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Abstract In many mathematical optimization applications dual variables are
an important output of the solving process, due to their role as price signals.
When dual solutions are not unique, different solvers or different computers,
even different runs in the same computer if the problem is stochastic, often end
up with different optimal multipliers. From the perspective of a decision maker,
this variability makes the price signals less reliable and, hence, less useful. We
address this issue for a particular family of linear and quadratic programs by
proposing a solution procedure that, among all possible optimal multipliers,
systematically yields the one with the smallest norm. The approach, based on
penalization techniques of nonlinear programming, amounts to a regularization
in the dual of the original problem. As the penalty parameter tends to zero,
convergence of the primal sequence and, more critically, of the dual is shown
under natural assumptions. The methodology is illustrated on a battery of
two-stage stochastic linear programs.
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1 Introduction and Motivation

Parametric optimality studies how the solution set of a nonlinear program-
ming problem (NLP) behaves, when subject to perturbations in the objective
function and/or in the constraints. For the latter, it is possible to identify cir-
cumstances in which solutions vary in a Lipschitzian-like manner with respect
to right-hand side perturbations.

Studies of this type are mostly concerned with optimal values and with
primal solution sets. In this work, we are more interested in understanding
how the dual solutions to certain NLPs behave, when the constraints’ right-
hand side varies. Our motivation stems from the fact that Lagrange multipliers
give the rates of change of the optimal value with respect to such perturbations.
Each multiplier signals the marginal effect of raising or lowering the value of
the corresponding constraint.

The interpretation of Lagrange multipliers as marginal costs (or shadow
prices in the parlance of Linear Programming) has plenty of useful applications.
When the Lagrange multiplier vector is not unique, the price components are
related to rates of change of the subderivatives of the optimal value function.
If there is a full set of prices attached to certain perturbation parameter, it is
natural to ask the following important question:

Is it possible to devise a solution methodology that provides the minimal-
norm multiplier?

The economic interest of this question is clear, since the mechanism would
systematically yield the price with smallest possible norm. We provide an an-
swer to this question for a particular family of linear and quadratic programs.
To define and justify a solution procedure that, among all possible optimal
multipliers, provides the smallest one in norm, we combine some variational
analysis considerations and penalization techniques of nonlinear programming.

The theory is developed in the context of quadratic programming, with an
application to two-stage stochastic linear programming problems, with uncer-
tainty in the feasible set in the primal formulation. The specific problem under
consideration is described in Section 4 below. In our modelling paradigm, de-
cisions are taken independently of future observations, on the basis of the
uncertainty realization, which reveals all at once; see [1, Chapter 2]. The con-
tinuous probability distribution of the stochastic variable is approximated by a
finite number of Monte-Carlo scenarios, yielding finitely discrete measures, as
in the sample average approximation approach [2]. In the setting of Lp-spaces,
a general duality approach for two-stage stochastic programs can be found in
[3,4].

Two-stage formulations are widely used; nevertheless, the paradigm re-
mains computationally challenging in applications and has given rise to a vast
literature on dedicated numerical solvers, most notably related with decom-
position methods [6–8], and more recently [9–12].

Two-stage models are well suited to situations in which the output of inter-
est is the first-stage solution, a deterministic value decided “here-and-now”.
Another useful output is related to (some components) of the multiplier in
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the affine constraint. This is a stochastic variable of the “wait-and-see” type,
whose expected value gives a price signal that helps defining business strate-
gies. Having this goal in mind, the fact that different samples can make the
price signal vary wildly is a serious handicap. Our proposal addresses this is-
sue, by systematically providing the minimal-norm price signal, thus making
the indicator more reliable for the decision maker.

The rest of the paper is organized as follows. In Section 2, we support
with some Variational Analysis considerations our computational approach to
building multiplier estimates converging to minimal-norm optimal ones. We
also introduce an apparently new condition, which allows to prove boundedness
of the set of Lagrange multipliers associated with some part of the constraints
of the problem, while allowing the other multipliers to be unbounded. In Sec-
tion 3, we prove convergence of the proposed multiplier estimates (obtained
from an exterior penalty scheme) to the ones of minimal norm, for linear
or quadratic programs satisfying some natural assumptions. In Section 4, we
explain how the methodology can be applied to two-stage stochastic linear pro-
gramming problems, and present numerical results that confirm the interest
of the approach. The work ends with some concluding remarks.

2 A Variational Analysis Perspective

We mostly follow the notation of [13]. Points in Rn are considered as column
vectors. The Euclidean inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. The indicator function of a set S is denoted by δS(·), i.e., this
function is 0 for points in S and is +∞ otherwise. If S is convex, then NS(x)
stands for the normal cone of S at the point x. The unit ball centered at 0 is B,
and the identity matrix is I; in both cases the dimension is always clear from
the context. For a proper convex function f , its subdifferential at x is denoted
by ∂f(x), while its horizon subdifferential at the point x is the normal cone of
the function’s domain, i.e., ∂∞f(x) = Ndom f (x); see [13, Proposition 8.12].

We are particularly interested in the Lagrange multiplier of the affine equal-
ity constraint of the following (feasible) optimization problem:

min f(x) s.t. x ∈ X, Ax− b = 0 , (1)

where f is a finite-valued convex and continuously differentiable function, X
is a closed convex set, and b ∈ {y : y = Ax, x ∈ X}.

While this is not essential for some of the subsequent considerations, we
shall assume thatX is defined by smooth convex inequalities, as is certainly the
case in the applications we have in mind. It is then well known that uniqueness
of Lagrange multipliers associated to a solution x̄ of problem (1) is implied by
the linear independence of gradients of the constraints active at x̄. This is in
turn equivalent to the so-called strict Mangasarian-Fromovitz (MF) condition
(see [14] and also [15, Sections 1.1, 1.2.4]). We emphasize that in (1) either of
these assumptions implies that the matrix A is of full rank, a condition that
rarely holds in practice for many important applications. The less stringent MF
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constraint qualification (MFCQ), equivalent to having a nonempty compact
set of Lagrange multipliers, also subsumes that A has full rank.

