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Abstract We present an approach to regularize and approximate solution mappings of parametric convex op-
timization problems that combines interior penalty (log-barrier) solutions with Tikhonov regularization. Be-
cause the regularized mappings are single-valued and smooth under reasonable conditions, they can be used to
build a computationally practical smoothing for the associated optimal value function. The value function in
question, while resulting from parameterized convex problems, need not be convex. One motivating applica-
tion of interest is two-stage (possibly nonconvex) stochastic programming. We show that our approach, being
computationally implementable, provides locally bounded upper bounds for the subdifferential of the value
function of qualified convex problems. As a by-product of our development, we also recover that in the given
setting the value function is locally Lipschitz continuous. Numerical experiments are presented for two-stage
convex stochastic programming problems, comparing the approach with the bundle method for nonsmooth
optimization.
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1 Introduction and motivation

This work focuses on developing computationally implementable smoothing methods for a family of para-
metric convex programming problems, noting that all the functions are differentiable but the parametric de-
pendence can be arbitrary.

As one motivating application, the approach provides approximations to (possibly nonconvex) stochastic
programs, as long as they exhibit certain structure suitable to our theory. The setting can be illustrated by the
following abstract stochastic programming problem formulation:

min
x∈X

f0(x) :=R[F(x,ξ (ω))], (1)

where R is a risk measure [DRS09, Chap. 6], and F(x,ξ ) is a real-valued function of the decision variables
x ∈ X ⊂ Rnx. The random vector ξ (ω) has known probability distribution, with finite support described by
scenarios ξs and probabilities ps ∈ (0,1) for s = 1, . . .S.
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We start with an example when problem (1) is convex. Consider a two-stage stochastic linear programmin c>x+
S

∑
s=1

psQs(x)

s.t. x ∈ X
for Qs(x) :=

min q>s y
s.t. Wy = hs−Tsx

y≥ 0 ,
(2)

where the involved vectors and matrices have suitable dimensions. Suppose the property of relative complete
recourse [DRS09, Sect. 2.1.3] is satisfied. Then the format (1) is obtained by taking ξ = (qs,hs,Ts), F(x,ξs) =
c>x+Qs(x) and R = E, the expected value function. Since in (2) the first-stage variable appears only in the
right-hand side of the feasible set defining the second-stage problems, the corresponding recourse function
Qs is nonsmooth convex [DRS09, Prop. 2.2]. Hence, so is the associated objective in (1), which is given by

f0(x) = c>x+
S

∑
s=1

psQs(x) . (3)

It could be argued that one may get around the nonsmoothness of (2) simply by writing down the determin-
istic equivalent, a linear programming problem on variables (x,y1, . . . ,yS). However, such a rewriting would
preclude the possibility of scenario decomposition that is present in the nonsmooth formulation. The option
to solve separate, easy, second-stage problems (one per scenario s) is very important, and often exploited
in real-life applications; [Sag12]. Algorithms based on L-Shaped or bundle methods, [VW69] and [Bon+06,
Part II], in particular, generate cuts for the nonsmooth recourse function using the second-stage solutions. The
maximum of such cuts is a piecewise affine convex function which by convexity of Qs approximates f0 from
below and is used as a proxy in the master program to generate a new first-stage iterate. For such schemes
to converge, convexity is fundamental to ensure the generated cuts approximate well the recourse function in
regions near the optimum, [OS14; OSL14].

In this work, we shall follow a different path, that is suitable for both convex and certain nonconvex ob-
jective functions in (1). The latter setting can occur even when the recourse function Qs is convex, if the
risk-measure is not convex. An example is [Ahm06, Lem.1], where it is shown that for a stochastic linear
program with simple recourse the classical mean-variance criterion yields a piecewise-convex function f0,
which itself is not convex. Risk measures involving the variance are not the only possible source of noncon-
vexity in (1): the problems considered in [HBT18] have a probability distribution that depends affinely on
the first-stage variable. In this case, the function f0 in (3) is nonsmooth and also nonconvex. Finally, if the
second-stage objective function in (2) depends on the first-stage variable, say instead of q>s y we have qs(x,y),
then the recourse function itself can fail to be convex. More instances and examples of similar nature, referred
to as programs with linearly bi-parameterized recourse, can be found in [Liu+18].

In order to handle nonsmooth nonconvex objectives, instead of building convex cutting-plane proxies
for the recourse function, as in the L-Shaped and bundle methods, we define models that are smooth and
nonconvex. This is done by adopting a parametric programming point of view, which for (2) amounts to
considering the recourse Qs(x) as a particular instance of the value function of a family of problems that are
parameterized by the first-stage variable, x. The proposal replaces each (convex) second-stage problem by a
well-behaved strictly or strongly convex (approximating) nonlinear programming problem (NLP), depending
on a smoothing parameter ε > 0, and possibly also on a Tikhonov regularization parameter. This NLP unique
solution yε

s (x) is a differentiable mapping of x that defines the following smoothed value function:

q>s yε
s (x)≥Qs(x) , (4)

which approximates monotonically the recourse function from above. Rather than generating cuts, the master
problem minimizes the smoothed objective function

c>x+
S

∑
s=1

psq>s yε
s (x) ,

to define a new first-stage point. An important difference with the L-Shaped family is that now the master
program is an NLP. Replacing a piecewise linear master program by a nonlinear version may appear as a
handicap at first sight. However, with our scheme not only the solution mappings yε

s (x) are smooth, but they
also have computable derivatives, related to certain smooth dual mappings, the NLP multipliers computed
when solving the approximating second-stage problems. This is a clear algorithmic advantage over the usual
cutting-plane models, especially in a nonconvex setting. Additionally, not only (4) holds uniformly for all x
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but also, under reasonable conditions, the smoothed recourse function is bounded above byQs(x) plus a term
that tends to zero when so does the smoothing parameter; see the relation (11) below.

The smooth approximating solution mappings are defined by suitably combining a Tikhonov regular-
ization with a logarithmic barrier. Regarding related (or somewhat related) works, clearly there are plenty
smoothing techniques in the literature. For example, those of [Nes05] and [BT12], which solve convex non-
smooth optimization problems with complexity guarantees. However, complexity analysis is not our subject
in this work. The other vastly studied topic concerns generalized and directional derivatives of the optimal
value functions; see, e.g., [BS00; RW09] and references therein. Intensive sensitivity analysis of optimiza-
tion and variational problems via generalized differentiation, including the Lipschitz stability of optimal
value/marginal functions, was conducted in [Mor06; Mor18]. Differentiability properties of solution mappings
of NLP problems can be traced back to [FM68; Fia83], where the linear independence constraint qualification,
strict complementarity, and the second-order sufficient optimality condition are assumed. We must mention
here that these works (see also [FI90]) have already considered computing some sensitivity information using
approximating penalization schemes. We follow a similar path in the sequel, but with appropriate modifica-
tions, among which is adding a Tikhonov regularizing term to the classical interior penalization. Moreover,
unlike [FI90], we do not assume satisfaction of strict complementarity or the second-order sufficient condition
for the original problem. Accordingly, in our setting the primal solution set need not be a singleton; and can
even be unbounded. Instead, we induce the second order sufficient condition on certain approximating sub-
problems, via the specific regularization/penalization scheme employed to compute the approximations. As
we shall show, our approach has many interesting theoretical properties, and is also computationally useful;
for example, to preserve decomposability of stochastic programs.

As a matter of theory, our regularized penalization scheme provides estimates for the optimal value, as
well as locally bounded upper bounds for the subdifferential of the value function. This, in turn, leads to the
value function being locally Lipschitz. The latter result recovers, via our computationally-oriented approach
and in our case, the locally Lipschitz property established in [Guo+14] (noting that the setting of [Guo+14]
is much more general). Some other results on the locally Lipschitz behavior of optimal value functions are
[MNY09] and [DM15]; but these assume inner semi-continuity of solution mappings (not assumed in this
work).

Generally, in this work, we regard smoothing as the ability to generate, in computable ways, single-valued
and smooth primal-dual solution mappings, which are “asymptotically correct” in some sense. Therefore,
the topic of interest is how the constructed single-valued approximations relate in the limit to the possibly
set-valued primal and dual solution mappings, and to the optimal value function.

For various other issues of parametric and sensitivity analysis of optimization and variational problems,
see the monographs [FM68; Fia83; Ban+83; BS00; RW09; Mor06; Mor18], as well as [DGL12]. In [DGL12]
the authors analyze certain optimization problems in Banach spaces involving an arbitrary amount of functions
that are lower semicontinuous and an abstract constraint given by a closed set. They are mostly concerned
with the respective lower and upper continuity aspects of optimal values and solution sets as well as a certain
generalized Lipschitz property for the feasible set. To perturb the main optimization problem, they consider
a metric on the space of all possible data of the main problem. This amounts to putting a metric on the space
of lower semicontinuous functions concatenated with the space of closed sets. They prove that the space of
all problem data is complete under their metric. Next, they see feasible set mappings, optimal value functions
and solution mappings as mappings on the space of problem data and look at qualitative aspects as well as
quantitative relations for these objects. For example, one nontrivial instance for the problems considered in
[DGL12] is the master problem of the possibly nonconvex stochastic programming problem considered here.
However, we do not deal directly with the underlying nonsmooth problem as opposed to [DGL12]. Instead,
we want to show how to build well-behaved smooth approximations to nonsmooth and nonconvex value
functions and to understand how these smooth approximations provide some useful information for the value
functions. We capitalize on smooth optimization to solve easier approximations for a harder problem, leaving
the theoretical issues concentrated solely on how the approximations relate to the original model.

