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Abstract

We study price-of-anarchy type questions in two-sided markets with combinatorial consumers and limited supply
sellers. Sellers own edges in a network and sell bandwidth atfixed prices subject to capacity constraints; consumers
buy bandwidth between their sources and sinks so as to maximize their value from sending traffic minus the prices
they pay to edges. We characterize the price of anarchy and price of stability in these “network pricing” games with
respect to two objectives—the social value (social welfare) of the consumers, and the total profit obtained by all
the sellers. In single-source single-sink networks we givetight bounds on these quantities based on the degree of
competition, specifically the number of monopolistic edges, in the network. In multiple-source single-sink networks,
we show that equilibria perform well only under additional assumptions on the network and demand structure.

1 Introduction

The Internet is a unique modern artifact given its sheer size, and the number of its users. Given its (continuing)
distributed and ad-hoc evolution, as well as emerging applications, there have been growing concerns about the effec-
tiveness of its current routing protocols in finding good routes and ensuring quality of service. Congestion and QoS
based pricing has been suggested as a way of combating the ills of this distributed growth and selfish use of resources
(see, e.g., [4, 6, 7, 9, 11]). Unfortunately, the effectiveness of such approaches relies on the cooperation of the multi-
ple entities implementing them, namely the owners of resources on the Internet, or the ISPs. The ISPs’ goals do not
necessarily align with the social objectives of efficiency and quality of service; their primary objective is to maximize
their own market share and profit.

In this paper we consider the following question: given a large combinatorial market such as the Internet, suppose
that the owners of resources selfishly price their product soas to maximize their own profit, and consumers selfishly
purchase bundles of products to maximize their own utility,how does this effect the functioning of the market as a
whole?

We consider a simple model where each edge of the network is owned by a distinct selfish entity, and is subject to
capacity constraints. Each consumer is interested in buying bandwidth along a path from its source to its destination,
and obtains a fixed value per unit of flow that it can send along this path; consumers are therefore single-parameter
agents. The game proceeds by the sellers first picking (per-unit-bandwidth) prices for the edges they own, and then the
consumers buying their most-desirable paths (or not buyinganything if all the paths are too expensive). An outcome
of the game (a collection of prices and the paths bought by consumers) is called a Nash equilibrium if no seller can
improve her profit by changing her price single-handedly. Note that the consumers already play a best-response to the
prices. We compare the performance of equilibria in this game to that of the best state achievable through coordination,
under two metrics—the efficiency or social value of the system, and the total profit earned by all the edges.

Economists have traditionally studied the properties of equilibria that emerge in pricing games with competing
firms in single-item markets (see, for example, [14, 15] and references therein). It is well known [10], for example,
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that in a single-good free market, oligopolies (two or a few competing firms) lead to a socially-optimal equilibrium1.
On the other hand, a monopoly can cause a lot of inefficiency inthe market by selfishly maximizing its own profit.
Fortunately the extent of this inefficiency is bounded by a logarithmic factor in the ratio of the maximum consumer
utility to the minimum consumer utility, as well as by a logarithmic factor in the number of consumers.

These classical economic models ignore the combinatorial aspects of network pricing, namely that consumers
have different geographic sources and destinations for their traffic, and goods (i.e., edges) are not pure substitutes,
but rather are a complex mix of substitutes and complements,as defined by the network topology. So a timely and
basic research question is: which properties of standard price equilbrium models carry over to network/combinatorial
settings? For example, are equilibria still guaranteed to exist? Are equilibria fully efficient? Does the answer depend
in an interesting way on the network/demand structure?

The network model captures the classical single-item setting in the form of a single-source single-sink network
with a single edge (modeling a monopoly), or multiple parallel edges (modeling an oligopoly). In addition, we inves-
tigate these questions in general single-source single-sink networks, as well as multiple-source single-sink networks.
Our work can we viewed as a non-trivial first step toward understanding price competition in general combinatorial
markets.

Our results

We study the price of anarchy, or the ratio of the performanceof the worst Nash equilibrium to that of an optimal
state, for the network pricing game with respect to social value and profit. We give matching upper and lower bounds,
as a function of the degree of competition in the network, andthe ratioL of the maximum and minimum customer
valuations. For instances with a high price of anarchy, a natural question is whether there exist any good equilibria for
the instance. We provide a negative answer in most such cases, giving strong lower bounds on the price of stability,
which quantifies the ratio of the performance of thebestNash equilibrium for the instance to that of an optimal
solution.

For single-source single-sink networks, we provide tight upper and lower bounds on the prices of anarchy and
stability (see Section 3). Although in a network with a single monopolistic edge, these quantities areO(logL) for
social value, both become worse as the number of monopolies increases. The price of stability, for example, increases
exponentially with the numberk of monopolies, asΘ(Lk−1) for k > 1. The equilibrium prices in these instances are
closely related to the min-cut structure of the instances.

With respect to profit, as is expected, networks that containno monopolies display a large price of anarchy and
stability because competition hurts the profits of all the firms, while networks with a single monopoly perform very
well. One may suspect that as competition decreases further(the number of monopolies gets larger), collective profit
improves. We show instead that the price of stability for profit also increases exponentially with the number of
monopolies.

In multiple-source single-sink networks, the behavior of Nash equilibria changes considerably (see Section 4). In
particular, equilibria do not always exist even in very simple directed acyclic networks. When they do exist, some
instances display a high price of stability (polynomial inL) despite strong competition in the network. In addition to
the presence of monopolies, we identify other properties ofinstances that cause such poor behavior: (1) an uneven
distribution of demand across different sources, and (2) congested subnetworks (congestion in one part of the network
can get “carried over” to a different part of the network in the form of high prices due to the selfishness of the edges).
We show that in a certain class of directed acyclic networks with no monopolies, in which equilibria are guaranteed
to exist, the absence of the above two conditions leads to good equilibria. Specifically, the price of stability for social
value in such networks is at most1/α whereα is the sparsity of the network. Once again, we use the sparse-cut
structure of the network to explicitly construct good equilibria.

1To be precise, there are two models of competition in an oligopolistic market—Bertrand competition, where the firms compete on prices, and
Cournot competition, where they compete on quantity. The former always leads to a socially-optimal equilibrium; the latter may not. In this paper
we will focus on the Bertrand model. See Section 5 for a brief discussion of the Cournot model.
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Related work

The literature on quantifying the inefficiency of equilibria is too large to survey here; see [13] and the references
therein for an introduction.