Thus, if A is not of full rank, the multipliers associated to the equality
constraint in (1) are necessarily not unique. In fact, since MFCQ is violated in
this case, the multiplier set is unbounded. This leads us to focus on devising
a mechanism to identify/compute the multiplier that has the minimal norm.
The idea is to consider a sequence of problems that penalize the equality
constraint in (1), depending on a parameter β > 0. Given a (primal) solution
to the penalized problem, we then construct an explicit multiplier estimate,
which we denote by πβ . Specifically, we solve

min f(x) +
1

2β
‖Ax− b‖2 s.t. x ∈ X ,

for β > 0 to obtain xβ , and define as multiplier proxy

πβ :=
Axβ − b

β
.

For the case when (1) is a linear or quadratic program, including the two-
stage stochastic linear programming problems considered in Section 4, we then
exhibit some natural conditions, which ensure that, as β → 0, the sequence
of the constructed multiplier estimates πβ tends to the specific multiplier π̂ of
minimal norm. The precise details will be given in Section 3.

Approximating Lagrange multipliers in the setting of quadratic penalty
methods, along the lines above, is certainly not a new idea; see, e.g., [16,
Chapter 17.1]. However, in the literature convergence results are established
assuming linear independence of active gradients (as well as subsequential
convergence of the primal sequence xβ), in which case the optimal multiplier
is unique; see [16, Theorem 17.2] and Theorem 3.2 below. In Section 3, we give
conditions under which xβ converges, and show convergence of πβ (to minimal-
norm multiplier), without assuming the linear independence condition, thus
covering a much more general case.

In this section, we give a different motivation and insight for the multiplier
proxies πβ , by specializing some results of Variational Analysis [13] to our set-
ting. We start with a fixed β ≥ 0, and relate the estimates πβ with a particular
instance of the generalized Lagrange multiplier rule [13, Example 10.8, p.429].
More precisely, given a scalar β ≥ 0, consider the following penalties:

Rm 3 v ←↩ θβ(v) := sup
y∈Rm

{
〈v, y〉 − 1

2
β‖y‖2

}
=


1

2β
‖v‖2 if β > 0

δ{0}(v) if β = 0 .
(2)

These (lower-semicontinuous, proper, convex) functions are a particular case of
the piecewise linear-quadratic penalties in [13, Example 11.18, p. 497] (therein,
θβ corresponds to θY,B , written for Y = Rm and the, possibly null, matrix
B = βI). The respective subdifferentials are:

if β > 0, for all v ∈ Rm = dom θβ ,

∂θβ(v) =
{

1
β v
}

and ∂∞θβ(v) = {0} , (3)
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while

if β = 0, for v = 0 = dom θ0 , ∂θ0(v) = Rm and ∂∞θ0(v) = Rm . (4)

The connection between penalties and dual variables (multipliers) is made
clear when considering, for perturbation parameters u ∈ Rm, the (uncon-
strained) parametric minimization problems

min
x∈Rn

fβ(x, u) := f(x) + δX(x) + θβ(Ax− b+ u) , (5)

noting that writing (5) with β = 0 and u = 0 yields our original problem (1).
When β > 0, some xβ is optimal in (5) if and only if

xβ ∈ X, µβ ∈ NX(xβ), ∇f(xβ) + µβ +A>πβ = 0 , (6)

where, for ū ∈ Rm given, the unique extended Lagrange multiplier in [13] is

πβ :=
Axβ − b+ ū

β
.

To consider the case when β = 0, recall that, in its dual formulation (see
[14] and also [15, Sections 1.1, 1.2.4]), the MFCQ at a feasible point x̄ of our
(unperturbed) problem (1) means that

0 = A>π + µ, µ ∈ NX(x̄) ⇒ π = 0 ∈ Rm and µ = 0 ∈ Rn . (7)

If x̄ satisfies MFCQ (7), there exists a classical Lagrange multiplier π̄ ∈ Rm,
not necessarily unique, satisfying (6), written with β = 0 and (xβ , πβ , µβ) =
(x̄, π̄, µ̄). Condition (6) is also sufficient for x̄ to be optimal for (5), written
with β = 0 and ū := b−Ax̄.

The proposition below, that follows from the parametric version of Fermat
rule in [13, Example 10.12], analyzes (5) from a Variational Analysis perspec-
tive, condensing the key ingredients relating extended Lagrange multipliers to
the marginal rate of change of the optimal value in (1), when considered as a
function of the right-hand side perturbation of the affine constraint.

Proposition 2.1 (Extended Lagrange multipliers) Associated to (1),
consider the parametric optimization problems (5) with penalties (2), where
u = ū ∈ Rm and β ≥ 0 are fixed. Let the corresponding optimal value and
solution set be given by

pβ(u) := inf
x∈Rn

fβ(x, u) and P β(u) := arg min
x∈Rn

fβ(x, u) .

The following holds.

(i) When β > 0, the function pβ is convex, strictly differentiable at any point
ū ∈ dom pβ = Rm, with gradient ∇pβ(ū) = πβ.

(ii) When β = 0, the function p0 is convex, strictly continuous at the point
ū = Ax̄− b = dom p0, with subdifferential

∂p0(ū) = {π̄ ∈ Rm : (6) holds written with (xβ , πβ , µβ) = (x̄, π̄, µ̄)} . (8)
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Proof The perturbed function fβ(x, u) is convex in (x, u), and the finite-
valued function f has full domain. In this situation, by [13, Example 10.8],

∂fβ(x̄, ū) = ∇f(x̄) +NX(x̄) + ∂θβ(Ax̄− ū), ∂∞fβ(x̄, ū) = ∂∞θβ(Ax̄− ū) .