The rest of the paper is organized as follows. In Section 2, we fix notation and blanket assumptions, de-
fine the Tikhonov-regularized interior penalty scheme and associated smoothing of the value function, and
revise some basic concepts in set-valued analysis. In Section 3, we specialize to our setting several results
for the approximate optimal value function, including its parametric differentiability. Some technical bounds
are gathered in Section 4. The final theoretical Section 5 shows that the gradients of the approximate value
function are locally bounded and, as a by-product of our developments, we recover the result that optimal
value functions of qualified convex problems are locally Lipschitz. The developed theory is general, not only
applicable to stochastic programs; nevertheless, as two-stage stochastic programs is an important motivation
for us, in Section 6 we go back to the issue of smoothing risk-averse variants of such problems. In the nu-
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merical Section 7 the approach is benchmarked on convex instances against a state-of-the-art bundle method
software for nonsmooth optimization [Fra02].

2 The setting and main ingredients of the approach

The family of problems in consideration is parameterized by x ∈ Rnx and has decision variable y ∈ Rny. The
objective function is f : Rnx×Rny → R. Equality constraints are given by means of parametric mappings
A : Rnx→M(l×ny) and right-hand side maps b : Rnx→ Rl , where M(l×nx) is the space of l×nx-matrices.
The parametric inequality constraints are gi : Rnx×Rny→ R, i = 1, . . . ,m. Accordingly, the parametric opti-
mization problem is:

minimize
y

f (x,y)

subject to A(x)y = b(x),

gi(x,y)≤ 0, i = 1, . . . ,m .

(5)

Of course, not all functions need to really have a parametric dependence, and not all types of constraints
need to be present. Special cases, like right-hand side and canonical perturbations are included implicitly.
In particular, for two-stage linear stochastic programs (2), problem (5) represents the second-stage problems
defining the recourse, and only the right-hand side mapping depends on x; specifically, in this case

f (x,y) = q>s y , A(x) =W , b(x) = hs−Tsx , and g(x,y) =−y

(so m = ny).

2.1 Blanket assumptions and Tikhonov-regularized interior penalty scheme

Throughout we assume that in (5) the following holds for all x ∈ Rnx (of course, one could instead consider
some subset of parameters in Rnx):

1. The functions f (x, ·) and gi(x, ·), i = 1, . . . ,m, are convex.
2. The mappings f , b, A and gi are at least twice continuously differentiable in both the parameter and the

decision variable.
3. The l×nx matrix A(x) has linearly independent rows.
4. The constraints in (5) satisfy the Slater condition: for every x there exists ẙ(x) such that A(x)ẙ(x) = b(x),

gi(x, ẙ(x))< 0, i = 1, . . . ,m.
5. For every x, problem (5) has at least one solution.

Let S(x) denote the (nonempty, possibly unbounded) primal solution set of (5) and let

v(x) := f (x,y(x)), for y(x) ∈ S(x), (6)

be the value function of problem (5).
Recall that [RW09, Theorem 1.17] ensures that the value function (6) is continuous under uniform level-

boundedness. While our blanket assumptions above do not imply the latter condition, we can still conclude
continuity of the value function via our uniform approximation of the value function via smooth functions,
and the condition (14) introduced in the sequel. We do not assume that the Slater points are uniform across
parameters. They can change freely with x ∈ Rnx. All the hypotheses about (5) and the associated problem
data stated in this section, are not stated again and will be taken in the subsequent sections as granted.

Thus, the main object of our study are smooth parametric convex programming problems, with Slater
points and without redundant equality constraints, that have nonempty solution sets for all parameters. The
goal is to construct computable (and well-behaved) approximations to primal and dual solution mappings,
and to value functions. To that end, define the following Tikhonov-regularized interior-penalty (log-barrier)
function:

φ(x,y) =−
m

∑
i=1

ln{−gi(x,y)}+
µ

2
‖y‖2, (7)

where µ ≥ 0 and ‖ · ‖ denotes the Euclidean norm. In our constructions, we use µ fixed, mainly because this
turns out to be sufficient for our purposes. In particular, the size of this Tikhonov regularization is controlled
by the penalty parameter ε multiplying the full function φ , see (8) below. But we could, at the expense of
some extra notation, introduce a separate variable parameter µk for the Tikhonov regularization. Moreover,
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we could also regularize only some variables yi and not others, depending on the structure of the problem at
hand. In particular, the variables that have nonnegativity constraints on them do not need to be regularized,
in principle (this would be clear from the subsequent developments). But we shall not go into theoretical
analysis of such modifications, as they will cause some technical complications, while the conceptual ideas
are clear from our simpler presentation for (7). Note that for the two-stage stochastic linear programs (2), the

corresponding penalty function would be φ(x,y) =−
ny

∑
i=1

lnyi (if µ = 0 is taken).

It is worth to point out that the Tikhonov term makes (7) different from the usual log-barrier penalties, but
with some similar properties, to be recalled and/or established in the sequel, still holding. At the same time,
as we shall explain next, the possibility of adding Tikhonov regularization brings some advantages.

2.2 Regularized approximate value function

For a penalty parameter ε > 0, the Tikhonov-regularized interior penalty approximation of problem (5) is
defined by the NLP problem

minimize
y

f (x,y)− ε

m

∑
i=1

ln{−gi(x,y)}+ ε
µ

2
‖y‖2

subject to A(x)y = b(x)

(8)

(as usual, we use the convention that ln t = −∞ whenever t ≤ 0, to drop from (8) the implicit interiority
constraints gi(x,y)< 0.)

Our main task is to relate the objects obtained from solving (8) to solutions of (5). To induce the differen-
tiability properties of the interior penalty solutions of (8) we shall assume that either the constraints y≥ 0 are
present among the inequality constraints in (5), and/or that the regularization parameter µ > 0 is taken in (7).
As a result, with our construction, it holds that:

the objective function in (8) is strictly or strongly convex, and its Hessian is positive definite everywhere.
(9)

This leads to uniqueness of solutions and eventual differentiability of the solutions mappings. For this reason,
when y ≥ 0 is not present in (5), the Tikhonov term should be added. Otherwise, we do not need to use it, at
least if we know that (8) has a solution for µ = 0. The latter is closely related to the solution set of (5) being
nonempty and bounded for the given x; see, e.g., [DS99; MZ98] for some results in this direction. But in any
case, we can still use the regularization (µ > 0) as well; for example, to make sure that (8) is solvable without
any extra assumptions.

The unique solution to the regularized problem (8) defines the estimate of the value function in (6), as
follows:

vε(x) := f (x,yε(x)), for yε(x) solving (8) . (10)

We consider that v(x) = v0(x), which is justified by the fact that vε(x)↘ v(x) as ε↘ 0 (see below for details).
We shall also refer to vε(x) as upper smoothing (of the value function v(x)), which would be justified once it
is shown that the mapping yε(x) is differentiable (then so is vε(x)). The derivative of vε(x) involves the dual
mapping λ ε(x), the Lagrange multiplier associated to the solution yε(x) of (8). Note that this multiplier is
well defined (by the linearity of the constraints in (8)) whenever so is yε(x). In that case, the multiplier is also
unique, because A(x) has full row rank, by assumption.

2.3 Basic concepts in set-valued analysis

We now review some notions and relations that will be useful in our development.
Given a set-valued mapping R : Rnx→ Rny, recall that the outer limit of R at x ∈ Rnx is defined as

limsup
x→x̄

R(x) = {y ∈ Rny : ∃xk→ x̄, yk ∈ R(xk) s.t. yk→ y},

and its inner limit by

liminf
x→x̄

R(x) := {y ∈ Rny : ∀xk→ x̄ ∃yk ∈ R(xk) s.t. yk→ y}.

With a slight abuse of notation, for the value function we shall write limsupx→x̄ v(x) for limsupx→x̄{v(x)}.
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The map R is outer semi-continuous at x̄ ∈Rnx if limsupx→x̄ R(x)⊂ R(x̄). The set-valued map R is said to
be inner semi-continuous at x̄ if liminfx→x̄ R(x)⊃ R(x̄).

A set-valued map R is locally bounded at x̄ ∈ Rnx if there is an open set V ⊂ Rnx such that x̄ ∈ V and
S(V ) := ∪x∈V S(x) is bounded.

The regular subdifferential of v : Rnx→ R at x ∈ Rnx is given by

∂̂v(x̄) :=
{

u ∈ Rnx : liminf
x→x̄

v(x)− v(x̄)−u>(x− x̄)
‖x− x̄‖

≥ 0
}
,

the limiting subdifferential by
∂v(x̄) := limsup

x→x̄
∂̂v(x),

and the horizon (or singular Mordukhovich) subdifferential by

∂
∞v(x̄) :=

{
u ∈ Rnx : ∃xk→ x̄, uk ∈ ∂̂v(xk), tk↘ 0 s.t. tkuk→ u

}
.