Recently, several researchers have studied the existence and inefficiency of equilibria in network pricing models
where consumers face congestion costs from other traffic sharing the same bandwidth [8, 1, 2, 12, 16]. As in this paper,
all of these other works consider network pricing games in which consumers are interested in routing their demands
over paths in a network, edges of which are owned by selfish sellers. The routing cost faced by each consumer has two
components: the price charged by each edge on the path, and the latency faced by the consumer’s flow owing to con-
gestion on the path. In addition to selfish pricing, this congestion-based externality among consumers leads to highly
inefficient outcomes even in very simple networks (such as single-source single-sink series-parallel networks [2]).
The cost model considered by us is a special case of this latency-based cost function, in which the latency faced by
a flow is 0 as long as all capacity constraints along the path are satisfied, and∞ otherwise. Furthermore, in our
model, latency (congestion) costs are paid by edges, ratherthan by consumers, and therefore force the edges to raise
their prices just enough for the capacity constraints to be met. Owing to the generality of the latency functions they
consider, these other papers study extremely simple network models. Acemoglu and Ozdaglar [1, 2], for example, as-
sume that all consumers are identical, and have unbounded values (i.e. they simply minimize their total routing cost).
They analyze the game in single-source single-sink networks with parallel links. (Some of their results also extend to
single-source single-sink series-parallel networks.) Likewise, Hayrapetyan et al. [8] consider single-source single-sink
networks with parallel links, but in addition allow different values for different consumers. In contrast, we consider
general single-source single-sink as well as multiple-source single-sink topologies with the simpler capacity-based
cost model. In effect, our work isolates the impact of selfishpricing on the efficiency of the network in the absence
of congestion effects. Although capacity constraints in our model mimic some congestion effects, we see interesting
behavior even in the absence of capacity constraints when the market contains monopolies. The instances we consider
display a large range of behavior in the performance of equilibria, depending on the network and demand structure.

Another recent work closely related to ours is a network formation model introduced by Anshelevich et al. [3] in
which neighboring agents form bilateral agreements to bothbuy and sell bandwidth simultaneously. The game studied
by Anshelevich et al. can be thought of as a meta-level game played by agents when they first enter the network and
install capacities based on anticipated demand. Then, oncethe network is formed, a different game is played between
the agents owning edges and consumers. This second game is the one that we analyze. Furthermore, in the model
considered by Anshelevich et al. there are no latencies or capacity constraints, instead there is a fixed cost for routing
each additional unit of flow.

2 Model & notation

A network pricing game (NPG) is characterized by a directed graphG = (V, E) with edge capacities{ce}e∈E , and a
set of users (traffic matrix) endowed with values. Each edge is owned by a distinct ISP. (Many of our results can be
easily extended to the case where a single ISP owns multiple edges.) The value associated with each chunk of traffic
represents theper-unit monetary valuethat the owner of that chunk obtains upon sending this trafficfrom its source
to its destination. User values are represented in the form of demand curves2, D(s,t), for every source-destination pair
(s, t), where for everỳ , D(s,t)(`) represents the amount of traffic with value at least`. When the network has a single
source-sink pair, we drop the subscript(s, t). We useD to denote the “demand suite”, or the collection of these demand
curves, one for each source-sink pair. Without loss of generality, the minimum value is1, that is,D(s,t)(1) = F

tot
s,t, the

total flow betweens andt, for all pairs(s, t), and we useL to denote the maximum value—L = sup{`|D(s,t)(`) > 0}.
We extend the classic Bertrand model of competition to network pricing. The NPG has two stages. In the first stage,

each ISP (edge)e picks a priceπe. In the second stage each user picks paths between its sourceand destination to send
its traffic. We assume that users can split their traffic into infinitesimally small chunks, and spread it across multiple
paths, or send fractional amounts of traffic. Each user pickspaths to maximize her utility,u = v − minP

∑

e∈P πe,
where the minimum is over all pathsP from the user’s source to its destination, andv is its value (or sends no flow if
the minimum total price is larger than its valuev). This selection of paths determines the amount of trafficfe on each

2We aggregate these curves over all users with the same sourceand destination pairs.
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edge. ISPe’s utility is given byfeπe if fe ≤ ce, and−∞ otherwise. ISPs are selfish and set prices to maximize their
utility. (We briefly discuss an alternate model of ISP behavior in Section 5 based on the classic Cournot competition.)

A given state in a game (in this case consisting of a set of prices and traffic pattern) is called a Nash equilibrium if no
agent wants to deviate from it unilaterally so as to improve its own utility. In a multi-stage game, the relevant concept
is that of asubgame-perfect Nash equilibrium, where, given any first stage strategies, the second stage strategies form
a Nash equilibrium. In the NPG, users are price-takers, thatis, they merely follow a best response to the prices set by
ISPs, and the responses of different users are decoupled from each other. Therefore, given the first stage strategies, the
second stage strategies always form a Nash equilibrium, andthe dynamics of the system is determined primarily by
the first stage game.

Note that by sending fractional flow, or splitting their traffic across multiple paths, users effectively mimick ran-
domized strategies. ISPs, on the other hand, always pick a deterministic strategy (committing to a fixed price). There-
fore, (pure strategy) equilibria do not always exist in these games (indeed in Section 4 we present an example where
there are no pure strategy equilibria). Nevertheless we identify some cases in which equilibria do exist, and character-
ize their performance in those cases.

Note also that if the flowf resulting from the users’ strategies in the second part of the game is such that the
capacity constraint on an edgee is violated, users using that edge still obtain their value from routing their flow, while
the edgee incurs a large penalty. Intuitively, the edgee is forced to compensate those users that are denied service due
to capacity constraints, for not honoring its commitment toserve them at its declared price. This situation of course
does not arise at an equilibrium – any edge with a violated capacity can improve its profit by increasing the price
charged by it.