Since fβ is convex (therefore regular) with our definitions, the Y -sets in [13,
Theorem 10.13] satisfy the relations

Y (ū) =
{
π : (0, π) ∈ ∂fβ(xβ , ū)

}
and Y∞(ū) =

{
π : (0, π) ∈ ∂∞fβ(xβ , ū)

}
,

for any xβ ∈ P β(ū) and ū ∈ dom pβ = dom θβ . Together with (3) and (4), this
gives ∂∞pβ(ū) = Y∞(ū) = ∂∞θβ(Axβ − ū) and, as claimed,

∂pβ(ū) = Y (ū) =
{
πβ : (xβ , µβ , πβ) satisfies (6)

}
. ut

The above characterization, obtained from the penalty scheme as extended
Lagrange multiplier, motivates from the Variational Analysis point of view the
choice of the multiplier estimates in our development. In Section 3, we shall
show under which conditions such estimates converge to the minimal-norm
multipliers. Among other things, we shall need the following result, which
establishes boundedness of the set of Lagrange multipliers associated to some
part of the constraints of the problem, while allowing the other multipliers to
be unbounded. Apparently, this result is new.

Recall the MFCQ condition (7) is equivalent to the set of multipliers being
nonempty and bounded. Consider the following condition at x̄ feasible in (1):

0 = A>π + µ, µ ∈ NX(x̄) ⇒ µ = 0. (9)

Clearly, (9) is a weaker condition than (7). In particular, as we show in Theo-
rem 2.1 below, (9) implies boundedness only for the µ-part of the multipliers,
while the π-part can be unbounded. The condition in question can be in-
terpreted as a “partial” MFCQ condition. However, note that (9) is not a
constraint qualification, i.e., it does not imply (by itself) that for a solution
x̄ of problem (1) the multiplier set is nonempty. An alternative, equivalent,
formulation of condition (9) is

ImA> ∩NX(x̄) = {0}. (10)

Theorem 2.1 (On boundedness of multipliers) Let x̄ be any feasible
point in (1). Then the following statements are equivalent:

(i) Condition (9) holds at x̄.
(ii) For any ḡ ∈ Rn, the set

Sḡ := {µ̄ ∈ NX(x̄) : ∃ π̄ ∈ Rm s.t. ḡ +A>π̄ + µ̄ = 0}

is bounded.
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Proof We shall show the equivalent assertion

∃ µ̃ ∈ ImA> ∩NX(x̄), µ̃ 6= 0 ⇐⇒ ∃ ḡ ∈ Rn such that Sḡ is unbounded.

Assume first that for some ḡ the set Sḡ is unbounded, i.e., there exists a
sequence {(πk, µk)} such that

ḡ +A>πk + µk = 0, µk ∈ NX(x̄) , (11)

with ‖µk‖ → +∞. As NX(x̄) is a closed cone, we can assume, passing onto a
subsequence if necessary, that

µk/‖µk‖ → µ̄ ∈ NX(x̄), µ̄ 6= 0 .

Denote uk = −A>πk/‖µk‖ ∈ ImA>. Dividing the equality in (11) by ‖µk‖
and passing onto the limit, it follows that

uk = (ḡ + µk)/‖µk‖ → µ̄.

As uk ∈ ImA>, uk → µ̄, and ImA> is closed, we conclude that µ̄ ∈ ImA>. As
it also holds that µ̄ ∈ NX(x̄) and µ̄ 6= 0, this contradicts (9).

Suppose now that there exists 0 6= µ̃ ∈ NX(x̄) such that A>π̃ + µ̃ = 0 for
some π̃. If for some ḡ there is a pair (π̄, µ̄) satisfying

ḡ +A>π̄ + µ̄ = 0, µ̄ ∈ NX(x̄),

then, for any t > 0, it holds that µ̄+ tµ̃ ∈ NX(x̄) +NX(x̄) = NX(x̄), since the
cone in question is convex. Hence, for any t > 0,

ḡ +A>(π̄ + tπ̃) + (µ̄+ tµ̃) = 0 , µ̄+ tµ̃ ∈ NX(x̄).

Since µ̃ 6= 0, as t→ +∞, ‖µ̄+ tµ̃‖ → +∞, and the set Sḡ is unbounded. ut

We emphasize that, being weaker than MFCQ, condition (9) is certainly
not restrictive (assuming that the existence of Lagrange multipliers is given or
follows from some other considerations).

3 A Nonlinear Programming Computational Perspective

Consider now the following (linear or) quadratic programming problem:

min f(x) := 〈g, x〉+
1

2
〈x,Hx〉 s.t. x ∈ X, Ax− b = 0 , (12)

where X := {x ∈ Rn : x ≥ 0} and b ∈ {y : y = Ax, x ∈ X}, g ∈ Rn and H is
an n×n symmetric matrix (H = 0 corresponding to linear programming). We
note that in our developments below, H is not necessarily positive semidefinite,
although it also might be.
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When H is positive semidefinite, the convex problem (12) is a particu-
lar instance of (1), and we can use the constructions in Section 2 for some
motivations. In that case, fixing ū = 0, for β > 0 from (2) and (5), we have

fβ(x, 0) = f(x) + δX(x) +
1

2β
‖Ax− b‖2 ,

and Proposition 2.1 characterizes the extended Lagrange multiplier as follows:

πβ =
Axβ − b

β
, for xβ ∈ P β(0) .

As a result, finding xβ ∈ P β(0) is equivalent to finding xβ , a solution to the
following (partial) exterior penalization of problem (12):

min f(x) +
1

2β
‖Ax− b‖2 s.t. x ∈ X . (13)

The multiplier estimate is then given by

πβ :=
Axβ − b

β
. (14)

Penalty methods (see, e.g., [17]) solve subproblems (13) for a sequence
of decreasing penalty parameters 0 < βk+1 < βk, tending to zero. We want
to study how the multiplier estimates (14) for the equality constraints in (12)
behave along the sequence of solving the penalized subproblems (13). We shall
show that, under reasonable assumptions, πβ converge to the minimal-norm
multiplier π̂; see (24) below for a formal definition.

