = v, limk_+~llx ~k -~l l  2 = 4. Fix 2 > 0. Take /~ such that g~ >/c 
and II xek - ~l[ 2 ~< ~ + ½,~ f o r  all k > i.  Take k ~>/~ such that ~i~e~ 6~ ~< ½2. Using recur- 
rently Definition 1, we get, for all k such that jk > gf, 

Jk - 1 
Hxjk __ ~.[[2 ~ I[xg ~ -- ~lJ2 q_ Z 6i ~ l[ xg~ -- "yl]2q- Z ¢5i ~ I Jx g~ -- .~.[]2 ]_ 

2 2 
~ < v + ~ + ~  ~<v+2 (9) 

using g~ >/~ in the leftmost inequality and k >/~ in the rightmost inequality. Taking 
limits in Eq. (9) as k goes to oc, we get ~ ~< v + 2 for all 2 > 0. It follows that ~ ~< v. 
Reversing the roles of {x e~ } and {x jk } a similar argument shows that v ~< 4, and we 
conclude therefore that ~ = v. It follows that all accumulation points of 
{[[x ~ -yl]  2} coincide, i.e. that { I]x k -~l l  2} converges (not necessarily to 0). 

(iii) Existence of weak accumulation points of {x k} follows from (i). Let ~, 2 be two 
weak accumulation points of {x k } and {xL }, {x L } be two subsequences of {x k } weak- 
ly convergent to 2,2 respectively. Let rt = limk~o~[lx k -2112, ~ = lim~oollx ~ -2112. ~z 
and ~ exist by (ii), since 2,2 belong to V by hypothesis. Let co = 112- 21[ 2. Then: 
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IIx:~ -~11 ~ IIx:~ -~11 ~ - -  + I1~ - ~1t ~ + 2( xyk - 2,2 - 2), (10 )  

IIx:~ -~11  ~ IlxJ; - ~ i l  2 = + I1~ - *11 z + 2(xJ~ - ~ , ~  - , ) .  ( 11 )  

Take limits in Eqs. (10) and (11) as k goes to oc, observing that the inner products in 
the right hand sides of Eqs. (1) and (11) converge to 0 because 2,2 are the weak limits 
of {x f~ }, {x L } respectively, and get, using the definitions of ~, (, co, 

rc = ~ + co, (12) 

~ = ~ + c o .  ( 13 )  

From Eqs. (12) and (13), we get n - ( = co = ~ - re, which implies co = 0, i.e. 2 = 2. It 
follows that all weak accumulation points of {x k} coincide, i.e. that {x k} is weakly 
convergent. [] 

A slightly stronger result holds in the finite dimensional case: it is enough to have 
one accumulation point in V in order to ensure convergence of {x% The proof, 
much easier than in the Hilbert space case, can be found in [15]. In the finite dimen- 
sional case, as a consequence of the observation just made, item (ii) of Proposition 2 
is not needed. The result of Proposition 1 (ii) in the finite dimensional case appears in 
[12, Lemma 3.2.1]. 

oc Proposition 2. Let {ak}, {ilk} c N. Assume that ak >~ 0 for all k >~ O, ~k=0 k = oc, 
~k~=o c~kflk < oo and there exists [c >~ 0 such that flk >i 0 for k >i lc. Then." 
(i) there exists a subsequence {fl~(k)} of  {ilk} such that limk-+oofli(~) = O. 

(ii) I f  additionally, there exists 0 > 0 such that f lk+l- fi~ <~ 0 ~  for all k then 
limk~o~fl~ = 0. 

Proofi (i) If the result does not hold then there exists a > 0 and k ~> k such that 
oo flk >~ a for all k ~> k, so that oo > ~-~k-~ ~kfik >~ a ~ = ~ a k ,  in contradiction with 

OQ 
~ k = 0  0~k ~--- (30. 

(ii) By (i) there exists a subsequence {fli(~)} of {ilk} such that lim~o~fii(~) = 0. If the 
result does not hold then there exists some a > 0 and some other subsequence {tim(h)} 
of {fl~} such that tim(k) ~> a for all k. In this case, we can construct a third subse- 
quence {fij@)} of {ilk}, where the subindices j(k) are chosen in the following way: 

j(0) = min{g ~> O: fie ~> a} 

and, given j(2k), 

j ( 2 k +  1) = min{g ~>j(2k): fie<<. ½a}, 

j(2k + 2) = min{g ~>j(Zk+ 1): fie >~ a}. 