We evaluate the Nash equilibria of these games with respect to two objectives—social value and profit. The social
value of a stateS of the network,Val(S) is defined to be the total utility of all the agents in the system, specifically,
the total value obtained by all the users, minus the prices paid by the users, plus the profits (prices) earned by all the
ISPs. Since prices are endogenous to the game, this is equivalent to the total value obtained by all the users, and we
will use this latter expression to evaluate it throughout the paper. The worst such value over all Nash equilibria is
captured by the price of anarchy: the price of anarchy of the NPG with respect to social value,POAVal, is defined
to be the minimum over all Nash equilibriaS ∈ N of the ratio of the social value of the equilibrium to the optimal
achievable valueVal

∗:

POAVal(G,D) =
minS∈N (G,D) Val(S)

Val
∗

Here,Val
∗ is the maximum total value achievable while satisfying all the capacity constraints in the network (this

can be computed by a simple flow LP). Likewise,POAPro denotes the price of anarchy with respect to profit:

POAPro(G,D) =
minS∈N (G,D) Pro(S)

Pro
∗

HerePro(S) is the total utility obtained by all the ISPs, or alternatelythe total payment made by all users. The
optimal profit achievablePro

∗ is defined to be the maximum profit over all states in which users are in equilibrium,
and capacity constraints are satisfied.

In instances with a large price of anarchy, we also study the performance of the best Nash equilibria and provide
lower bounds for it. The price of stability of a game is definedto be themaximumover all Nash equilbria in the game
of the ratio of the value of the equilibrium to the optimal achievable value. We usePOSVal andPOSPro to denote
the price of stability with respect to social value and profitrespectively.

3 The network pricing game in single-source single-sink networks

In this section we study the network pricing game in single commodity networks, that is, instances in which every
customer has the same source and sink. As the single-item case suggests, the equilibrium behavior of the NPG
depends on whether or not there is competition in the network. However, the extent of competition, specifically the
number of monopolies, also plays an important role. In the context of a network (or a general combinatorial market),
an edge monopolizes over a consumer ifall the paths (bundles of items) desired by the customer containthe edge.
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Definition 1 An edge in a given network is called a monopoly if its removal causes the source of a commodity to be
disconnected from its sink.

No monopoly. In the absence of monopolies, the behavior of the network is analogous to competition in single-item
markets. Specifically, competition drives down prices and enables higher usage of the network, thereby obtaining good
social value but poor profit.

Theorem 1 In a single commodity network with no monopolies,POAVal = 1. Furthermore, there exist instances
with POSPro = Θ(L).

Proof: We first note that an equilibrium supporting the optimal flow (w.r.t. social value) always exists: consider an
optimal flow of amount, say,f in the network; letp = D−1(f) if the flow saturates the network, and0 otherwise; take
an arbitrary distribution over min-cuts in the network, and“distribute” this price over the min-cuts; in particular, the
price on any edge isp times the probability thate is in the min-cut. We claim that these prices, along with the flow
f form an equilibrium. Note that customers play a best-response—each unit of flow admitted pays a total price ofp
regardless of the path it takes from the source to the destination, and a chunk of flow is admitted if and only if it has
value at leastp. On the other hand, edges cannot improve their profits by increasing prices unilaterally, because their
customers can switch to a different cheaper path. Finally, edges with non-zero prices are saturated, and cannot gain
customers by lowering their price.

For a bound on the price of anarchy, consider any equilibriumin the given instance, and suppose that the network
is not saturated. If all the traffic is admitted, thenPOAVal = 1. Otherwise, there exists an unsaturated edge with
non-zero price that is not carrying all of the admitted flow (if there exists a zero-price unsaturated path, then some
users are playing suboptimally). Let the edge bee. Then there is a source-sink pathP in the graph carrying flow
that doesn’t contain the edgee. Note that all flow carrying paths charge an equal total price. Edgee can therefore
improve its profit by lowering its price infinitesimally and grabbing some of the flow on pathP which is not among
the cheapest paths any more. This contradicts the fact that the network is in equilibrium.

For the second part of the theorem, we consider a network withunbounded capacity, and assume without loss of
generality thatFtot

s,t = 1. Our argument above (thatPOAVal = 1) implies that in any equilibrium all the traffic is
admitted. Therefore the price charged to each user is at most1 (the minimum value), and at equilibrium, the total
profit of the network is1. On the other hand, suppose that all but an infinitessimal fraction of the users have valueL,
then a solution admitting only the high-value set of users (and charging a price ofL to each user) has net profit almost
L.

Single monopoly. As the following theorem shows, the best-case and worst-case performance of single monopoly
networks is identical to that of single-link networks.

Theorem 2 In a single commodity network with a single monopoly,POAVal = O(logL) and POAPro = 1.
Furthermore, there are instances for whichPOSVal = Θ(logL).

Proof: We prove the second part of the theorem first. This follows by simply considering the1/x demand curve from
1 to L in a single link unbounded capacity network. The single linkthen behaves like a single-item monopolist, and
without loss of generality charges a price ofL, resulting in a social value of1. Adding an infinitesimal point mass in
the demand curve atL breaks ties among prices and ensures that this is the only equilibrium. The optimal social value,
on the other hand, is the total value of all users

∫ L

1 1/xdx = logL.
For the first part of the theorem, we first note that in a single-link network (i.e. a single-item market), the above

example is essentially the worst. Specifically, if at equilibrium anx amount of flow is admitted, and each user pays
a price ofp, then for each valueq < p, D(s,t)(q) ≤ px/q. Therefore, the total value foregone from not routing flow
with value less thanp is at most

∫ p

1
(px/q − x)dq < px log p < px logL. With respect to profit, a single-link network

is optimal by definition.
Now consider any equilibrium in a general single-commoditysingle-monopoly network. Suppose that in the

equilibrium the network has non-zero residual capacity. Then using an argument analogous to the proof of theorem 1,
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we can argue that any non-monopoly edge in the network must have a price of0. The sole monopoly in the network
then behaves like a single-link network and obtains optimalprofit, as well as a social value that is at least anO(logL)
fraction of the optimal value.

Finally, suppose that at equilibrium the network is saturated. Then it is obvious that the social value of the network
is equal to the optimal social value. To conclude, we argue that the network also achieves optimal profit at this
equilibrium. In particular, we prove that any flow achievingoptimal profit saturates the network, so the total price
paid by each user in the two states must be equal. Letf be the amount of flow admitted at equilibrium, and suppose
that each admitted user in this flow pays anm amount of money to non-monopoly edges. (Note that this amount is
the same for all admitted users.) Then, since the sole monopoly in the network has no incentive to deviate, it must be
the case thatf = argmaxgg(D−1(g) − m). Now suppose for the sake of contradiction that the amount offlow at a
profit-optimal solution isf ′ < f , that is,f ′ = argmaxggD−1(g). Then,f(D−1(f) − m) ≥ f ′(D−1(f ′) − m) >

f ′D−1(f ′) − fm ≥ f(D−1(f) − m) which leads to a contradiction.