We start with some standard facts on (primal) convergence of penalty
methods [17], that do not depend on the setting of (12), and can also use other
forms of exterior penalties (not necessarily quadratic). But we shall keep this
setting for the sake of not introducing extra notation. Define

Fk(x) := f(x) +
1

2βk
‖Ax− b‖2,

the objective function in (13).

Theorem 3.1 (Primal convergence of generic penalty methods) Let
xk be a (global) solution of (13) for β = βk for each k, with 0 < βk+1 < βk.
Then,

Fk+1(xk+1) ≥ Fk(xk), ‖Axk+1 − b‖ ≤ ‖Axk − b‖, f(xk+1) ≥ f(xk). (15)

If, in addition, βk → 0 as k → ∞, and the optimal value of problem (12)
is finite, then every accumulation point of {xk} is a (global) solution of (12).
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Note that this result refers to global solutions of subproblems. This is stan-
dard, and also not an issue when the problem (12) is convex. Another observa-
tion is that in the case of a quadratic program as ours, if f is bounded below
on the feasible region (i.e., the optimal value is finite), then problem (12) has
a solution, by the Frank–Wolfe Theorem [18].

However, it is important to emphasize that the general convergence result
in Theorem 3.1 asserts optimality of accumulation points, but does not say
anything about their existence. It can thus be “vacuous”, if the sequence is
unbounded. Our first task will be to prove when the generated sequence {xk}
is bounded. But before proceeding, we shall mention the following classical
result on convergence of the multiplier estimates, obtained from the quadratic
penalty method. Let xk be a solution of (13) for β = βk. Define

πk :=
1

βk
(Axk − b). (16)

The assertion below is standard; see, e.g., [16, Theorem 17.2]. Like The-
orem 3.1 above, it does not depend on the setting of problem (12), and can
be easily extended to the case of general nonlinear objective function f and
general nonlinear constraints, including inequality constraints. As this is not
essential for our developments, we state the result for equality constraints only.

Theorem 3.2 (Dual convergence of the quadratic penalty method)
In (12), let X = Rn. Let x̄ be any accumulation point of {xk}, where xk is a
solution of (13) for β = βk for each k, {xkj} → x̄ as j → ∞. Let the linear
independence constraints qualification hold at x̄ (in the setting of (12) this
means that A has full rank).

Then, x̄ is a stationary point of (12) and the subsequence {πkj}, defined
by (16), converges to the unique Lagrange multiplier π̄ associated to x̄.

Note, however, that Theorem 3.2 again implicitly assumes boundedness of
{xk} (as it refers to its accumulation points), and requires the linear inde-
pendence constraints qualification for convergence of the dual sequence. The
latter, in particular, is not assumed in our setting.

For establishing boundedness of the primal sequence, we shall need the
following conditions. Recall that the standard critical cone of (12) at a given
stationary point x̄ is defined by

K(x̄) := KerA ∩ {d ∈ Rn : 〈Hx̄+ g, d〉 ≤ 0, di ≥ 0 for i s.t. x̄i = 0} . (17)

In the case at consideration, the Hessian of the Lagrangian (for any point
(x̄, π̄, µ̄)) is the matrix H. Thus, the usual second-order sufficient optimality
condition for x̄ states that

〈Hd, d〉 > 0 for all d ∈ K(x̄) \ {0}. (18)

When H is positive semidefinite, the solution set of problem (12) is convex.
Since (18) implies that x̄ is a strict (thus isolated) minimizer, the condition
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means that in the convex case the primal solution must be unique. In particu-
lar, when f is linear, i.e., H = 0, condition (18) holds if and only if K(x̄) = {0}.
It can be further seen that this means that 〈g, d〉 > 0 for all feasible directions
d at x̄. This, in turn, is equivalent to saying that x̄ is the unique solution
of the linear program (12). Thus, for linear programming, including the two-
stage stochastic linear programming setting in Section 4, the assumption (18)
amounts to stating that the primal solution of the problem is unique.

Note also that since K(x̄) ⊂ KerA, the following is also a second-order
sufficient optimality condition (as it implies (18)):

〈Hd, d〉 > 0 for all d ∈ KerA \ {0}. (19)

However, unlike (18), condition (19) is an assumption on H and A, which does
not depend on x̄. Note that (19) does not require H to be positive semidefinite,
and thus the objective function f in (12) can be non-convex.

Theorem 3.3 (Conditions for primal convergence) Suppose that one of
the following two items holds:

1. Condition (19) is satisfied.
2. The matrix H is positive semidefinite, and (18) holds for the solution x̄ of

(12) (if H = 0, this amounts to (12) having a unique primal solution).

Then, for any sequence of parameters βk → 0 (even not necessarily mono-
tone), any sequence {xk} generated by the penalty scheme (13) is bounded.

If also βk+1 < βk for all k, then each of the accumulation points of {xk} is
a solution of (12). In particular, in the second case above, the whole sequence
converges to the unique solution x̄.

Proof We reason by contradiction: taking a subsequence if necessary, suppose
that ‖xk‖ → ∞.

Define zk = xk/‖xk‖. Again passing onto a subsequence if necessary, we
can assume that zk → z, z 6= 0.

By the KKT optimality conditions for the subproblems (13), it holds that

Hxk + g +
1

βk
A>(Axk − b)− µk = 0, xk ≥ 0, µk ≥ 0,

〈
µk, xk

〉
= 0. (20)

Note that
〈
µk, zk

〉
= 0. Thus, multiplying the first relation above by zk yields〈
Hxk + g, zk

〉
=

1

βk

〈
A>(b−Axk), zk

〉
.