(14) 

(15) 

(16) 

Note that the existence of the subsequences {fli(k)}, {tim(k)} guarantees that j (k)  is 
well defined for all k >/0. Observe also that, by Eqs. (15) and (16), 



30 Ya.I. Alber et al. / Mathematical Programming 81 (1998) 23-35 

1 
f le~ ~a for j ( Z k ) < ~ g < ~ j ( Z k + l ) - l .  (17) 

Then, since ~k~0 ehflk < OC, we have, in view of Eq. (17), 

oo j (2k+l)  1 ec j(Zk+l) 1 

k=0 k=0 g--j(Zk) k=0 g=j(2k) 
~-~j(2k+l) 1 oo Let 0h = z_~e=j(2h) ~e. It follows from Eq. (18) that ~-~h=0 0h < ec, implying 

lim 0h = 0. (19) 
k~oo  

On the other hand, by Eqs. (15) and (16), we h a v e  flj(Zk) ~ iT, flj(2k+l) ~ ½(7, SO that for 
all k, 

j(2k+ 1)-  1 j(2k+ 1)- 1 
O- 

~<flj(Zk/--flj(2h+l/= Z (fie -- fie+, ) ~< ~ 0ee=0Oh (20) 
g--j( 2k ) g=j(Zk) 

using the hypothesis of (ii) in the rightmost inequality of Eq. (20). By Eq. (20), 
Ok >~ a/(20) for all k, in contradiction with Eq. (19). The contradiction arises from 
assuming that there exists a subsequence of {fib} which is bounded away from 0, and 
therefore limh~flk = 0. [] 

To finish with the preliminaries, we gather in the following proposition two well 
known facts on orthogonal projections, to be used in the sequel. 

P r o p o s i t i o n  3. (i) IIPc(y) - Pc(z)ll ~ l i e  - zlh for ally, z C H. 
(ii) (y - y , y  -Pc(Y) )  >~ O for al ly  E H, y E C. 

Proof. See [2, p. 121]. [] 

The following lemma contains the main ideas of our result. It is written in an in- 
direct way (with a hypothesis on existence of some 2) in order to cover both the cases 
of  nonempty and of  empty solution set. For x E C, let L(x) = {y E C: f ( y )  ~<f(x)}. 

Lemma 1. I f  the algorithm generates an infinite sequence and there exists 2 E C and 
[c >~ 0 such that f (2 )  <~ f ( x  k) for all k >~ [c, then: 

(i) {x h} is' quasi-Fej6r convergent to L(Yc), 
(ii) {f(xh)} is a convergent sequence, and limh_~oof(X h) = f(2) ,  

(iii) the sequence {x h} is weakly convergent to some ~ E L(2c). 

Proof. (i) Take any x C L(2). Let z k = x ~ - (c~k/tlk)U k, fl~ = f ( x  k) f (x ) .  It follows 
from Eq. (8) that x k E C for all k ~> 1, so that Pc(x k) -- x k and therefore 

[[x k+ l -  xk[[ = [[Pc(z k) - Pc(xk)[] <~ []z k -  xk[[ = c~ [[uk][ <~c~k (21) 
t/k 

using Proposition 3(i) and tluhl] ~< qh- We proceed to prove that {x k} is quasi-Fej6r 
convergent to L(2). In the following chain of equalities and inequalities, where we 
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establish a summable upper bound of ~fiJr/k, the equalities are trivial and the in- 
equalities are justified immediately below. We have 

4 + II x~ - xll 2 - I I  ~ + '  - xll 2 > II x~+l - x~ll ~ + II x~ - xll ~ - I I  ~+1 - xll ~ 
= 2(Xk--  X, Xk -- Xk+]) = Z(x~--  X, Xk -- Zk) + 2(Xk -- X, Zk-- Xk+') 

= 20~k(uk ,x  k -  X ) - ~  2(x k -  zk , z ) -  x k+l ) @ 2 ( z  k -- x~z k - - x  k+l ) 
rlk 

= 2 ° ~ ' ( u k , x ~ -  x)  + 2(x k -  z ) , z  k - x k+') + 2(z  ~ - x , z  k - Pc(z))) 
t/k 

>~ 2 • (uk ,x  k - x )  + 2(x e -  z) ,z)  - x k+*) 
rlk 

= 2>(, ,~,x  ~ -  x ) +  2(x ~ -  >,Z) - x ~) + 2 ( e -  z),x ~ -  x ~+1 ) 
t/k 

>>- 2 > ( u ~ , x  ~ -  x ) -  2llx k -  zkll 2 -  2llx ~ -  ~1111 x~ - x~+' It 

>~ 2 > (u~,x~ _ x} _ 2 a2 2~2 Ilu~ll . ,  .2 Ilu~ll 2 -  .~ 

~> 2 ~k (u k, x k - x} - 4~ 2 > 2 c~k DC(x k) - f ( x )  - ek] - 4 ~  

= 2~kflk _ 2~aek _ 4~ 2 
qk ~lk 

~> 2~kfi~/~ - 2~kek -- 4C~ /> 2 ~ f i  k -- (2# + 4 )~  (22) 

using Eq. (21) in the first inequality, Proposition 3(ii) in the second one, Cauchy 
Schwartz inequality in the third one, Eq. (21) again in the fourth one, Ilukll ~< t/e in 
the fifth one, definition of O~kf(x k) in the sixth one, t/k ~> 1 in the seventh one and 
Eq. (6) in the eighth one. 