Multiple monopolies. The performance of the game with multiple monopolies degrades significantly. We first show
that the price of anarchy can be unbounded even with2 monopolies. The next lemma shows that the best Nash
equilibrium behaves slightly better but is still a polynomial factor worse than an optimal solution.

Theorem 3 For everyB, there exists a single-source single-sink instance of the NPG containing2 monopolies, with
L = 2, andPOAVal,POAPro = Ω(B).

Proof: We construct the instance as follows. The network consists of three nodess, v andt, and two edges(s, v) and
(v, t), both with a capacity of1 each. All customers want to route their traffic froms to t. The demand curveD is
given byD(`) = 0 for ` > 2, D(`) = 1/B for ` ∈ (1, 2] andD(`) = 1 for ` ≤ 1. Then, we claim thatπe = 1 for
each of the edges is an equilibrium. This is because in order to get more customers, unilaterally any edge would have
to decrease its price to0. Furthermore, there is no incentive to unilaterally increase price because then no customers
would route their flow. The social value and profit of this equilibrium are both2/B, whereas the optimal social value
(with πe = 1/2 for both the edges) is1 + 1/B and the optimal profit is1.

Theorem 4 There exists a family of single-commodity instances of NPG with POSVal,POSPro = Ω(Lk−1), where
k is the nunmber of monopolies. Moreover, in all single-commodity graphs withk > 1 monopolies,POSVal,POSPro =
O(Lk−1).

Proof: For the first part of the theorem, we consider a graph containing a single source-sink path withk edges and
unbounded capacities. There aren users, each endowed with a unit flow. Theith user has valuevi with vi recursively
defined:v1 = 2, v2 = (1 − 1

n ) 2k
2k+1 , vi+1 = (1 − 1

n ) ik
ik+1vi for i ∈ [3, n]. (That is,vi+1 = (1 − 1

n )i
∏

j≤i
kj

kj+1
for i > 1.) We first claim that this network contains a single equilibrium, one at which each edge charges a price of
v1/k = 2/k, and will then prove that this is a poor equilibrium.

To prove the claim, first note thatπe = 2/k is indeed an equilibrium: no edge can gain for raising its price (it
would lose all its flow in doing so), andvi < (k − 1)πe for i, k > 1 implies that in order to attract more flow any edge
must lower its price to below0. Next we show that there are no other equilibria. Consider any state of the network in
which anm > 1 amount of flow is admitted. Then the minimum price edge along the path charges a priceπ, which is
at mostvm/k and makes a profit ofπm. By increasing its price to(vm−1 − vm + π), the edge admits at leastm − 1
users. We now note thatvm−1 − vm is strictly larger than vm−1

1+(m−1)k > vm

(m−1)k ≥ π/(m − 1). Therefore, the new
profit of the edge is strictly larger thanπ(1 + 1/(m − 1))(m − 1) = πm, and the edge has incentive to deviate. This
concludes the proof of the claim.

Now, since the network has unbounded capacity, the optimal solution (with respect to social value) admits the entire
flow. Some algebra shows thatvn = Θ(n−1/k). Therefore, the social value of the optimum is

∑

i vi = Ω(n1−1/k) =
Ω(Lk−1), asL = v1/vn = Θ(n1/k). The total achievable profit is also at leastnvn = Ω(n1−1/k) = Ω(Lk−1). On
the other hand, the social value of the equilibrium, as well as its profit, isv1 · 1 = 2. This concludes the proof of the
first part of the theorem.
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For the second part, letD denote the inverse-demand curve for the network, that is, for everyx, anx amount of
flow has value at leastD(x). Without loss of generality,D(0) = L, D(F ) = 1, whereF = F

tot
s,t is the total amount

of flow (or the capacity of the network, whichever is lesser).Let x∗ = argmaxx≤F {x
1/kD(x)}. We claim that the

following is a Nash equilibrium: each monopoly charges a price ofp∗ = D(x∗)/k, and each non-monopoly charges
a price of0. It is obvious that the non-monopolies do not gain anything from increasing their price. So, for the rest of
the proof, we focus on the monopolies.

Suppose that a monopoly wants to deviate and change its priceto p′ = p∗ − D(x∗) + D(x′) ≥ 0, for some
x′ ∈ [0, F ]. Then, the total price of any source-sink path isD(x′), and it is immediate that the total amount of flow
admitted is no more thanx′. Then, the profit of the monopoly goes fromp∗x∗ to at mostp′x′. We can express the new
profit in terms of the old one as follows:

p′x′ =

(

D(x∗)

k
− D(x∗) + D(x′)

)

x′ ≤
D(x∗)x∗

k

(

x′

x∗
(1 − k) + k

(

x′

x∗

)1−1/k
)

Using the fact that(1+ε)α < 1+αε for all ε > −1 and for allα ∈ (0, 1), we get( x′

x∗
)1−1/k < 1+(1−1/k)(x′/x∗−1).

Therefore, the above expression becomes

p′x′ <
D(x∗)x∗

k

(

x′

x∗
(1 − k) + k + (k − 1)

x′

x∗
− (k − 1)

)

= p∗x∗

This proves that the agent has no incentive to deviate. It remains to show that this equilibrium achieves good social
welfare. First, note thatD(F )F 1/k ≤ D(x∗)(x∗)1/k. Therefore,F ≤ x∗(D(x∗))k. Likewise, for anyy ∈ [0, F ],
D(y) ≤ D(x∗)(x∗/y)1/k. So the total value of flow that is not admitted in the above equilibrium is

∫ y=F

y=x∗

D(y)dy ≤

∫ y=F

y=x∗

D(x∗)(x∗/y)1/kdy =
D(x∗)(x∗)1/k

(1 − 1/k)
(F 1−1/k − (x∗)1−1/k)

≤ (1 − 1/k)−1(D(x∗)kx∗ − D(x∗)x∗) < 2(D(x∗))kx∗

So, the maximum social welfare achievable is strictly less than 2(D(x∗))kx∗ plus the social value of the above
equilibrium, while the equilibrium achieves at leastD(x∗)x∗. The price of stability is therefore no more than
2(D(x∗))k−1 + 1 ≤ 3Lk−1. It is easy to see that the same bound holds for profit as well.