Next, multiplying both sides of the latter equality by βk/‖xk‖, we conclude
that

βk
〈
Hzk, zk

〉
+

βk
‖xk‖

〈
g, zk

〉
=

1

‖xk‖
〈
A>b, zk

〉
− ‖Azk‖2 .

As {zk} is bounded, while ‖xk‖ → ∞ and βk → 0, passing onto the limit as
k →∞ yields that 0 = ‖Az‖2, i.e., z ∈ KerA.
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Let x̃ be any feasible point in (12). Since x̃ ∈ X, Ax̃ − b = 0, and xk is a
solution of (13), it holds that

f(x̃) ≥ f(xk) +
1

2βk
‖Axk − b‖2 ≥ f(xk). (21)

Dividing this inequality by ‖xk‖2, we obtain that

f(x̃)

‖xk‖2
≥ f(xk)

‖xk‖2
=

1

2

〈
Hzk, zk

〉
+

1

‖xk‖
〈
g, zk

〉
.

Passing onto the limit as k →∞ gives

0 ≥ 1

2
〈Hz, z〉 . (22)

Since 0 6= z ∈ KerA, this immediately gives a contradiction if the condition
(19) holds.

Suppose now H is positive semidefinite, and (18) holds for the solution x̄
of (12), which is unique in this case. Since x̄ is in particular feasible, from (21)
written with x̃ = x̄, using also the convexity of f , we conclude that

f(x̄) ≥ f(xk) ≥ f(x̄) +
〈
∇f(x̄), xk − x̄

〉
,

and, hence,

0 ≥
〈
∇f(x̄), xk − x̄

〉
.

Dividing both sides above by ‖xk‖, and passing onto the limit, we conclude
that 〈∇f(x̄), z〉 ≤ 0. Since z ≥ 0 is obvious (because xk ≥ 0), and recalling
that z ∈ KerA, we obtain that 0 6= z ∈ K(x̄); see (17). Now (22) again gives a
contradiction with (18). We conclude that {xk} is bounded. The other asser-
tions follow from the general results about penalty methods in Theorem 3.1
(and other considerations stated above). ut

Having established when there is primal convergence of solutions of the
penalized subproblems (13), we now analyze the asymptotic behavior of the
dual sequence {πk} defined by (16).

Recall that for a solution x̄ of problem (12), the set of associated Lagrange
multipliers (π, µ) is characterized by the following system:

Hx̄+ g +A>π − µ = 0, x̄ ≥ 0, µ ≥ 0, 〈µ, x̄〉 = 0. (23)

To exhibit the specific dual behavior (dual limit) of the sequence {πk},
denote by π̂ = π̂(x̄, µ̄) the minimal-norm element, which solves (23) for the
given x̄ and µ̄, i.e., the (unique) solution of

min
1

2
‖π‖2 s.t. Hx̄+ g +A>π − µ̄ = 0. (24)

We have the following.
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Theorem 3.4 (Convergence of the multipliers estimates) Let βk → 0
and βk+1 < βk for all k. Let the assumptions of Theorem 3.3 hold. Let x̄ be any
accumulation point of the sequence {xk} (which is bounded by Theorem 3.3),
xkj → x̄ as j →∞. Let condition (9) hold at x̄.

Then, the sequence {µkj} is bounded. Moreover, for any of its accumulation
point µ̄, the subsequence {πkj} defined by (16) converges to π̂, the minimal-
norm solution of (24). The point (x̄, π̂, µ̄) is a primal-dual solution of (12).

Proof Under the assumptions of Theorem 3.3, it follows that {xk} is bounded.
Recalling the subproblem KKT conditions (20), and using the definition (16)
of πk, we have that

Hxk + g +A>πk − µk = 0, xk ≥ 0, µk ≥ 0,
〈
µk, xk

〉
= 0. (25)

Let {xkj} → x̄ as j →∞. We first prove that the sequence {µkj} is bounded.
Similarly to the first part of the proof of Theorem 2.1, suppose by contradiction
that (25) holds with ‖µkj‖ → +∞ (possibly passing onto a subsequence). We
can assume, passing onto a further subsequence if necessary, that

µkj/‖µkj‖ → µ̄ ≥ 0, µ̄ 6= 0 . (26)

Denote ukj = A>πkj/‖µkj‖ ∈ ImA>. Dividing the equality in (25) by ‖µkj‖,
and passing onto the limit as j →∞, it follows that

ukj = (µkj −Hxkj − g)/‖µkj‖ → µ̄,

where boundedness of {xkj} was taken into account. As ukj ∈ ImA>, ukj → µ̄,
and ImA> is closed, we conclude that µ̄ ∈ ImA>. Obviously x̄ ≥ 0 and,
dividing the last two relations in (25) by ‖µkj‖ and passing onto the limit,
µ̄ ≥ 0, 〈µ̄, x̄〉 = 0. This means that −µ̄ ∈ NX(x̄), where X = Rn+. As µ̄ 6= 0,
and −µ̄ ∈ ImA>, we obtain a contradiction with (9).

Once {µkj} is bounded, the first equality in (25) implies that {A>πkj}
is bounded as well. Passing onto a further subsequence if necessary, we can
assume that {xkj} → x̄, {µkj} → µ̄, {A>πkj} → a as j →∞.

Taking any point x̃ such that Ax̃− b = 0, we observe that

πk =
1

βk
(Axk − b) =

1

βk
A(xk − x̃) ∈ ImA.

Thus, A>πk ∈ ImA>A. Because this subspace is closed, we have a ∈ ImA>A,
i.e., a = A>π̄ for some π̄ ∈ ImA.