Since xEL(2)  we have, for k>l[c, f ( x ) < ~ f ( 2 ) ~ < f ( x e ) ,  so that f i e = f (  x k ) -  
f ( x )  >~ O. Therefore we get from Eq. (22), 

~ -II  x~+l 5 / 4  <23/ 0.< 2 - / ~ . <  IIx~-xll 2 - x l lZ+(21 ,+  

for k> /c .  Let 6 ~ = ( 2 # + 5 ) 7 2 ,  7 = ~ = 0  72. By Eq.(5),  7 < o 0  so that 
~ 0  6~ = (2# + 5)7 < oc. Since Ilx ~+1 - xll 2 ~< II x~ - xll 2 + fie for k >/c by Eq. (23) 
and x is an arbitrary element of L(2), we conclude that {x ~ } is quasi-Fejdr convergent 
to L(2), and therefore (i) holds. 

(ii) {x ~} is bounded by (i) and Proposition l(i). Let B be a bounded set containing 
{x ~} and 2 = sup{ea}. Then 

u k ~ O~J(x ~) C ~ f ( x  ~) C U &f(Y)"  (24) 
y~B 

By Eq. (24) and assumption (A), {u e} is bounded, so that there exists p > 1 such that 
]lull] ~< p for all k. Therefore t/~ = max{l ,  ]]uel]} ~< max{l ,  p} = p. By Eq. (23) 

2 ]tx k+l (2/~ + 5)c~ (25) 0 ~ - ~  .< II x~ - xll 2 - - xlt 2 + 
P 
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for k ~>/c and x c L(2). Summing up Eq. (25) from k = ~: to n 
n n 

-p ~ c~k/~k [Ix ° - -  XI I  2 - -  [ IX n + l  - -  XII 2 -t- (2# + 5) ~k=~ C~ 

~< II x° -- XII 2 + (2# + 5)7. (26) 

By Eq. (26), ~ c~/~ k ~< (½p)(ltx ° -  xll2+ (2# + 5)7) < eo, implying 
oo 

c~k/~k < oc. (27) 
k - 0  

Up to now, x is any element of L(2). Take now x -- 2 so that/~k = f (xk)  - f (2 ) .  Ob- 
serve that 

fik+~ - fit = f(xk+~) - f (xk)  <~ { uk+' , xk÷l -- xk )  @ ~k+l 

Itu ÷l[I Itx - x ll + (28) 
using definition of O~:~+~f(x ~÷1) in the first inequality, ek+~ ~ ~ and Cauchy Schwartz 
inequality in the second one and Eq. (6) together with Eq. (21) in the third one. Let 
0 = # + p. Since/~k ~> 0 for k >~/c, we are, in view of (27) and (28), within the hypoth- 
eses of Proposition 2, and we can conclude that l i m t ~ / ~ k -  0, i.e. that 
limk~o~f(x k) = f ( 2 ) .  

(iii) Let ~ be a weak accumulation point of {x~}, which exists by (i) and Proposi- 
tion l(i). If {x j*} is a subsequence of {x k } whose weak limit is ~, then we have, since 
convex functions are weakly lower semicontinuous, 

f (2 )  <~ liminff(xJk)k-~ = l i m  f (xk)  = f (2 ) .  (29) 

It follows from Eq. (29) that ~ C L(2), noting that ~ c C because C is closed and con- 
vex, henceforth weakly closed. We have proved that all weak accumulation points of 
{x ~} belong to L(2). By (i) and Proposition l(iii), we conclude that there exists only 
one accumulation point, i.e. that {x k} is weakly convergent to some ~ E L(2). [] 

Finally, we state and prove our main convergence result. 

Theorem 1. (i) I f  Algorithm Eqs. (7) and (8) generates an infinite sequence then 
l i m i n f k ~ f ( x  k) = infxccf(x).  

(ii) I f  the set S* o f  solutions o f  Problem Eqs. (1) and (2) is nonempty then either 
Algorithm Eqs. (7) and (8) stops at some iteration k, in which case x k c S*, or it gen- 
erates an infinite sequence which converges weakly to some ~ E S*. 