4 Networks with multiple sources

Next we study the NPG in graphs with more general traffic matrices. Specifically different users have different sources,
but a common sink. We assume that the network is a DAG with a single sink, and focus on instances that contain no
monopolies3. Theorem 1 already shows that the price of stability with respect to profit can be quite large in this case.
The main question we address here is whether competition drives down prices and enables a near socially optimal
equilibrium just as in the single-commodity case.

The results are surprisingly pessimistic. We find that thereare networks that admit no pure equilibria. (To maintain
flow, we defer the proofs of Theorems 5 and 6 to Section 4.1.)

Theorem 5 There exists a multi-source single-sink instance of the NPGwith no monopolies that does not admit any
pure Nash equilibria.

In networks that admit pure equilibria, the price of stability for social value can be polynomial inL. This can
happen (Theorem 6 below) even when the network in question satisfies a certain strong-competition condition, specif-
ically, (1) there is sufficient path-choice – from every nodein the graph, there are at least two edge-disjoint paths to
the sink, and (2) no edge dominates over a specific user in terms of the capacity available to that user – removing any
single edge reduces the amount of traffic that any user or group of users can route by only a constant fraction. We
therefore attempt to isolate conditions that lead to a high price of stability, and find two culprits:

3We mainly give strong lower bounds on the price of stability.Naturally, the same bounds hold for instances containing monopolies.
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1. Variations in demand curves across users—a very high value low traffic user can pre-empt a low value high
traffic user.

2. Congestion in the network—congestion in one part of the network (owing to low capacity), can get “carried
over” to a different part of the network (in the form of high prices) due to the ISPs’ selfishness.

Each of these conditions by itself can cause the network to have a high price of stability.

Theorem 6 There exists a family of multiple-source single-sink instances satisfying strong competition and con-
taining uniform demand such thatPOSVal = Ω(polyL, polyN), whereN is the size of the network. There
exists a family of multiple-source single-sink instances satisfying strong competition and with sparsity1 such that
POSVal = Ω(polyL, polyN).

Here uniformity of demand and sparsity defined as follows.

Definition 2 An instance of the NPG(G,D) with multiple commodities and a single sinkt is said to containuniform
demandif there exists a demand curveD such that for all nodess, the demand curveD(s,t) is either identically zero,
or equal to a scalarFs,t timesD.

Definition 3 Given a capacitated graph and a demand matrix, the sparsity of a cut in the graph with respect to the
demand is the ratio of the total capacity of the cut to the total demand between all pairs(s, t) separated by the cut.
The sparsity of the graph is the minimum of these sparsities over all cuts in the graph.

Fortunately, in the absence of the two conditions given above, the network behaves well. In particular, we consider
a certain class of DAGs called traffic-spreaders in which equilibria are guaranteed to exist, and show that when each
user has an identical demand curve (in terms of the fraction of traffic with a certain value), but potentially different
amounts of traffic, the price of stability with respect to thesocial value is at most1/α, whereα is the sparsity of the
network. We conjecture that this bound on the price of stability holds for all DAGs that admit pure equilibria.

Definition 4 A DAG with sinkt is said to be atraffic spreaderif for every nodev in the graph, and every two distinct
pathsP1 andP2 from v to t, any maximal common subpath ofP1 andP2 is a prefix of both the paths. That is, once
the two pathsP1 andP2 “diverge” they meet again only at the sinkt.

The main theorem of this section bounds thePOSVal in traffic spreaders in terms of the sparsity of the underlying
graph.

Theorem 7 Let (G,D) be a uniform-demand instance of the NPG whereG is a traffic spreader and contains no
monopolies, and all sources in the graph are leaves, that is,their in-degree is0. Then(G,D) always admits a pure
Nash equilibrium, andPOSVal ≤ 1/α, whereα is the sparsity ofG with respect toD.

We remark that the networks in the proof of Theorem 6 are traffic spreaders, whereas the one in the proof of The-
orem 5 is not. Note also that for the above theorem, we do not require the instance to satisfy strong competition. This
indicates that the amount of competition in the network has lesser influence on its performance compared to its traffic
distribution.

Proof of Theorem 7.We begin with some notation. Given a graphG and a flowf in G satisfying capacity constraints,
G[f ] is the residual graph with capacitiesc′e = ce − fe. For a graphG = (V, E), setS of nodes, and setE′ of edges,
we useG \ S to denote(V \ S, E[V \ S]), andG \ E′ to denote(V, E \ E′).

Given an instance(G,D), G = (V, E), satisfying the conditions in the theorem, we construct an equilibrium
using the algorithm below. LetFv denote the total traffic at sourcev, andD be a demand curve defined such that
Dv,t = FvD for all v. The algorithm crucially exploits the sparse-cut structure of the network. In particular, we use as
subroutine a procedure for computing the maximum concurrent flow in a graph with some “mandatory” demand. We
call this procedureMCFMD (for Maximum Concurrent Flow with Mandatory Demand).

The procedureMCFMD takes as input a DAGG with single sinkt, a set of sourcesA with demandsFv at
v ∈ A, and a set of mandatory-demand sourcesB with demandsMv at v ∈ B. The procedure returns a cutC and a
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flow f . Let VC denote the set of nodes from whicht is not reachable inG \ C. The cutC minimizes “sparsity with
mandatory demand” defined as follows:

αM (C) =

∑

e∈C ce −
∑

v∈B∩VC
Mv

∑

v∈A∩VC
Fv

The flowf routes the entire demandMv of sourcesv ∈ B to t, and routes anαM (C) fraction of every demandFv at
sourcesv ∈ A to t.

The next lemma asserts the correctness of this procedure. Specifically, it states that sparsity is equal to maximum
concurrent flow in DAGs, even with mandatory demands, when the commodities share a common sink.