Passing onto the limit in (25) as j →∞, we then have that

Hx̄+ g +A>π̄ − µ̄ = 0, π̄ ∈ ImA, x̄ ≥ 0, µ̄ ≥ 0, 〈µ̄, x̄〉 = 0. (27)

We next show that there exists only one π̄ ∈ ImA which satisfies the left
equality in (27), for the given x̄ and µ̄. Let π̃ be any other element in ImA
such that Hx̄+ g +A>π̃ − µ̄ = 0. Subtracting this equality from the first one
in (27), we conclude that

(π̄ − π̃) ∈ KerA>, (π̄ − π̃) ∈ ImA.



Multiplier Stabilization Applied to Two-Stage Stochastic Programs 13

As KerA> = (ImA)⊥, it follows that π̄ = π̃, i.e., the element with the prop-
erties under consideration is unique. Observe further that the solution π̂ of
(24) satisfies those properties: it exists, is unique, and Hx̄+ g+A>π̂− µ̄ = 0.
Further, by the optimality condition for (24), it holds that there exists some λ
such that π̂ +Aλ = 0, i.e., π̂ ∈ ImA. As we have shown that such an element
is unique, it follows that π̄ = π̂.

In particular, {A>πkj} → a = A>π̄ now means that {A>(πkj − π̂)} → 0,
as j → ∞. Finally, we show that this implies that πkj → π̂ (recall that
(πkj − π̂) ∈ ImA).

To that end, recall that, for any matrix A there exists γ > 0 such that

‖A>Au‖ ≥ γ‖Au‖ for all u.

(To see this, assume the contrary, i.e., that there exists {uk} such thatAuk 6= 0,
and ‖A>Auk‖/‖Auk‖ → 0. Passing onto a further subsequence, if necessary,
Auk/‖Auk‖ → v ∈ ImA, v 6= 0, A>v = 0. This gives a contradiction, since
KerA> ∩ ImA = {0}.)

As (πkj − π̂) ∈ ImA, there exists some bj such that πkj − π̂ = Abj . Then,

‖A>(πkj − π̂)‖ = ‖A>Abj‖ ≥ γ‖Abj‖
= γ‖πkj − π̂‖ ,

implying the assertion, since the left-hand side tends to zero as j →∞. ut

The results presented so far provide a constructive answer to our initial
question, on how to devise a solution methodology yielding the minimal-norm
multiplier. The mechanism is applied in the next section to an important class
of stochastic optimization problems, with linear objective function and affine
constraints, and where uncertainty is dealt with by sample average approxi-
mations in two stages, via the so-called recourse functions; see (30) below.

4 Application to Two-Stage Stochastic Linear Programming

For a random variable ξ with finite support, we consider two-stage stochastic
linear programs with relatively complete recourse, with uncertainty in the
second-stage costs q(ξ), and the right-hand side vector h(ξ). Specifically, the
problem is

min f(x) s.t. x1 ≥ 0, x2(ξ) ≥ 0, Tx1 +Wx2(ξ) = h(ξ) a.e. ξ ,

where

f(x) := 〈c, x1〉+ E [〈q(ξ), x2(ξ)〉] .

In this problem xi ∈ Rni for i = 1, 2, the right-hand side h(·) ∈ Rm, and the
matrices T and W have orders n1 ×m and n2 ×m, respectively. Realizations
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{ω1, . . . , ωS}, with respective probabilities p1, . . . , pS , define scenarios ξs :=
ξ(ωs) for s = 1, . . . , S, and yield the following linear programming problem:

min 〈c, x1〉+

S∑
s=1

ps〈qs, xs2〉

s.t. x1 ≥ 0 , xs2 ≥ 0 for s = 1, . . . , S
Tx1 +Wxs2 = hs for s = 1, . . . , S .

(28)

Decomposition by scenarios is achieved by introducing the recourse functions

Q(x1; ξs) :=

min 〈qs, x2〉
s.t. x2 ≥ 0

Wx2 = hs − Tx1

=

max 〈π, hs − Tx1〉

s.t. W>π ≤ qs ,
(29)

and writing (28) in the equivalent two-level formulation below:

min 〈c, x1〉+

S∑
s=1

psQ(x1; ξs) s.t. x1 ≥ 0 . (30)

The assumption of relatively complete recourse is equivalent to finiteness of
the functions Q(·; ξs), for each scenario s for all x1 ≥ 0. Complete recourse
requires the condition to hold for all x1. This stronger assumption implies
that the set of dual solutions is uniformly bounded for all scenarios, somewhat
simplifying some issues in the convergence analysis presented in Section 3.

The two equivalent formulations given for such recourse functions in (29)
correspond to a primal and dual views (left and right, respectively). The dual
view, in particular, motivated our proposal. Specifically, to “control” the mul-
tipliers, a sensible strategy would be to add a regularizing term to the objective
function of the dual in (29) and, hence,

instead of Q (x1; ξs) = max 〈π, hs − Tx1〉 s.t. W>π ≤ qs ,
to consider Qβ(x1; ξs) = max 〈π, hs − Tx1〉 − β

2 ‖π‖
2 s.t. W>π ≤ qs .

For each fixed β, the quadratic term, making unique the solution of the dual
problem (optimal multiplier of the primal), helps to prevent oscillations, and
somehow stabilizes the output of the overall process with β variable. The
relation with our initial setting (12) is explained next.

4.1 The Problem to be Solved

To cast (28) as a particular instance of (12), it suffices to define the vectors

x := (x1, x
1
2, . . . , x

S
2 ) ∈ Rn1+n2S ,

g := (c, p1q1, . . . , pSqS) ∈ Rn1+n2S ,

b := (h1, . . . , hS) ∈ RmS ,
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as well as the matrices H = 0 ∈ Rn1+n2S × Rn1+n2S , and

A :=


T W 0 . . . 0

T 0 W
. . .

...

T
...

. . .
. . . 0

T 0 . . . 0 W

 ∈ RmS × Rn1+n2S .