(iii) IJ'S* is empty then {x k } is' unbounded 

Proof. (i) Let f* = infxccJ'(x) (possibly f* = -oc) .  Since x k ~ C for all k ~> 1, we 
>~ * have l i m i n f k ~ f ( x  k) ,i f . Assume liminfk_~oJ'(x k) > f*. Then there exists 2 such 

that 

l iminff (x  k) > f(2).  (30) 
k ~ o o  
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It follows from Eq. (30) that there exists/c such that J'(x k) >~ f (2)  for all k >~ k. By 
Lemma l(ii) l i m ~ f ( x  k) = f(2),  in contradiction with Eq. (30). The result follows. 

(ii) Since S* ¢ (~, take any x* E S*, in which case L(x*) = S*. By optimality of x*, 
f ( x  k) >>, f(x*) for all k. Apply Lemma l(iii) with 2 = x*, lc = 0, and conclude that 
{x k} converges weakly to some 2 c S*. 

(iii) Assume that S* is empty but {x k} is bounded. Let {x lk } be a subsequence of 
{x k} such that l i m ~ f ( x  ik) = l iminfk~f(xk) .  Since {x jk } is bounded, without loss 
of generality (i.e. refining {x j~} if necessary), we may assume that {x j~ } converges 
weakly to some ~ E C. By weak lower semicontinuity o f f ,  

f(~) ~< l i m ~  f f ( x j Q ~  = limf(xJ~) = liminff(xk)k~ = f* (31) 

using (i) in the equality. By Eq. (31), ~ belongs to S*, in contradiction with the hy- 
pothesis. It follows that {x k} is bounded. [] 

We make a few comments on the results of Theorem 1. To our knowledge, this is 
the first proof of convergence of the whole sequence generated by Eqs. (7) and (8) to 
a unique weak limit, without assuming finite dimensionality (as in [1]) or uniform 
monotonicity of Of (as in [9]). Additionally, our analysis includes the feature of ap- 
proximate subgradients. The result of Theorem 1 (i), on the other hand, is similar to 
the result in [1], except for the inclusion of inexact subgradients and constrained 
problems, which are not considered in [1]. We remark also that Eq. (5) (i.e. summ- 
ability of c~ 2) is needed only to establish quasi-Fdjer convergence of {x ~} to S* in the 
case of nonempty S*. It is easy to check that if {x k} is known to be bounded before- 
hand (e.g. when C is bounded) then our results hold also with l imk~e~ = 0 instead 
of Eq. (5). 

Finally, we present a convergence rate result for the sequence of functional values 

{f(x*)}. 

Theorem 2. I f  problem (1) has solutions and the sequence {x k} generated by Eqs. (7) 
and (8) is infinite, then there exists a subsequence {x ek} o f  {x k} such that 
f(xeQ - f ( x * )  ~< ( ~ - 0  c~J) -1, where x* is any solution o f  (1) and (2). 

Proof. We look at the proof of Lemma 1 with2 = x* C S*,/c = 0, flk = f (xk)  - f ( x * ) .  
By Eq. (27), 0 ~< }-~k~_0 c~kflk < oc. Let sk = Ejk=o ~j, NI = {k: flk ~ s k l } ,  N2 = {k: flk 
> S;1}. Suppose that N1 is finite, then there exists k such thatx  k E N2 for all k ~> lc, so 
that 

_ Sk 

It follows that ~k~0 C~k/Sk < eC. On the other hand, Abel Dini's criterion for diver- 
gent series [see 20, §39] states that if ~n°~0 ~c, = oc then ~ ,~0[K, / (~=0  Kj) ] = oc. 
So we conclude, in view of (4), that ~ 0  ~/sk  = oc. This contradiction implies 
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that N1 is infinite, and we can take {x ek } as consisting precisely of those x k with 

k EN1. [] 

This result does not give any information on the asymptotic behavior of {f(xk)} 
outside the subsequence {x ek }. If we assume that f is Gateaux differentiable, that its 
gradient is uniformly continuous and that e~ = 0 for all k (i.e. u~= Vf (x  ~) in 
Eq. (8)), then we can get results on the asymptotic behavior of the whole sequence 
{f(x~)}. More precisely, if ~0 : R+ ---+ ~+ is a continuous and nondecreasing function 

such that (p(0) = 0 and IIX7f(x) - x7f~v)ll ~< ~o([Ix - y l l )  for all x,y  E H, then we get, 
in addition to the result of Theorem 2, that/Jek+l ~</3ek + eek~°(c%) and/3 i ~</~ek+l for 
all i such that gk + 1 4 i < gk+l. The proof  is rather involved and we will not develop 
it in this paper. 

For  the finite dimensional case, a sharper and nonasymptotic convergence rate re- 
sult can be found in [12, Theorem 3.2.2]. 
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