Lemma 8 Let (G, A, B) denote an instance for procedureMCFMD, andα = αM (C) be the sparsity of the cut
C produced by the procedure, as defined above. Then, there exists a flow inG that satisfies all capacity constraints,
routes anMv amount of flow from everyv ∈ B to t, routes anαFv amount of flow from everyv ∈ A to t, and saturates
the cutC.

Proof: We begin by proving the lemma in the case ofB = ∅. In this case, we are simply claiming that the sparsity of
the sparsest cut in a DAG with a single common sink is equal to the maximum concurrent flow in the DAG. We first
note that the maximum concurrent flow in the graph can be foundby solving the programLP3 (below left). The dual
of this program (LP4, below right) is a relaxation of the sparsest cut problem on the same graph.

maximize α (LP3)

subject to
∑

P∈Pv

fP ≥ αFv ∀v ∈ A

∑

P :e∈P

fP ≤ ce ∀e

fP ≥ 0 ∀v ∈ A, P ∈ Pv

α ≥ 0

minimize
∑

e

πece (LP4)

subject to
∑

v∈A

Fvsv ≥ 1

∑

e∈P

πe ≥ sv ∀v ∈ A, P ∈ Pv

πe ≥ 0 ∀e

su ≥ 0 ∀v ∈ A

The lemma now follows from the claim that the integrality gapof the second program is1. Let the value of the
program beα. To prove the claim, consider any optimal fractional solution to the dual programLP4, and interpret
theπe values as lengths on edges. Then,sv denotes the shortest distance fromv to t. Now, we modify the standard
argument for the integrality gap of the mincut LP – pickβ uniformly at random from the range[0, 1]. Let Tβ denote
the set of vertices whose shortest distance tot is less thanβ, andSβ denote the remaining vertices. The expected size
of the cut(Sβ , Tβ) is no more thanα. On the other hand, the expected total demand separated,Eβ [

∑

v∈Sβ
Fv], is at

least1. Therefore, there exists a valueβ for which the integral cut(Sβ , Tβ) has sparsity no more thanα.
Finally, to prove the lemma for a generalB, let α = αM (C) as in the statement of the lemma, and consider the

following instance of sparsest cut: we are given a graphG, and set of sourcesA ∪ B with Fv for v ∈ A as defined in
the original instance, andFv = Mv/α for v ∈ B. Then the sparsity of this new instance is at leastα. So, as argued
above, there exists a flow inG for this new instance that routes anα fraction of all the commodities inA ∪ B and
saturates the cutC. The flow satisfies all the requirements of the lemma.

Armed with the procedureMCFMD, our algorithm for constructing an equilibrium is as follows. (Note that we
do not care about computational efficiency here.)

1. SetG1 = G, V1 = V , C = ∅, B1 = ∅, i = 1. Let A1 = A be the set of all sources in the instance. Letf denote
a partial flow in the graph at any instant; initializef to 0 at each edge.
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2. Repeat untilAi is empty:

(a) Run the procedureMCFMD onGi with demandsAi and mandatory demandsBi. LetCi be the resulting
cut andf ′

i be the resulting flow. Letαi = αM (Ci), Xi = Ai ∩ VCi
, Yi = Bi ∩ VCi

, andC = C ∪ Ci.
DefineVi+1 to be the set of nodes with paths tot in G \ C, andSi to be the subset ofV \ Vi+1 reachable
from Xi or Yi in G.

(b) We now construct a partial flow fromf ′
i as follows. LetB′ = {v : ∃u with (u → v) ∈ Ci}, and for all

v ∈ B′ let Mv =
∑

u:(u→v)∈Ci
c(u,v). Let fi be a partial flow of amountαiFv from eachv ∈ Xi, and

amountMv from eachv ∈ Yi to B′, given by the prefices of some of the flow paths inf ′
i . Let f = f + fi,

Ai+1 = Ai \ Xi, andBi+1 = (B \ Yi) ∪ B′. Set`i = D−1(αi).

(c) LetGi+1 = Gi \ Si; repeat fori = i + 1.

3. Route all the flow fromBi to t in Gi satisfying capacity constraints. Call this flowfi, and setf = f + fi.

4. Assign a “height” to every nodev in the graph as follows: if there exists ani such thatv ∈ Si, thenh(v) =
mini:v∈Si

{`i}; if there is no suchi, thenh(v) = 0. Furthermore,h(t) = 0 for the sinkt.

5. For every edgee = (u → v), let πe = max{h(u) − h(v), 0}.

Let I be the final value of the indexi. Recall thatVI is the set of nodes that can reacht in GI . We will show that(π, f)
is a Nash equilibrium. This immediately implies the result,because as we argue below,f admits anαi ≥ α fraction
of the most valuable traffic from all sources inXi. We first state some facts regarding the heightsh(v) and the flowf .

Lemma 9 f is a valid flow and routes anαi fraction of the traffic from allv ∈ Xi to t. Furthermore, for everyi,
1 < i < I, in the above construction,αi ≥ αi−1, andα1 > α, whereα is the sparsity of the graphG.

Proof: We prove by induction that for everyi, αi ≥ αi−1, and there exists a flowf ′
i in G[f ] that routes all the flow

from Bi to t, and anαi fraction of the flow at each source inAi to t. (Heref =
∑

j<i fj.) This immediately implies
the result. Wheni = 1, we havef = 0 andB1 = ∅, and this statements holds because the sparsity of the graph
is α = α1. Consider some stepi, and assume that the statement holds. We will now prove it fori + 1. Note that
Lemma 8 implies thatf ′

i saturates the cutCi. Now dividef ′
i into two partial flows—g1

i that routes all demand fromYi

to B′ and anαi fraction of the demand fromXi to B′, andg2
i = gi − g1

i . Then,g1
i is identical tofi. Furthermore,g2

i

is a valid flow for the instance(Gi+1, Ai+1, Bi+1) of theMCFMD, satisfies capacity constraints inG[f + g1
i ] and

is a certificate of the fact that this instance has sparsityαi+1 ≥ αi. The existence of flowf ′
i+1 is now guaranteed by

Lemma 8.

Lemma 10 V (Gi) = Vi for all i ≤ I, andh(v) = 0 if and only ifv ∈ VI .