Given β > 0, it is not difficult to derive the penalized subproblems (13) for
(28); specifically, we obtain:min 〈c, x1〉+

S∑
s=1

ps
{
〈qs, xs2〉+

1

2β
‖hs − Tx1 −Wxs2‖2

}
s.t. x1 ≥ 0 , xs2 ≥ 0 for s = 1, . . . , S .

Regarding the two-level formulation, the penalization above amounts to re-
placing Q in (30) by the following recourse function:

Qβ(x1; ξs) := min 〈qs, x2〉+
1

2β
‖hs − Tx1 −Wx2‖2 s.t. x2 ≥ 0 , (31)

whose dual formulation is

Qβ(x1; ξs) = max 〈π, hs − Tx1〉 −
β

2
‖π‖2 s.t. W>π ≤ qs .

These primal and dual views highlight the double role of the β-term: a penal-
ization in the primal becomes a regularization in the dual.

Concerning the applicability of our general convergence results to the cur-
rent setting (in particular of Theorem 3.3, which establishes convergence of
the dual sequence to the minimal-norm multiplier), recall that for a linear
program (the case H = 0) the key condition (18) means that the primal solu-
tion of problem (28) is unique. This issue was discussed in some more detail
in the paragraph following (18).

4.2 Numerical Results

The fact that the dual second-stage problem is perturbed by a term “−β‖π‖2”
evidently changes the dual and primal solutions, when compared to the original
problem (28). Our goal is to keep close the original marginal cost, and at the
same time, decrease its variance.

Theorem 3.4 describes theoretically the behavior of the mean value of reg-
ularized price signals in terms of the original optimization problem. The nu-
merical examples below illustrate the main features of our approach.

Theoretical results in terms of variance are not simple. It is not always
true that regularization reduces variance, but it happens for a large amount of
problems. To make sure the approach goes in the right direction, we measured
the variance and the mean value of regularized and non-regularized stochastic
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problems. In addition, in (33) below we created a single index that measures
the joint dynamics of variance reduction and distance to the original dual
solution set, as β goes to zero. The index is used to make the performance
profile in Subsection 4.2.2, when running the methodology on a battery of
problems from the literature.

4.2.1 Price Signal Analysis on an Illustrative Example

We first consider a simple instance that can be solved analytically, for checking
the output. This example illustrates well our theoretical results, regarding
satisfaction of condition (9), as well as convergence to the minimal-norm price
(24). Take S = 2 equiprobable scenarios, and let n1 = n2 = 2. The first-stage
cost c ∈ R2 and second-stage costs are deterministic q1 = q2 = q ∈ R2. The
technology and recourse matrices in (28) are

T :=

1 0
0 1
0 0

 , and W :=

2 0
1 −1
1 2

 ,
so m = 3. The uncertain right-hand side terms are given by h1 := (1, 1, 1)>

and h2 := (1, 0, 3)>.
Working out the algebra shows that the feasible set in (28) is completely

determined by the first component of x1, denoted by y ≥ 0 below. Specifically,

x is feasible in (28) if and only if, for some y ≥ 0 ,

x1 :=
(
y, 3

4 (1 + y)
)>

, x1
2 :=

(1

2
(1− y),

1

4
(1 + y)

)>

,

x2
2 :=

(1

2
(1− y),

1

4
(5 + y)

)>

,

and, therefore, the following one-dimensional problem is equivalent to (28):

min
y≥0

(
c1 +

3

4
c2 −

1

2
q1 +

1

4
q2

)
y +

3

4
c2 +

1

2
q1 +

3

4
q2 .

The optimal solution of this problem is ȳ = 0, as long as

c1 ≥ −
3

4
c2 +

1

2
q1 −

1

4
q2 . (32)

The primal optimum is

x̄1 :=

(
0,

3

4

)>

, x̄1
2 :=

(
1

2
,

1

4

)>

, x̄2
2 :=

(
1

2
,

5

4

)>

.

To compute the optimal multiplier, recall that any normal element µ̄ ∈ NX(x̄)
has all of its components null, except for the first one, because 〈µ̄, x̄〉 = 0.
Therefore,

µ̄ = −αe1 for some α ≥ 0 ,
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where ej ∈ R6 is the j-th canonical vector (all components are zero except
the j-th, equal to 1). To check that (7) is satisfied, consider its equivalent
formulation (10). Suppose µ̄ = −αe1 ∈ ImA>. For condition (10) to hold,
for any ν ∈ KerA, we must have that −α〈e1, ν〉 = 0 because the subspaces
ImA> and KerA are orthogonal. Since the latter (one-dimensional) subspace is

generated by the vector s :=
(

4, 3,−2, 1,−2, 1
)>

, we have that 〈µ̄, e1〉 = −4α,

forcing α = 0. It then follows that (10) and (9) hold, as claimed.

Take q1 = Q = −q2 for some Q, c2 = 0, and any c1 ≥ Q (so that (32) is
satisfied). Optimal Lagrange multipliers must solve the system

A>π = −g+µ̄ , with g=

(
c1, 0,

Q

2
,−Q

2
,
Q

2
,−Q

2

)>

, and µ̄ = −αe1 for α ≥ 0 .

After some algebraic manipulations, the unbounded optimal multiplier set is:

L :=
{
π̄ = t

c1
2

(
1,−4, 2,−3, 4, 2

)>

| t ≥ 1
}
.

Hence, t = 1 gives the minimal-norm element for which E [π̂] = c1
2

(
−1, 0, 2

)>

.