Denote by cl D the closure of a set D, and by conv D its convex hull. Then the Clarke subdifferential is given
by

∂Cv(x) = conv cl {∂v(x)+∂
∞v(x)},

see [Mor18, Theorem 3.57]. If v is locally Lipschitz, then ∂Cv(x) = conv ∂v(x). To avoid confusion, we
mention some alternative terminology widely used in the variational analysis literature: Clarke subdifferential
is sometimes called convexified subdifferential (or generalized gradient, in the case of Lipschitz function),
regular subdifferential is also known as Fréchet subdifferential, and limiting subdifferential as Mordukhovich
subdifferential.

The regular subdifferential and the Clarke subdifferential are convex sets. The Clarke and the limiting
subdifferentials are outer semi-continuous multi-functions. When v is convex, it is locally Lipschitz and all
these subdifferential notions coincide with the classical subdifferential of convex analysis.

The following proposition characterizes local boundedness of the value-function subdifferential. It is a
specialization of [RW09, Theorems 9.13 and 9.2] to our setting (note that in our case the value function is
finite-valued).

Proposition 1 (Subdifferential Characterization of Local Lipschitz Continuity)
Let the value function v : Rnx→ R defined by (5) be continuous. The following conditions are equivalent:

1. The function v is locally Lipschitz at x.
2. The regular subdifferential ∂̂v is locally bounded at x.
3. The limiting subdifferential ∂v is locally bounded at x.
4. The horizon subdifferential ∂ ∞v(x̄) contains only of the zero vector.

Proof Theorem 9.13 from [RW09] depends on strict continuity of the value function, given in Definition
9.1, which combined with Theorem 9.2 of [RW09], yields the stated equivalences. Note that strict continuity
means local Lipschitz continuity. ut

3 The approximate optimal value function and approximating solution mappings differentiability

We now examine how the function (10) approximates the value function (6), and derive formulæ for the
derivatives of the associated primal and dual solution mappings yε(x) and λ ε(x), respectively.

3.1 Estimates for the optimal value

In this subsection, the analysis concerns a fixed parameter x.
Our penalty approximation (8) of the original problem (5) can be considered to be part of the larger class

of interior penalty methods; see [FM68; Wri97]. That said, we are not aware of coupling interior penalties
with the Tikhonov regularization, as we do here. Nevertheless, it can be checked directly that certain basic
properties hold for this modification as well. In particular, take 0 < ε2 < ε1. As in the classical setting (µ = 0,
as in [Wri97]), it can be seen that

v(x)≤ f (x,yε2(x))≤ f (x,yε1(x)) and φ(x,yε2(x))≥ φ(x,yε1(x)) .
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Also, as ε ↘ 0, the accumulation points of yε(x) are solutions of (5), and vε(x) = f (x,yε(x)) decreases to
v(x), the optimal value of (5). Moreover, when µ = 0, the following uniform estimate for the value function
holds:

v(x)≤ vε(x)≤ v(x)+mε , ( when µ = 0)

see, e.g., [IS06]. The next proposition generalizes the bound in question to the possibility of using Tikhonov
regularization, as in (8).

Proposition 2 (Value function bounds)
For any µ ≥ 0 and any ε > 0, if yε(x) exists then it holds that

v(x)≤ vε(x)≤ v(x)+mε + ε
µ

2
min

y∈S(x)
‖y‖2. (11)

If µ > 0, then yε(x) exists for any ε > 0, and it holds in addition that

µ

2
min

y∈S(x)
‖y‖2 +m≥ µ

2
‖yε(x)‖2. (12)

Proof Recall that x is fixed here. Let η̄i :=−ε/gi(x,yε(x))> 0 for all i = 1, . . . ,m. As is easily seen, the KKT
optimality conditions for problem (8) characterize yε(x) as a minimizer of

L(y) := f (x,y)+ ε
µ

2
‖y‖2 +

m

∑
i=1

η̄igi(x,y),

over the set defined by A(x)y = b(x). Hence, for all y ∈ Rny such that A(x)y = b(x), it holds that

f (x,y)+ ε
µ

2
‖y‖2 +

m

∑
i=1

η̄igi(x,y) = L(y)≥ L(yε(x))

= f (x,yε(x))+ ε
µ

2
‖yε(x)‖2 +

m

∑
i=1

η̄igi(x,yε(x))

= vε(x)+ ε
µ

2
‖yε(x)‖2−mε .

(13)

Since η̄igi(x,y)≤ 0 and f (x,y) = v(x) for all y ∈ S(x), this means that

vε(x)≤ mε + inf
y∈S(x)

{
f (x,y)+ ε

µ

2
‖y‖2

}
= v(x)+mε + ε

µ

2
inf

y∈S(x)
‖y‖2 ,

which is the right-most inequality of (11); while the left-most inequality is obvious.
Similarly, but using also that vε(x)≥ v(x), from (13) we obtain that

v(x)+ ε
µ

2
inf

y∈S(x)
‖y‖2 = inf

y∈S(x)

{
f (x,y)+ ε

µ

2
‖y‖2

}
≥ v(x)+ ε

µ

2
‖yε(x)‖2−mε .

Now dividing the latter inequality by ε > 0 and re-arranging terms results in (12). ut

We do not claim that the estimate (11) is tight, but it will turn out to be sufficient for many purposes. To
improve the bound, one would need to estimate how far yε(x) is from the solution in S(x) of minimal norm .

The example min{−y : y≤ 1} shows that that the classical bound vε(x)≤ v(x)+mε is not valid for µ > 0.
The claim can be checked explicitly (and is quite clear intuitively), because ‖yε(x)‖2 < 1 = miny∈S(x) ‖y‖2.

Now it is clear that although µ > 0 has the advantage of guaranteeing the existence of yε(x) (and this is
without any assumptions), in the parametric context the price to pay is the loss of the uniform approximation
of v(x) given by vε(x), because we have to deal with the term miny∈S(x) ‖y‖2 that now appears in the bound.

In the analysis below, for x̄ ∈ Rnx fixed, we want to know whether limε↘0,x→x̄ vε(x) = v(x̄). Observe that
boundedness of the solution set S(x̄) is not necessarily relevant. For instance, consider min{yx2 : y ≥ 0}. We
have S(x) = {0} for x > 0, S(0) = {y ∈ R : y≥ 0}, and limε↘0,x→x̄ vε(x) = v(x̄) holds trivially.

Clearly, one way to ensure that limε↘0,x→x̄ vε(x) = v(x̄) is to guarantee (somehow) that there exists K > 0
such that miny∈S(x) ‖y‖2 ≤ K for x ∈ Rnx close to x̄. For instance, if S(x̄) is locally bounded at x̄ ∈ Rnx, then
such K > 0 obviously exists. So this is not very restrictive. However, one of the advantages of considering
µ > 0 is that we can deal with unbounded solution sets. The constant K > 0 in question does not exist if and
only if there is a sequence xk→ x̄ such that miny∈S(xk) ‖y‖

2→ ∞. This is clearly something rare/pathological,
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and can be disregarded in a general approach, like the one we are presenting. Accordingly, where needed, we
make the reasonable assumption that

limsup
x→x̄

{
min

y∈S(x)
‖y‖2

}
<+∞. (14)

Just note that (14) always holds if the solution sets are locally bounded, which in turn is automatic if the
feasible sets in (5) are uniformly locally bounded (the latter being quite an acceptable assumption by itself,
holding in many cases of interest).

Remark 1 [Consequences of assumption (14)] First, (14) and (11) imply that v(x) is continuous. Under (14),
the bound (11) implies limsupε↘0,x→x̄ yε(x) ⊂ S(x̄). However, this does not imply the existence of accumu-
lation points of yε(x). When µ > 0 we can use (12) to conclude under (14) that yε(x) remains uniformly
bounded for small ε > 0 and x close to x̄ ∈ Rnx, even if S(x̄) is unbounded. The case µ = 0 is not as straight-
forward. If µ = 0 we have to assume that S(x) is bounded for all x, so that yε(x) exists. Recalling that convex
functions with one nonempty bounded level set are inf-compact and level-bounded, [RW09, Def. 1.8], we can
be sure that yε(x) remains bounded for fixed x ∈Rnx when we change ε > 0. However, to deal with x→ x̄ we
shall focus on the case when S(x̄) is at least locally bounded, if no regularization is used (µ = 0). For that, we
later refer to the condition

limsup
ε↘0,x→x̄

‖yε(x)‖<+∞ ∀x̄ ∈ Rnx. (15)

Satisfaction of (15) is ensured under (14) if µ > 0, and under local boundedness of the feasible sets when
µ = 0. Condition (14) holds, for instance, if the feasible sets are uniformly bounded. An example (due
to a referee) for which (14) fails is minx2y s.t. xy ∈ [−1,1]. A more general form of condition (14) is also
mentioned in [Guo+14] as the restricted inf-compactness condition. The difference is that [Guo+14] allows
S(x) to be empty.

3.2 Parametric differentiability

The regularized approximating problem (8) is explicitly set-up to satisfy the associated second-order suffi-
cient optimality condition (by (9), either because of the Tikhonov regularization term with µ > 0 or because
of the log-barrier penalization of the y ≥ 0 constraints when they are present). Then, given also the linear
independence constraint qualification (by the full rank assumption on the matrices A(x)), the differentiability
of the mappings yε(x) and λ ε(x) can be obtained applying to (8) some classical results. We give some details
of a direct proof in our case, because the calculations of the derivatives are needed for later developments in
any case.