Proof: We prove the first part of the lemma by induction. The base casei = 1 is trivial. For the inductive step, recall
thatVi+1 ⊆ Vi, V (Gi+1) = Vi \ Si andSi ∩ Vi+1 = ∅. Note that every nodev ∈ Vi must either be reachable from
Xi ∪ Yi or be able to reacht in Gi \ Ci, otherwise the optimality ofCi for the instance(Gi, Ai, Bi) of MCFMD is
contradicted. Therefore,Vi ⊆ Si ∪ Vi+1, and the claim follows.

For the second part of the lemma, note thatv ∈ VI immediately implies that for alli, v 6∈ Si, therefore,h(v) = 0.
On the other hand,h(v) = 0 implies that there is no indexi such thatv ∈ Si (becausèi > 0 for all i). Therefore,
v ∈ V1 andVi = Vi−1 \ Si−1 for all i > 1, implies thatv ∈ Vi for all i.

Lemma 11 For every pair of nodesu andv with h(u), h(v) > 0 such that there is a directed path fromu to v in G,
h(u) ≥ h(v).

Proof: We use the fact that for anyi, j with j > i, αi ≤ αj (Lemma 9), and therefore,`i ≥ `j . Consider the smallest
index i with v ∈ Si; we claim that for allj > i with u ∈ Sj , we also havev ∈ Sj—for any suchj, bothu and
v are absent fromVj+1, and if u is reachable fromXj or Yj in G, so isv. Now let i1 = argmaxi{u ∈ Si} and
i2 = argmaxi{v ∈ Si}. Then we havei1 ≤ i2, h(u) = `i1 andh(v) = `i2 , and therefore,h(v) ≤ h(u).
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The next lemma follows from noting that ifv is a source, then the in-degree ofv is 0, and therefore there is a
uniquej, namelyj = i, such thatv ∈ Sj .

Lemma 12 For any sourcev with v ∈ Xi, h(v) = `i.

Lemma 13 For every nodev with h(v) > 0, every path fromv to t is fully saturated under the flowf .

Proof: h(v) > 0 implies thatv belongs toSi for some indexi. Therefore,v 6∈ Vi+1 and the cutC separatesv from t.
The lemma follows by noting that the final flowf saturatesC.

Lemma 14 For every sourcev with v ∈ Xi, every path fromv to t has total price at least̀i. Furthermore, there exist
at least two edge-disjoint pathsP1 andP2 fromv to t such that

∑

e∈P1
πe =

∑

e∈P2
πe = `i.

Proof: For the first part of the lemma, note thath(v) = `i (by Lemma 12),h(t) = 0, and for every edgee = (x → y),
πe ≥ h(x) − h(y).

Consider any two disjoint paths fromv to t, sayP1 andP2 (these clearly exist, as the network contains no mo-
nopolies). Letx1 andx2 be the closest points inVI to v along these paths respectively. LetQ11 andQ12 denote the
prefixes ofP1 andP2 from v to x1 andx2 respectively. Note thatt is reachable fromx1 andx2 in G[VI ]; let Q21 and
Q22 denote any paths inG[VI ] from x1 andx2 to t respectively. These paths are clearly disjoint (as the network is
traffic spreading). Now, consider the pathsQ1 = Q11 · Q21 andQ2 = Q12 · Q22, where “·” represents concatenation.
Then,Q1 andQ2 are disjoint; the lengths ofQ21 andQ22 are0 under the metricπ; and, all nodes inQ11 andQ12

have non-zero heights, implying that the lengths ofQ11 andQ12 are equal toh(v) − h(x1) = h(v) − h(x2) = `i

(using Lemma 11). These facts together imply the lemma.

Lemma 15 LetP be a flow carrying path from some sourcev ∈ Xi to t. Then
∑

e∈P πe = `i.

Proof: Following the proof of the previous lemma, we only need to show that if u is the first node on pathP such
that when the algorithm terminates,u ∈ VI , then all subsequent nodes on the pathP are inVI . Let u′ be the node
precedingu in P . Then the edge(u′ → u) belongs to some cutCi, andu ∈ Bi+1. Then, sinceu ∈ VI , it must be the
case thatu ∈ Bj for all j > i. This implies that the partial flow of amountMu gets routed tot in the last step of the
algorithm, and the flow only uses edges inGI .

Finally, we claim that(π, f) is an equilibrium. First observe that we route anαiFv amount of flow for everyv in
Xi (Lemma 9). Each chunk of traffic originating atv that gets routed has value at leastD−1(αi) = `i. Therefore,
Lemmas 14 and 15 imply that users follow best response. Next,consider any edgee = (u → v). Note that edgee has
no incentive to increase its price – Lemma 14 ensures that allthe traffic on this edge has an alternate path of equal total
price; so by increasing its price,e risks losing all of its flow. Finally, if the edge has non-zeroprice, the edge stands to
gain from lowering its price only if in doing so it can increase the traffic carried by it. Lete be the edge(u → v) and
C′ be the mincut betweenu andt. Note thath(u) > 0. Lemma 13 implies that the cutC ′ is saturated. Suppose thate
has non-zero residual capacity (i.e.e 6∈ C′) and by lowering its price, the edge gains extra traffic without violating the
capacity of the cutC′. This means that the extra traffic one was previously getting routed along a path that crosses the
cutC′, and furthermore shares a source with the edgee. This contradicts the fact that the network is a traffic spreader.
Therefore, no edge has an incentive to deviate. This concludes the proof of the theorem.

4.1 Multi-commodity networks with bad equilibria

We now restate and prove Theorems 5 and 6.