Fig. 1: Unbounded set of optimal multipliers in mean (the line), the element with minimal
norm (the plus sign), the mean multiplier found for β = 0 (the cross), the mean multiplier
estimates for different values of β > 0 (the triangles), and the origin (the dot)

Applying our approach with several decreasing values of β gives the multi-
plier estimates πβ ∈ R6 with the mean E

[
πβ
]
∈ R3. The line in Figure 1 shows

a portion of the mean optimal multiplier set,

{
t c12

(
−1, 0, 2

)>

| t ≥ 1

}
. The

dot represents the origin in R3, the plus sign E [π̂], the minimal-norm multiplier
in mean value, to which the mean values E

[
πβ
]
, represented with triangles,

converge as β → 0. Finally, the cross displays E [π̄], the mean multiplier found
when solving (28), whose norm is larger than the minimal one.
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4.2.2 Combined Index of Variance and Mean Value

Performance profiles [19] are useful tools to benchmark different methods on a
fair basis. For a battery of two-stage stochastic linear programming problems,
we compare the expected value of the multipliers, obtained as follows:

– Solving (28) in its two-level formulation; (30) with recourse function (29),
by a proximal bundle method [20]; see also [21, Ch. 10.3].

– Our proposal, i.e., solving for decreasing values of β several instances of
(30), with recourse function (31).

All the tests were ran in Matlab R2016, on an Intel Core i5 computer with
2.4 GHz, 4 cores and 4 GB RAM, running under Ubuntu 18.04.1 LTS and
using Gurobi 5.6 optimization toolbox for Matlab.

The battery comprises 50 problems, for which 10 independent instances,
each one with 50 scenarios, were created. The considered two-stage stochastic
problems are of the form (28) with uncertainty only on the right-hand side
h ∈ Rm, independently and normally distributed. The expectation and stan-
dard deviation of the considered distribution is problem-dependent, and pro-
portional to the vector c

2 . The problem dimension ranges are n1 ∈ {20, 40, 60},
n2 ∈ {30, 60, 90}, and m ∈ {20, 40, 60}. For more details we refer to [22,10].

The test has a total of 500 runs, labeled P = 1, . . . , 500. With the purpose
of doing a performance profile, we compute

‖E
[
πbest
P

]
‖ := arg min

{
‖E
[
πβP

]
‖ : β ∈ {0, 0.1, 0.2, . . . , 0.5}

}
,

and define, for problem p and parameter β ≥ 0, the following index:

cβP :=

∥∥∥Var
[
E
[
πβP

]]∥∥∥∥∥Var
[
πbest
P

]∥∥ +

1−

∥∥∥E [πβP ]∥∥∥∥∥E [πbest
P

]∥∥
 . (33)

Here, π0
P corresponds to π̄ in our previous notation, while πβP is the Lagrange

multiplier computed for problem P with regularization parameter β ≥ 0. The
corresponding performance profile is given in Figure 2.

Fig. 2: Combined gains in expected value and variance for the dual variable.
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In terms of the combined index, and as expected, the multiplier of the
original problem (β = 0) performs worse, confirming the empirical observation

that in general V ar[πβP ] ≤ V ar[π0
P ]. For this set of runs, the value β = 0.1

(dashed line with circles) seems to give a good compromise between stability
of the mean multiplier, and approximation of the minimal-norm multiplier.

For completeness, we present in Figure 3 a profile for the first-stage vari-
able, measuring its performance with the index

c̃βP :=

1−

∥∥∥E [x1
β
P

]∥∥∥
‖E [x1

0
P ]‖

 ,

defined for β > 0 (comparing variances is not sound in our approach, as there
is no “stabilization” of the primal variables). It can be seen in the graph that
the best value for β in the dual performance profile in Figure 2, that is β = 0.1
(dashed line with circles), behaves reasonably well in the primal variable.

Fig. 3: Progression of expected value of first-stage variable

Conclusions

In many applications, dual variables are an important output of the deci-
sion/solution process, due to their role as price signals. When dual solutions
are not unique, different solvers or different computers, even different runs in
the same computer if the problem is stochastic, end up with different price
indicators. Even though all of such values are mathematically correct, the fact
that the obtained dual variable varies among many possibilities makes unre-
liable any economic analysis based on marginal prices. We have presented an
approach that yields reliable indicators, by providing the minimal-norm mul-
tiplier. Our proof-of-concept computational experience shows the benefits of
the methodology for two-stage stochastic linear programs.

The best choice for the penalization/regularization parameter β is clearly
problem dependent. Somewhat similarly to the solution concept called com-
promise decision in [23], but adopting a dual point-of-view, the performance
index proposed in (33) aims at measuring bias and variance, in multiple repli-
cations of sampling-based approximations of two-stage stochastic programs.
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We observe empirically that our approach yields a significant reduction in the
variance of the dual solutions (optimal Lagrange multipliers). A topic of on-
going research is to develop a quantitave stability analysis, along the lines of
[24], but on the dual variables; see also [25,26].
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10. Oliveira, W., Sagastizábal, C., Scheimberg, S.: Inexact bundle methods for two-stage
Stochastic Programming. J. Optim. 21, 517-544 (2011)

11. Fábián, C., Wolf, C., Koberstein, A., Suhl, L.: Risk-averse optimization in two-stage
stochastic models: Computational aspects and a study. SIAM J. Optim. 25, 28-52 (2015)

12. Ackooij, W., Malick, J.: Decomposition algorithm for large-scale two-stage unit-
commitment. Ann. Oper. Res. 238, 587-613 (2016)

13. Rockafellar, R., Wets, R.: Variational Analysis. Springer Verlag, Berlin (1998)
14. Solodov, M.: Constraint qualifications. In Wiley Encyclopedia of Operations Research

and Management Science, James J. Cochran, et al. (editors), John Wiley & Sons, Inc.,
2010.

15. Izmailov, A., Solodov, M.: Newton-type Methods for Optimization and Variational
Problems. Springer, New York (2014)

16. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)
17. Fiacco, A.V., McCormick, G.: Nonlinear Programming: Sequential Unconstrained Min-

imization Techniques. John Wiley & Sons, New York (1968).



Multiplier Stabilization Applied to Two-Stage Stochastic Programs 21

18. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval research logistics
quarterly. Nav. Res. Logis. Quart. 3, 95-110 (1956)
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