The KKT conditions for (8) give the following parametric system of nonlinear equations (in primal-dual
variables):

∇y f (x,yε(x))+ ε∇yφ(x,yε(x))−A(x)>λ
ε(x) = 0,

A(x)yε(x)−b(x) = 0. (16)

(Note that we used the constraint in the form of b(x)−A(x)y = 0 to assign the Lagrange multiplier λ ε(x) at
the solution yε(x) in the first equation above, but then we reversed the sign of the constraint to “the original”
in the second equation. This is quite common. Here, we opted for this form for a certain convenience later
on.)

Differentiability of the primal-dual solution mappings depends on properties of the Jacobian of (16), which
is given by

Jε(x) :=
[

Mε(x) −A(x)>

A(x) 0

]
, for Mε(x) := ∇

2
yy f (x,yε(x))+ ε∇

2
yyφ(x,yε(x)) . (17)

This is shown below, together with some useful relations to compute the solution mapping derivatives.

Theorem 1 (Smoothness of Solution Mappings)
Let ε > 0 be fixed. For all x ∈ Rnx, assume that yε(x) exists (which is automatic if µ > 0).
Then the following holds:

(i) The mappings yε(x) and λ ε(x) are C1-functions of the parameter x ∈ Rnx.
(ii) For j = 1, . . . ,nx the corresponding partial derivatives

dε
j (x) :=

∂yε(x)
∂x j

and δ
ε
j (x) :=

∂λ ε(x)
∂x j

(18)
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can be computed by solving the linear system

Jε(x)
[

dε
j (x)

δ ε
j (x)

]
=

[
θ ε

j (x)+ εϕε
j (x)

β ε
j (x)

]
, (19)

where Jε(x) is given by (17), and the right-hand side terms are

θ
ε
j (x) :=−

∂∇y f (x,y)
∂x j

∣∣∣
y=yε (x)

+
∂A(x)>

∂x j
λ

ε(x) ,

ϕ
ε
j (x) :=−

∂∇yφ(x,y)
∂x j

∣∣∣
y=yε (x)

β
ε
j (x) :=

∂b(x)
∂x j

− ∂A(x)
∂x j

yε(x) .

(20)

Proof To show the first item recall that, by construction, (9) holds, i.e., the matrix Mε(x) in (17) is positive
definite. Take any (u1,u2) ∈ kerJε(x), so that

Mε(x)u1−A(x)>u2 = 0, A(x)u1 = 0 .

Multiplying the first equation above by u>1 and using u>1 A(x)> = 0, we conclude that u>1 Mε(x)u1 = 0. Positive
definiteness of Mε(x) implies that u1 = 0. Then, by the first equation above, A(x)>u2 = 0. As A(x) has full
row rank, it follows that u2 = 0. Thus kerJε(x) = {0}, i.e., Jε(x) is nonsingular.

The conclusions follow from the (second-order) Implicit Function Theorem [Lan93, p. 364]. ut

Note that the matrix in the linear systems (19) is the same for all j. This means that only one matrix
factorization is required to solve all the linear systems in question.

The next result states that, once the mapping yε(x) is smooth, so is the approximating value function vε(x),
and also gives the expressions for the corresponding derivatives. This justifies the name upper smoothing (not
to be confused with smoothing in the sense of [Che12]; see Section 5) .

In what follows, for notational simplicity we drop the dependencies of some auxiliary quantities on x and
ε , as it is clear from the context.

Corollary 1 (Smoothed value function derivatives)
With the notation and assumptions in Theorem 1, for i = 1, . . . ,m and j = 1, . . . ,nx, let

α j := ∇y f (x,yε(x))>d j , γi j :=
∇ygi(x,yε(x))>d j

gi(x,yε(x))
.

Then it holds that

(i) For each j = 1, . . . ,nx,

α j =−µεyε(x)>d j + ε

m

∑
i=1

γi j +β
>
j λ

ε(x). (21)

(ii) The derivatives of the smoothed value function (10) are given by

∂vε(x)
∂x j

= α j +
∂ f (x,yε(x))

∂x j
,

for j = 1, . . . ,nx.

Proof Multiplying the transpose of the first identity in (16) by d>j gives

α j + ε∇yφ(x,yε(x))>d j−λ
ε(x)>A(x)d j = 0 .

For i = 1, . . . ,m, define

ηi :=
−ε

gi(x,yε(x))
.

Taking into account that, by (7),

ε∇yφ(x,yε(x)) = µεyε(x)+
m

∑
i=1

ηi∇ygi(x,yε(x)),
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and A(x)d j = β j by (19), yields (21).
The second item is just the chain rule, combined with Theorem 1. ut

Keeping in mind Proposition 1, formula (11), and the fact that the closure of the smoothed gradients
provides an upper bound for the subdifferential of the value function, we would be able to conclude the local
Lipschitz continuity of the value function v at a point x̄ from boundedness of the gradient of vε , by examining
the limit of the latter as x→ x̄ and ε ↘ 0 (see Section 5 for details). Here, we just point out that in view
of Corollary 1, it will suffice to check boundedness of the terms defining the derivatives in item (ii). The
right-most term will be dealt with by means of (15), and by smoothness of f and of the regularized solution
mapping yε . By contrast, bounding the terms α j is far more involved, and this is the reason for singling out
the expression (21) in item (i): the terms therein appear in various inequalities stated in the next section.

4 Technical bounds

The results in this section aim at showing that, although d j defined in (18) can blow up as x→ x̄ and ε ↘ 0,
under reasonable conditions the terms α j defined in Corollary 1 stay bounded (see Theorem 2 below). The
strategy we use to do such analysis is not complicated, but the technical details involve many calculations and
bounds.

Proposition 3 With the notation and assumptions in Theorem 1 and Corollary 1, the following relations hold
for the matrix M = Mε(x) defined in (17), and θ j = θ ε

j (x), ϕ j = ϕε
j (x), δ j = δ ε

j (x) and β j = β ε
j (x):

(i) Md j = ∇2
yy f (x,yε(x))d j +

m

∑
i=1

ηi∇
2
yygi(x,yε(x))d j−

m

∑
i=1

ηiγi j∇ygi(x,yε(x))+ εµd j .

(ii) d>j Md j = d>j θ j + εd>j ϕ j +δ>j β j .

(iii) d>j Md j ≥ ε

m

∑
i=1

γ
2
i j + εµ‖d j‖2 .

Proof Let I denote the identity matrix of order ny. By the definition of the penalty function in (7),

ε∇
2
yyφ(x,yε(x)) =

m

∑
i=1

−ε

gi(x,yε(x))
∇

2
yygi(x,yε(x))

−
m

∑
i=1

−ε

gi(x,yε(x))
∇ygi(x,yε(x))

∇ygi(x,yε(x))>

gi(x,yε(x))
+ εµI .

The expression in item (i) follows, after multiplying by d j and recalling the definitions of ηi, γi j, and of M.
Next, multiplying on the left (19) by the vector (d>j ,δ

>
j ); using the expression in (17) for the Jacobian

matrix J, it follows that

(d>j ,δ
>
j )J
[

d j
δ j

]
=

[
d>j Md j−d>j A(x)>δ j

δ>j A(x)d j

]
=

[
d>j θ j + εd>j ϕ j

δ>j β j

]
.

The first line gives item (ii), because A(x)d j = β j.
In the relation for Md j shown in item (i), the Hessians of f and gi are positive semidefinite, by convexity

of the objective and constraint functions (the implicit constraints gi(x,y)< 0 make ηi > 0). Accordingly,

d>j Md j ≥−
m

∑
i=1

−ε

gi(x,yε(x))
d>j ∇ygi(x,yε(x))

∇ygi(x,yε(x))>d j

gi(x,yε(x))
+ εµ‖d j‖2

= ε

m

∑
i=1

γ
2
i j + εµ‖d j‖2 ,

which completes the proof. ut

The arguments that follow aim at finding upper bounds for the term d>j Md j in Proposition 3(iii). This is
done by bounding from above all the terms in the expression given in Proposition 3(ii). To this aim, our next
result states boundedness of ηi =−ε/gi(x,yε(x)), the Lagrange multiplier estimates for inequality constraints,
obtained after solving the interior penalty subproblem (8). In the non-parametric case, such results (under
appropriate constraint qualifications) are quite classical. Here, we give an extension to the parametric setting
of this paper.

But first, we shall need the following property.
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Lemma 1 (Continuity of Projections)
Let Y (x) be the feasible set of (5) for a parameter x ∈ Rnx, and let ẙ(x̄) ∈ Rny be a Slater point for the

fixed parameter x̄ ∈ Rnx.
It holds that the mapping P(x) of orthogonally projecting the (fixed) point ẙ(x̄) onto Y (x) is continuous

around x̄ ∈ Rnx.

Proof The assertion follows applying [FI90, Theorem 5.1] to the parametric optimization problem

min‖y− ẙ(x̄)‖2 s.t. y ∈ Y (x),

where x ∈ Rnx is the parameter.
Some details. The solution of this problem for the parameter x = x̄ is obviously ẙ(x̄). By the Slater condi-

tion, g(x̄, ẙ(x̄))< 0. Hence, the strict complementarity condition and the linear independence of active gradi-
ents are automatic for this problem with the parameter x = x̄ (the latter because A(x̄) has full rank). Finally, the
second-order sufficient optimality condition holds by strong convexity of the projecting objective function.
Then [FI90, Theorem 5.1] implies that the solution mapping P(x) of the problem in question is smooth around
x̄. ut

Remark 2 If the point ẙ(x̄) in Lemma 1 were to be changed to an arbitrary (but fixed) point, we could still use
the inequality (11), written for the projection problem, to conclude that P(x) is continuous if the projection
P(x) is locally bounded. This is possible because inequality (11) shows that there is a sequence of smooth
functions converging locally uniformly to P(x).

Lemma 2 (Local Boundedness of Multiplier Estimates ηi)
Assume that yε(x) exists for all x ∈ Rnx (which is automatic if µ > 0), and that (15) holds at x̄ ∈ Rnx .

Then for all i = 1, . . . ,m,
0≤ limsup

ε↘0,x→x̄
ηi <+∞ . (22)

Proof To show (22) suppose, for contradiction purposes, that there exist εk ↘ 0 and xk → x̄ such that for
some i = 1, . . . ,m it holds that {−εk/gi(xk,yεk(xk))} → +∞. Taking subsequences of {εk} and {xk} we can
get a partition of {1, . . . ,m}= I0∪ I∞ where for all i∈ I0 the sequences {−εk/gi(xk,yεk(xk))} remain bounded,
while

− εk/gi(xk,yεk(xk))→+∞ for i ∈ I∞ . (23)

Denote by Y (x) the feasible set of (5) for a parameter x ∈ Rnx. Let ẙ(x̄) ∈ Rny be a Slater point for the
parameter x̄ ∈ Rnx (which exists by the blanket assumptions). Define yk = PY (xk)(ẙ(x̄)) to be the projection of
ẙ(x̄) onto Y (xk). By Lemma 1, we have that yk→ ẙ(x̄). Also by continuity, there exists some Γ > 0 such that,
for all k large enough,

gi(xk,yk)≤−
Γ

2
< 0 for all i ∈ I0∪ I∞, (24)

because gi(x̄, ẙ(x̄))≤−Γ < 0 for all i ∈ I0∪ I∞.
Define

uk := yk− yεk(xk),

and note that
A(xk)uk = 0.

Take i ∈ I∞. By (23), we have that gi(xk,yεk(xk))→ 0. By convexity,

gi(xk,yk)≥ gi(xk,yεk(xk))+ [∇ygi(xk,yεk(xk))]
>uk.

Using gi(xk,yεk(xk))→ 0 and (24), we can assume that for all k large enough it holds that

∇ygi(xk,yεk(xk))
>uk ≤−

Γ

4
< 0 for all i ∈ I∞. (25)

Multiplying on the left by u>k the KKT condition (16) written with (εk,xk), we see that

u>k ∇y f (xk,yεk(xk))+ εk∇yφ(xk,yεk(xk))
>uk = uk

>[A(xk)
>

λ
εk(xk)] = 0 ,

because A(xk)uk = 0. Since by (7),

εk∇yφ(xk,yεk(xk)) = ∑
i∈I0∪I∞

ηi∇ygi(xk,yεk(xk))+µεkyεk(xk) ,
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it follows that

u>k ∇y f (xk,yεk(xk))− εk ∑
i∈I0∪I∞

∇ygi(xk,yεk(xk))
>uk

gi(xk,yεk(xk))
+µεku>k yεk(xk) = 0 .

Hence,

−εk ∑
i∈I∞

∇ygi(xk,yεk(xk))
>uk

gi(xk,yεk(xk))

= −u>k ∇y f (xk,yεk(xk))+ εk ∑
i∈I0

∇ygi(xk,yεk(xk))
>uk

gi(xk,yεk(xk))
−µεku>k yεk(xk) .

The left-hand side in the equality above tends to −∞ as k→ ∞, by (23) and (25). The sequence {yεk(xk)} is
bounded because of (15). Then, {uk} is also bounded, as well as all the terms in the right-hand side of the
equality above. Thus, we have a contradiction. This proves (22). ut

We then obtain the following.

Corollary 2 (Local Boundedness of the Smoothed Dual Solution Mapping)
Under the assumptions of Lemma 2, for any x̄∈Rnx there exist ρ > 0 and C > 0 such that, for all ε ∈ (0,ρ)

and x ∈ B(x̄,ρ), it holds that

(i) ‖Md j‖ ≤C‖d j‖+C
m

∑
i=1
|γi j| .

(ii) The set {λ ε(x) : x ∈ B(x̄,ρ) ,ε ∈ (0,ρ]} is bounded.

Proof By Proposition 3(i),

‖Md j‖ ≤‖∇2
yy f (x,yε(x))‖‖d j‖+

m

∑
i=1

ηi‖∇2
yygi(x,yε(x))‖‖d j‖+ εµ‖d j‖

+
m

∑
i=1

ηi
∣∣γi j
∣∣‖∇ygi(x,yε(x))‖ .

Item (i) follows, by (15) and (22).
As the matrices A(x) have full rank, from the KKT conditions (16) we obtain, in a standard way, that

λ
ε(x) = [A(x)A>(x)]−1A(x)

{
∇y f (x,yε(x))+ εµyε(x)+

m

∑
i=1

ηi∇ygi(x,yε(x))

}
.

Item (ii) follows, again by (15) and (22). ut
Keeping Proposition 3(ii) in mind, we next estimate the behavior of the right-hand side terms in the linear

system (19).

Proposition 4 Under the assumptions of Lemma 2, for all j = 1, . . . ,nx and x̄∈Rnx, the quantities θ j = θ ε
j (x)

and ϕ j = ϕε
j (x), defined in (20), satisfy the following relations:

(i) limsup
ε↘0,x→x̄

ε2‖ϕ j‖<+∞ and limsup
ε↘0,x→x̄

‖θ j‖<+∞.

(ii) ε2|d>j ϕ j| ≤ εK(‖d j‖+∑
m
i=1

∣∣γi j
∣∣) for ε ∈ (0,δ ), x ∈ B(x̄,δ ) and some constant K = K(δ , x̄)> 0.

Proof Recalling the definition of ϕ j, we obtain that

ε
2
ϕ j =−

m

∑
i=1

∂

(
εηi∇ygi(x,y)

)
∂x j

∣∣∣
y=yε (x)

=−ε

m

∑
i=1

∂ηi

∂x j
∇ygi(x,yε(x))− ε

m

∑
i=1

(
ηi

∂∇ygi(x,yε(x))
∂x j

)
.

We now bound the right-hand side terms, as follows. First notice that by (15) and (22), for some K1 > 0
(depending on x̄) it holds that for all x close enough to x̄ and all ε close enough to zero,∥∥∥∥∥ε

m

∑
i=1

(
ηi

∂∇ygi(x,yε(x))
∂x j

)∥∥∥∥∥≤ K1 . (26)
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Regarding the terms in the first summation, recalling the definition of ηi,

ε
∂ηi

∂x j
=−ε

2
∂

(
1/gi(x,y))

)
∂x j

∣∣∣
y=yε (x)

=
ε2

(gi(x,yε(x)))2
∂gi(x,y)

∂x j

∣∣∣
y=yε (x)

= (ηi)
2 ∂gi(x,y)

∂x j

∣∣∣
y=yε (x)

.

Using once more (22), together with smoothness of gi and (15), we conclude that the term above is bounded.
Therefore, there exists some constant K2 > 0 such that∥∥∥∥∥ε

m

∑
i=1

∂ηi

∂x j
∇ygi(x,yε(x))

∥∥∥∥∥≤ K2 . (27)

Combining (26) with (27) gives the first assertion in item (i).
The second assertion in item (i) follows using the smoothness assumptions on f and A, (15), and item (ii)

of Corollary 2.
Item (ii) follows multiplying the expression above for ε2ϕ j by d j, and re-examining the terms involved.

ut
The final estimate of this section is the following.

Proposition 5 Under the assumptions of Lemma 2, for all j = 1, . . . ,nx and x̄ ∈ Rnx there exist ρ > 0 and a
constant L > 0 such that, for all ε ∈ (0,ρ) and x ∈ B(x̄,ρ),

ε
2
µ‖d j‖2 + ε

2
m

∑
i=1

γ
2
i j ≤ εL‖d j‖+ εL

m

∑
i=1

∣∣γi j
∣∣+L . (28)

Proof Throughout we consider ε > 0 sufficiently small and x close enough to x̄ ∈ Rnx. We also drop the
dependencies on ε and x, as it is clear from the context. For example, in what follows M := Mε(x), A := A(x),
as well as d j := dε

j (x), δ j := δ ε
j (x), etc.

By items (ii) and (iii) in Proposition 3, we have that

ε
2
µ‖d j‖2 + ε

2
m

∑
i=1

γ
2
i j ≤ εd>j θ j + ε

2d>j ϕ j + εδ
>
j β j . (29)

To establish (28), we proceed to bound the terms in the right-hand side of (29).
By items (i) and (ii) in Proposition 4, for some constant L1 > 0,

εd>j θ j + ε
2d>j ϕ j ≤ ε‖θ j‖‖d j‖+ ε

2|d>j ϕ j| ≤ εL1(‖d j‖+
m

∑
i=1

∣∣γi j
∣∣) . (30)

To bound the last term in the right-hand side of (29), we first show that, for some constant L2 > 0,

ε‖δ j‖ ≤ εL2‖d j‖+ εL2

m

∑
i=1

∣∣γi j
∣∣+L2 . (31)

By the first equation in (19), Md j−A>δ j = θ j + εϕ j . Multiplying this equation by A, as the matrix AA> is
non-singular, we obtain that

δ j = (AA>)−1A(Md j−θ j− εϕ j).

Since the matrices (AA>)−1A (which depend on x) are bounded for all x close to x̄, for some L2 > 0

ε‖δ j‖ ≤ L2(‖εMd j‖+ ε‖θ j‖+ ε
2‖ϕ j‖

≤ L2ε‖Md j‖+L3, (32)

where the second inequality follows from Proposition 4(i), taking L3 > 0 large enough.
By item (i) in Corollary 2, for some constant C > 0,

‖Md j‖ ≤C‖d j‖+C
m

∑
i=1

∣∣γi j
∣∣ .
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Combining the latter relation with (32) and taking L2 > 0 large enough, gives (31).
By the definition of β j and (15), ‖β j‖ stays bounded as ε ↘ 0 and x→ x̄. By (31), it then holds that, for

some L4 > 0,

εδ
>
j β j ≤ ε‖δ j‖‖β j‖ ≤ εL4‖d j‖+ εL4

m

∑
i=1

∣∣γi j
∣∣+L4 .

Combining the latter relation with (30), the assertion (28) follows from (29). ut

5 Boundedness of the smoothing gradients and Lipschitz-continuity of the value function

We shall now discuss some consequences of our analysis above, including boundedness of the derivatives
of the proposed smoothing, as well as some issues related to gradient consistency [Che12; BHK13; BH17;
BH13], and Lipschitz-continuity of the value function [MNY09; DM15; Guo+14].

We are now in position to combine the various inequalities in Section 4 to bound the upper smoothing
derivatives given in Corollary 1.

Theorem 2 (Local Uniform Boundedness of Smoothed Gradient)
Assume that the smoothing is built with a fixed µ > 0 and that (14) holds at x̄ ∈ Rnx. Then there exist

ρ > 0 and L > 0 such that

‖∇vε(x)‖ ≤ L for all ε ∈ (0,ρ) and x ∈ B(x̄,ρ).

Proof Take any j ∈ {1, . . . ,nx}. Recalling Corollary 1, we have that

∂vε(x)
∂x j

=−µεyε(x)>d j + ε

m

∑
i=1

γi j +β
>
j λ

ε(x)+
∂ f (x,yε(x))

∂x j
. (33)

The last term in the right-hand side of (33) is locally bounded by the assumption (15), and the smoothness
properties of f and of yε (the latter established in Theorem 1). As already used before, β j is also bounded, by
the same reasons. The mapping λ ε is locally bounded, as established in Corollary 2(ii). Hence, the last two
terms in the right-hand side of (33) are bounded. It remains to analyze the first two terms.

Suppose that the term ε‖d j‖ is unbounded as ε ↘ 0 and x→ x̄. By (28), it holds that

ε
2
µ‖d j‖2 ≤ εL‖d j‖+ εL

m

∑
i=1

∣∣γi j
∣∣+L .

As µ > 0, this inequality implies that if ε‖d j‖ is unbounded, then the term ε ∑
m
i=1

∣∣γi j
∣∣ must be unbounded

(otherwise the inequality in question yields a contradiction). But both ε‖d j‖ and ε ∑
m
i=1

∣∣γi j
∣∣ being unbounded

clearly contradicts (28), recalling again that µ > 0. We conclude that ε‖d j‖ is bounded. Then (28) implies
that so is ε ∑

m
i=1

∣∣γi j
∣∣.

The proof is completed, because we showed that all the terms in the right-hand side of (33) are bounded.
ut

Note, in passing, that the analysis above shows that the following bound on the possible blow-up rate of
the derivatives of yε holds:

limsup
ε↘0,x→x̄

ε‖∇yε(x)‖<+∞.

We next make some comments on other notions appearing in the literature on smoothing, and in particular
on the property known as gradient consistency. Gradient consistency was introduced in [CQS98] as Jacobian
consistency, and further studied in [BHK13] and [Che12]; see also [QSZ00; RX05].

In the following definitions, a continuous function, possibly nonsmooth, v : Rnx→ R is given, as well as
a differentiable function σ : (0,∞)×Rnx→ R.

– The smooth function σ is said to be a smoothing of v in the sense of [Che12] if

lim
ε↘0,x→x̄

σ(ε,x) = v(x̄). (34)

– When v is locally Lipschitz, the property of gradient consistency between σ and v holds, see [Che12],
whenever

conv

{
limsup
ε↘0,x→x̄

∇xσ(ε,x)

}
⊂ ∂Cv(x̄). (35)
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Note that it is an easy consequence of [BHK13, Lemma 3.1], that for every smoothing function σ of v (smooth-
ing in the sense of (34)), the “almost” converse of the inclusion (35) always holds, i.e.,

conv

{
limsup
ε↘0,x→x̄

∇xσ(ε,x)

}
⊃ ∂v(x̄). (36)

In our context v is the optimal value function of problem (5) while, for the given regularization/penalization
parameter ε > 0 appearing in (8), we have σ(ε,x) = vε(x) = f (yε(x),x), with yε(x) being the solution of prob-
lem (8).

When gradient consistency was defined in [Che12], the motivating smoothing functions considered there
were explicit, and so local boundedness of the gradients was something granted, in a sense. In our case, the
situation is different (as our smoothing function is implicit), and indeed we had to prove that its gradients
remain bounded. In general, boundedness/unboundedness is relevant, because of the formula for the Clarke
subdifferential that involves the horizon subdifferential (see Section 2.3). This information is not present
(“missing”) in (35) and (36), as those conditions are intended for bounded sequences of gradients. In this
paper (as a side issue, not our principal concern) we prove that the horizon subdifferential of v and horizon
closure of the smoothed gradients (limsup∞) are equal, which is part of what is needed in the general gradient
consistency theory, beyond the current definition (35) for locally Lipschitz functions (where the smoothing
function has locally bounded gradients). For instance, consider the problem v(x) = miny xy s.t. y≥ 0 and the
smoothing of the value function with µ > 0. There are unbounded smoothed gradients around x = 0. Clearly,
our assumptions do not hold for this v because S(x) = /0 if x < 0.

In the statements below, we make use of the condition (14), whose consequences were discussed in Re-
mark 1.

Lemma 3 (Gradient Consistency)
The following holds true:

(i) If µ = 0, or if µ > 0 and (14) holds, then the function vε is a smoothing for v in the sense of [Che12] (i.e.,
(34) holds for σ(ε,x) = vε(x)).

(ii) If µ > 0 and (14) holds, then wε(x) := vε(x)+ εφ(x,yε(x)) is also a smoothing in the sense of [Che12],
and it has locally bounded gradients.

(iii) If problem (5) has parameters only on the map b and b is affine, (i.e., (5) has only right-hand side linear
perturbations), then v and wε are convex.

(iv) Under the assumptions of Theorem 2, if v is convex and wε is convex for ε > 0 small enough, then wε is
gradient consistent with v (i.e., (35) holds for σ(ε,x) = wε(x)).

Proof When µ = 0, or (14) holds for µ > 0, the relation (11) in Proposition 2 and the continuity of v imply
that

lim
ε↘0,x→x̄

vε(x) = lim
x→x̄

v(x) = v(x̄).

Item (i) follows.
Let us now prove item (ii). In view of item (i), to show that wε is a smoothing of v we have to verify that

εφ(x′,yε(x′))→ 0 when ε ↘ 0 and x′→ x. Recall that εµ‖yε(x′)‖ → 0 when ε ↘ 0 and x′→ x, due to (14)
and (12). Next, using Lemma 2 and (14), we can conclude that ε ln {−gi(x′,yε(x′))}→ 0 since there is C > 0
such that ε ≤ −Cgi(x′,yε(x′)) and yε(x′) is bounded. We conclude that εφ(x′,yε(x′))→ 0, and thus wε is a
smoothing of v.

Computing the gradient of wε via the chain rule we see that it is locally bounded, because εd j and εγi j are
bounded (see the proof of Theorem 2), and the other terms can be bounded using (14), (12) and Lemma 2.

We proceed to item (iii). Consider the problem ṽ(x) = miny f̃ (y) s.t. Ay = b(x), where f̃ (y) is a convex
extended-valued function, and the problem has solutions for all x. For v we shall have f̃ = f + ID, where
ID is the indicator function of the set D = {x : g(x) ≤ 0}, and for wε we have f̃ = f + εφ . Denote by ỹ(x)
any solution for a fixed x. Taking any x1, x2 and t ∈ (0,1), the point tỹ(x1)+ (1− t)ỹ(x2) is feasible for the
problem at parameter x = tx1 +(1− t)x2. It follows by the convexity of f̃ that ṽ(tx1 +(1− t)x2)≤ f̃ (tỹ(x1)+
(1− t)ỹ(x2))≤ tṽ(x1)+(1− t)ṽ(x2). This shows convexity of ṽ, i.e., of v and wε .

To establish item (iv), fix x̄ ∈ Rnx. By the convexity of wε , for any x and x′ it holds that

wε(x′)≥ wε(x)+∇wε(x)>(x′− x).
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Note that limε↘0 wε(x′) = v(x′) and limε↘0,x→x̄ wε(x) = v(x̄). Then, passing onto the limits ε ↘ 0 and x→ x̄
in the inequality above, for any u ∈ limsupε↘0,x→x̄ ∇wε(x) we see that it must hold that

v(x′)≥ v(x̄)+u>(x′− x̄).

(Note that such u exists, by item (ii).) This shows that u is a subgradient of the convex function v at x̄, implying
gradient consistency. ut
Remark 3 Note that our smoothing can also be seen in the context of Attouch’s Theorem [Att77]. Then,
Lemma 3 could be viewed as an “implementation” of Attouch’s Theorem, in the sense that our approximating
functions are computable.

We finish by showing that the optimal value function v is locally Lipschitz under our assumptions. We note
that a more general result is available in [Guo+14]. However, here we obtain the locally Lipschitz property of
v as a simple by-product of our algorithmic smoothing approach.

Theorem 3 (Local Lipschitz Continuity of the Value Function)
In addition to the blanket assumptions stated in Section 2, assume that condition (14) holds for x̄ ∈ Rnx.
Then the optimal value function v is locally Lipschitz continuous in the neighborhood of x̄.

Proof Take any µ > 0 and consider (8), which in this case always has solution yε(x), for every ε > 0. As (14)
is assumed, by Lemma 3 we know that the corresponding vε is a smoothing of v. Hence, by (36), it holds that

∂v(x̄)⊂ conv

{
limsup
ε↘0,x→x̄

∇vε(x)

}
. (37)

Next, as explained in Remark 1, when µ > 0, condition (14) implies (15) (because of (12)). Then, by
Theorem 2, ∇vε(x) is locally bounded. Hence, by (37), so is ∂v(x̄).

The conclusion now follows from Proposition 1. ut
Note that in Theorem 3, taking µ > 0 is useful for providing a locally bounded upper bound for ∂v(x),

and the resulting theoretical argument. This is not related to choosing µ in any computational implementation
of the smoothing approach.

6 Smoothing risk-averse two-stage stochastic programs

We now explain how to cast in our setting a two-stage convex stochastic program, to be considered in our
computational experiments in Section 7.

Given a risk-aversion parameter κ ∈ [0,1] and a confidence level α ∈ (0,1), we combine expected value
with average-value-at-risk functionals to define

R[Z] := κE[Z]+ (1−κ)AVaRα(Z) ,

for a random variable Z representing a loss (κ = 1 is the risk-neutral variant). Letting c(x) and qs(y) denote
convex first and second-stage objective functions, the risk-averse two-stage stochastic program of interest is

min c(x)+R [q1(y1), . . . ,qS(yS)]
s.t. x ∈ X

and, for s = 1, . . . ,S
ys ≥ 0 ,Tsx+Wys = hs ,

(38)

where we assume once more that the recourse is relatively complete, so that the second-stage problems have
nonempty feasible sets. Using the expression

AVaRα [Z] := min
xu∈R

{
xu +

1
1−α

E [max(Z− xu,0)]
}

from [RU02], we obtain the following risk-averse version of the two-level problem (2):

min c(x)+(1−κ)xu +
S

∑
s=1

psQs(x,xu)

s.t. x ∈ X ,xu ∈ R ,

for Qs(x,xu) :=


min κqs(y)+

1−κ

1−α
z

s.t. Wy = hs−Tsx
qs(y)− z≤ xu
y≥ 0 ,z≥ 0

(39)
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By construction, the second-stage objective function and constraints in (39) are convex on (y,z), while the
recourse function is finite-valued, nonsmooth and convex on (x,xu). Furthermore, the optimal multipliers of
the constraints involving (x,xu), say ηx,ηxu with ηxu ≥ 0, provide the subgradient (T>s ηx,−ηxu)

>.

For s = 1, . . . ,S, the smoothed second-stage solutions, denoted
(

yε(x,u),zε(x,u)
)

, are computed by solv-
ing the smoothed second-stage problems{

min κqs(y)+
1−κ

1−α
z+ εφs(xu,y,z)

s.t. Wy = hs−Tsx,
for φs(xu,y,z) :=−

ny

∑
i=1

ln(yi)− ln(z)− ln(z−qs(y)+ xu) . (40)

The approximate first-stage problem ismin c(x)+(1−κ)xu +
S

∑
s=1

ps

(
κqs(yε(x,xu))+

1−κ

1−α
zε(x,xu)

)
s.t. x ∈ X ,xu ∈ R ,

(41)

which, by the definition of AVaRα , is not necessarily the same as the objective of the problem below:{
min c(x)+R

[
q1(yε

1(x,xu)), . . . ,qS(yε
S(x,xu))

]
s.t. x ∈ X .

Corollary 3 (Specializing the Results to Two-Stage Risk-Averse Stochastic Linear Programs)
Consider the particular instance of the abstract stochastic problem (1) given by (39) and its smooth

approximation (41). Suppose that the matrix W has linearly independent rows. Assume also that for all x ∈ X
the recourse problems, without risk measures, satisfy the Slater condition and have nonempty solution sets.
Then the following holds when building the smoothing with µ = 0 as in (40):

(i) For s = 1, . . . ,S,

Qs(x,xu)≤ κqs(yε(x,xu))+
1−κ

1−α
zε(x,xu)≤ Qs(x,xu)+ εCs

for an explicit and known constant Cs > 0.
(ii) The objective function of (41) decreases monotonically and uniformly to the objective function of (39) as

ε ↘ 0.
(iii) If xε is a global solution to (41) then xε is an approximate global solution to (39) with explicit and known

quality of approximation.

Proof To prove item (iii), look at item (i). Start multiplying (i) by ps, and then summing across the scenarios.
After that, add the first-stage cost c(x)+(1−κ)xu and take the infimum on the resulting inequality over x∈ X .

ut

From item (iii) of Corollary 3, we know that every accumulation point of xε is a global solution of (39).
In practice, the result applies because it is possible to compute xε as global solutions and, for this setting,
smoothing preserves the original convexity of the problem. In general, for non-convex value functions, item
(iii) is still true, but one may not be sure of global optimality in computation. Whenever gradient consistency
holds, limits of xε are stationary points of the original problem. In particular, the local boundedness of the
smoothed gradients proved in this paper ensures that the singular subdifferential of the value function and the
singular closure of the smoothed gradients agree, which is the gradient consistency result.

7 Numerical experiments

We now benchmark our proposal against the state-of-the-art bundle solver [Fra02] in terms of decrease in the
objective function values along the iterations, using data profiles [MW09].

The experiments were performed on an Intel Core i7 computer with 1.9 GHz, 8 cores and 15.5 GB RAM,
running under Ubuntu 18.04.3 LTS.

7.1 Instances and solvers considered in the benchmark

The test set was created by using four functions from I. Deák’s collection [Deá06], having nx = 20 first-stage
variables and ny= 30 second-stage variables per scenario. For each scenario, l = 20 affine equality constraints
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couple the two stages and there are 10 affine equality constraints defining the fist-stage feasible set X . All the
assumptions in Corollary 3 are satisfied.

In order to define new, more challenging, instances, the stochastic linear programs from [Deá06] were
modified by adding a quadratic term to the linear second-stage cost. Accordingly, given qs, the linear cost in
the original problems and a scalar parameter r ≥ 0, in (39) we set

qs(y) := q>s y+
1
2

ry>y .

The instances in the benchmark are obtained by varying the number of scenarios and the quadratic parameter

S ∈ {1,2, . . . ,20} and r ∈ {0,0.01,0.1,1} .

In (39) the risk-aversion parameter is κ ∈ {0.5,1}, and the confidence level is set to α = 0.9, noting that
the risk-neutral version (κ = 1) has no variables xu,z and related constraints. Accordingly, the considered
second-stage problems are increasingly more difficult, being linear programs if r = 0 and κ = 1, quadratic
programs if r > 0 and κ = 1, and problems with quadratic objective and quadratic constraints (QCQP) if r > 0
and κ ∈ [0,1). We used CPLEX 12.8 and an optimized build of Ipopt 3.12.10 with the linear solver Pardiso
as described in the manual; see also [WL06]. Both packages were configured to employ only one thread per
run.

To solve the corresponding problems (39), we consider two methodologies, listed below.

– BM, a decomposition method for the first-stage problem, based on the bundle algorithm by A. Frangioni,
[Fra02], one of the best solvers in the area. The method parameters were tuned for best performance,
particularly regarding the management of the bundle size (keeping only active bundle elements). At each
iteration, say (xk,xk

u), the algorithm uses certain oracle information, obtained by evaluating the nondiffer-
entiable convex objective function

c(xk)+(1−κ)xk
u +

S

∑
s=1

psQs(xk,xk
u).

In addition to this value, the bundle method uses a subgradient of the form(
∇c(xk)+

S

∑
s=1

psT>s ηxk ,(1−κ)−
S

∑
s=1

psηxk
u

)>
,

for multipliers (ηxk ,ηxk
u
) obtained when computing the value of the recourse function Qs(xk,xk

u), for each
scenario s. Depending on the instance, computing such value amounts to dealing with a linear program, a
quadratic program, or a QCQP problem, solved with the packages CPLEX or Ipopt. As CPLEX currently
does not provide directly multipliers for quadratic constraints, we could not use it for the risk-averse
quadratic runs.

– ST, our smoothing with log-barrier and Tikhonov regularization approach, solving the approximate first-
stage master problem (40) with Ipopt. In this setting, the oracle information for the smoothed objective
function

c(xk)+(1−κ)xk
u +

S

∑
s=1

ps

(
κqs(yε(xk,xk

u))+
1−κ

1−α
zε(xk,xk

u)
)

requires the solution of one problem (40) written with (x,xu) = (xk,xk
u) per scenario s. For all the con-

sidered instances, this is a problem with nonlinear objective function and affine constraints solved with
Ipopt, giving the objective function gradient as callback information, computing its value according to
Theorem 1(ii). The performance reported below relies heavily on the availability of an optimized build of
Ipopt. In particular, the regularized solution mappings in Theorem 1(i), yε(x) and λ ε(x), are an output of
Ipopt, once certain mu-target option is activated (such Ipopt parameter corresponds to ε). For simplicity,
ε was kept constant along iterations. However, note that the bounds given in item (i) in Corollary 3 justify
interpreting this parameter as a direct measure of precision when µ = 0. Recall that when µ > 0, as shown
in Proposition 2 and further discussed in Remark 1, the determination of the quality of the smoothing de-
pends on bounds for the scenario subproblem solutions, a knowledge that is hardly available in practice.
For numerically hard problems taking µ > 0 can be advantageous to improve the chances that derivatives
of the regularized solution mappings are sufficiently precise. As in (8), in this case the Tikhonov term
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involves a factor 0.5εµ that is kept constant along iterations. The range chosen for these parameters is

ε ∈ {0.01,0.1,1} and µ ∈ {0,0.1,1} .

As we deal with random instances, each experiment is repeated three times, yielding 540 or 2160 different
runs, respectively if r = 0 and r > 0. Table 1 summarizes all the variants considered in the benchmark.

Problem type (in (39)) BM-CPLEX BM-Ipopt ST-Ipopt
Risk-neutral linear (κ = 1,r = 0) x x x
Risk-neutral quadratic (κ = 1,r > 0) x x x
Risk-averse linear (κ ∈ [0,1),r = 0) – x x
Risk-averse quadratic (κ ∈ [0,1),r > 0) – x x

Table 1 Benchmark configuration.

7.2 Comparing the solvers with data profiles

To report the results of the experiments we use data profiles as introduced in [MW09]. Specifically, for a given
instance, the maximum running time of a given set of methods is used to normalize all the running times, so
that in the graph abscissa the range for all methods is between 0 and 1 (the value of 1 can be thought of as the
maximum time budget given to the solvers). The ordinate in the data profiles corresponds to the probability
of each method delivering the best iterate plus a gap until a time given in the abscissa. The gap corresponds
to 5% of the largest decrease obtained for a given instance by all methods, that were given the same starting
point.

The results are analyzed by considering the different groups in Table 1, starting with the risk-neutral
instances (κ = 1), in both its linear (r = 0) and quadratic (r > 0) variants. The corresponding profiles are
given in Figure 1.

Fig. 1 Performance for linear (left) and quadratic (right) instances without risk.

In both graphs BM-CPLEX is a clear winner, followed by ST and with BM-Ipopt performing worst. For
the linear group, in 70% of the runs ST obtained the largest functional decrease using a slightly more than a
quarter of the time budget: on the left graph the abscissa 0.25 has ordinate 0.7 for ST (the dot). All the solvers
succeeded in solving all of the linear instances (the ordinate value of 1 is attained by the three lines). By con-
trast, the quadratic instances clearly put Ipopt in trouble, as both ST and BM-Ipopt failed in about 20% of the
runs. Notice that for this simplest test set (no risk) there is a big difference in the performance of BM-CPLEX
and BM-Ipopt. This illustrates well the impact that subproblem solution times can have on a decomposition
method. Considering that BM subproblems are all linear or quadratic programs for these groups of instances,
the profiles can be seen as a cautionary tale on the importance of using a specific solver (CPLEX) rather than a
general purpose one (Ipopt) whenever possible. Incidentally, this behavior also indicates that the difference of
performance between ST and BM-CPLEX might be explained by the time each solver spent in the respective
subproblems (nonlinear for ST).
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The next profiles in Figure 2, potentially more challenging in terms of subproblem solution, consider risk
aversion (κ ∈ [0,1)), again with linear (r = 0) instances on the left and quadratic ones (r > 0) on the right.

Fig. 2 Performance for linear (left) and quadratic (right) instances with risk.

The left graph gives BM-Ipopt as a winner, followed closely by ST. The situation is reversed for the
risk-averse quadratic set of instances. Specifically, on the right graph ST performance is far superior than
BM-Ipopt’s (recall that for these instances the comparison with BM-CPLEX is not possible). The fact that
these are the hardest problems is evident in the profile on the right, showing a percentage of failures of 10%
and 40%, for ST and BM-Ipopt, respectively.

In our final profiles we confirm the impact in terms of solution times of introducing a quadratic term in
the second-stage subproblems, particularly when there is risk aversion. The top profiles in Figure 3 show
that, when r varies in {0.01,0.1,1.0} both BM-CPLEX and ST (left and right top graphs) perform alike for
the instances without risk aversion. The situation is substantially different for the bottom profiles, with the
performance of BM-Ipopt and ST for the same three values of r, now considering risk. On the left bottom
graph, as r gets smaller, the improvement in BM-Ipopt’s performance is noticeable, as well as a reduction in
the percentage of failures: about 30% for r = 0.01 and r = 0.1 and 60% for r = 1.0. For both BM and ST,
smaller values of r make the problem solution easier. The right bottom graph, with ST runs, has much less
failures than BM’s, and, more remarkably, the three ST lines look alike for the three different values of r.

Fig. 3 Effect of the quadratic term on BM (left) and ST (right) without (top) and with (bottom) risk.
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For the considered test set, it appears that BM-CPLEX should be preferred for the linear instances, while
ST is the winner for problems with risk aversion and quadratic objective function in the second stage. Re-
garding ST’s failures, by solving the deterministic equivalent with CPLEX, we could check that ST had found
good estimates of the optimal value without reaching the threshold of 5% error in some instances. We expect
that a dynamical management of ε would help in eliminating such failures. This is a topic of future research.

Acknowledgments The authors thank the referees and Editor for beneficial comments. The first and second
authors are grateful to Ecole Polytechnique, France, for the support through the 2018-2019 Gaspard Monge
Visiting Professor Program. Research of the second author is partly funded by CNPq Grant 306089/2019-
0, CEPID CeMEAI, and FAPERJ in Brazil. The third author is supported by CNPq Grant 303913/2019-3,
by FAPERJ Grant E-26/202.540/2019, by PRONEX–Optimization, and by the Russian Foundation for Basic
Research grant 19-51-12003 NNIOa.

References

[Ahm06] S. Ahmed. “Convexity and decomposition of mean-risk stochastic programs”. Mathematical Pro-
gramming 106.3 (2006), pp. 433–446.

[Att77] H. Attouch. “Convergence de fonctions convexes, de sous-differentiels et semi-groupes”. Comptes
Rendus de l’Academie des Sciences de Paris 284.1 (1977), pp. 539–542.

[Ban+83] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer. Non-Linear Parametric Optimization.
Springer, 1983.

[BH13] J. Burke and T. Hoheisel. “Epi-convergent Smoothing with Applications to Convex Composite
Functions”. SIAM Journal on Optimization 23.3 (2013), pp. 1457–1479.

[BH17] J. Burke and T. Hoheisel. “Epi-Convergence Properties of Smoothing by Infimal Convolution”.
Set-Valued and Variational Analysis 25.1 (2017), pp. 1–23.

[BHK13] J. Burke, T. Hoheisel, and C. Kanzow. “Gradient Consistency for Integral-Convolution Smooth-
ing Functions”. Set-Valued and Variational Analysis 21.2 (2013), pp. 359–376.

[Bon+06] J. Bonnans, J. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical Optimization. Theoretical
and Practical Aspects. Universitext. Berlin: Springer-Verlag, 2006.

[BS00] J. F. Bonnans and A. Shapiro. Perturbation Analysis Of Optimization Problems. Springer, 2000.
[BT12] A. Beck and M. Teboulle. “Smoothing and First Order Methods: A Unified Framework”. SIAM

Journal on Optimization 22.2 (2012), pp. 557–580.
[Che12] X. Chen. “Smoothing Methods for Nonsmooth, Nonconvex Minimization”. Mathematical Pro-

gramming 134.1 (2012), pp. 71–99.
[CQS98] X. Chen, L. Qi, and D. Sun. “Global and Superlinear Convergence of the Smoothing Newton

Method and Its Application to General Box Constrained Variational Inequalities”. Mathematics
of Computation 67.222 (1998), pp. 519–540.

[Deá06] I. Deák. “Two-stage Stochastic Problems with Correlated Normal Variables: Computational Ex-
periences”. Annals of Operations Research 142.1 (2006), pp. 79–97.

[DGL12] N. Dinh, M. Goberna, and M. López. “On the stability of the optimal value and the optimal set
in optimization problems”. Journal of Convex Analysis 19 (2012), pp. 927–953.

[DM15] S. Dempe and P. Mehlitz. “Lipschitz Continuity of the Optimal Value Function in Parametric
Optimization”. Journal of Global Optimization 61.2 (2015), pp. 363–377.
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