Theorem 5 There exists a multi-source single-sink instance of the NPGwith no monopolies that does not admit any
pure Nash equilibria.
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Proof:Consider the example in Figure 1(a). The capacities on edgesare as shown in the figure. All unlabeled edges
have unbounded capacity. LetD denote the demand curveD(3) = 3, D(2) = 5, andD(1) = 6. The proof is by case
analysis. Consider any pure strategy equilibrium in this instance. Note first that the two edges from node 4 to node 2
must charge a price of zero—if not, then one of them can lower its price and gain all of the flow of the other. Second,
the total price paid by all flow getting routed from source 4 must be at least 3, otherwise, one of the edges(4 → 1) or
(2 → 1) is overloaded and is incentivized to raise its price. Now thebasic idea is that the traffic from source 5 gets
routed exclusively through node 3, and the edge(3 → 1) faces no competition from the edge(2 → 1). This creates
a virtual monopoly in edge(3 → 1). Let us now focus on the edges(3 → 1) and(6 → 1). Let the price charged by
the former in equilibrium bex and that charged by the latter bey. Note thatx, y ≤ 3. For the rest of the proof for
simplicity of exposition, we assume that the edges(6 → 3) and(5 → 3) charge a price of0 each, although the same
argument holds even without this assumption. Suppose first thatx > y. Then all the flow originating at 6 uses the
edge(6 → 1). Given the low capacity of this edge, the edge charges a priceof at least3, contradictingx > y. Next,
suppose thatx < y. Then(6 → 1) carries no flow, and eithery = 0 (contradictingx < y), or the edge has incentive
to deviate and lower its price. Finally, suppose thatx = y. Then ifx andy are larger than1, then one of the two edges
(3 → 1) and(6 → 1) has non-zero residual capacity, and is incentivized to raise its price and steal the other’s flow.
Otherwise,x = y = 1, but in this case(3 → 1) has an incentive to raise its price to2, and obtain a profit of20 instead
of 18.

sink t

11111

2D DD

1

2 3

4 5 6

sink t

n2 nodes

k levels

Figure 1: (a) Instance with no pure Nash equilibrium; (b) Instance with high price of stability

Theorem 6 There exists a family of multiple-source single-sink instances satisfying strong competition and con-
taining uniform demand such thatPOSVal = Ω(polyL, polyN), whereN is the size of the network. There
exists a family of multiple-source single-sink instances satisfying strong competition and with sparsity1 such that
POSVal = Ω(polyL, polyN).

Proof:For the first part of the theorem, the family of examples, parameterized by integersn andk, 1 < k < n, is
given in Figure 1(b). The network hasN = Θ(n2k) nodes. Each edge in the network has capacityn. Let D denote
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the demand curve used in the proof of Theorem 4, that is, therearen consumers, each with a unit amount of traffic,
and theith user endowed with valuevi = (1 − 1/n)i−1

∏

j<i
jk

jk+1 for i > 1 andv1 = 2. There aren2 + k different
sources. The demand at each light-colored node in the graph (then2 nodes at the lowest level) is given byD, while
the demand at each dark-colored node (thek nodes to the right) is given by2nD. It is immediate that the instance
satisfies strong competition and contains uniform demand.

Let us consider an arbitrary equilibrium in this instance. The traffic at each dark-colored nodes faces congestion
– at most a2n amount of flow can be admitted from each of these source. Therefore, the price charged by the edges
going from these sources to the sink is at leastD−1(1) = 2. This means that for the traffic at any light-colored node,
the path of choice is thek-hop path that goes through each of thek levels in the network, and then to the sink. Each
such path then behaves as a network ofk monopolies and the results of theorem 4 apply. In particular, any equilibrium
admits a total value of2n2 + 4nk = O(n2) for k < n, whereas the social optimal solution admits a total value of
Ω(n2n1−1/k + 4nk) = Ω(n3−1/k). Noting thatL = Θ(n1/k), the price of stability isΩ(n1−1/k) = Ω(Lk−1).

For the second part of the theorem, the family of examples is obtained by modifying the one used previously in
the following way: the demand at every dark-colored node nowconsists of a2n amount of flow with value2 (see
Figure 1(b)). The equilibria and optimal solutions in the two cases remain the same. However, note that the sparsity
in the new instances is1 (all the flow is admitted in the optimal solution).

5 Discussion and Open Questions

In addition to the obvious questions that remain unresolved(e.g. extending Theorem 7 to all instances that admit pure
equilibria), we now discuss a few extensions and open problems related to this work.

1. Multi-parameter users and QoS-based pricing. In the context of pricing mechanisms for the Internet, one
weakness of our work is that it does not take into account quality of service requirements of the users. For
example, users may attach different values with different paths. These may be manifested as the differences
in preferences consumers may have over different source-sink paths. How does market efficiency and profit
depend on the network and traffic structure in this multi-parameter case? One simple way of modeling these
preferences is to associate a global QoS parameter with eachedge, which assigns an additional per-unit-flow
cost to the edge. Several of our results carry over to this setting in a straightforward manner. Notably, Theorem 7
is not necessarily true in this setting. It would be interesting to determine conditions under which the price of
stability is small in this new model.

More generally, different users may attach different costswith the paths. For example, real-time video traffic
may prefer a low-jitter path, whereas file transfers may prefer a high bandwidth path. In this setting, in order for
the equilibria of the game to behave nicely, we would requirea stronger guarantee on competition, namely that
no single edge dominates any specific kind of quality of service.

2. Seller costs.In a network setting, the marginal costs to sellers for admitting a larger flow are negligible (subject
to capacity constraints). In a general two-sided market, sellers may have costs associated with each additional
copy of the item that they sell. Again this would modify seller behavior and may lead to better or worse equilibria
in the game.

3. Cournot competition. As mentioned earlier, an alternate model of competition in two-sided markets is for
the sellers to commit to producing (or making available in the market) certain quantities of their product, and
then allow market forces to determine the demand and prices.This two-stage game is known as “Cournot
competition”. A natural question is whether Cournot competition leads to better or worse equilibria compared
to Bertrand competition (where sellers commit to prices). Unfortunately, in the case of combinatorial markets,
this question is ill posed—in some instances, given the strategies of sellers (the quantities that they commit to),
many different sets of prices can arise in the second stage ofthe game. Whether or not a seller is playing a
best response depends on the expected outcome of the second stage. One such instance is a network containing
a single source-sink pair, with a single path of length two between the source and the sink. Then, once the
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capacities of the two links are determined in the first stage of the game, the total price to be paid by the consumers
is uniquely determined; however this price may be split across the two edges in the path in an arbitrary way.

What properties do the equilibria satisfy in instances for which the second stage of the game has a unique
solution? One specific class of such instances is single-source single-sink networks withk parallel links. In
this case, the prices of anarchy and stability with respect to social value can be as large aslogL/k, but no
larger. With respect to profit, the two ratios can be arbitrarily large. We omit the details. Is it possible to define
canonical solutions to the second stage of the game such thatequilibria in the Cournot game (for some class of
instances) are better behaved than those in the Bertrand game?

4. Market evolution and investment. An important aspect of studying any market is to determine how the market
evolves over time. This is especially interesting in the context of the Internet which has and will continue to
evolve in a distributed fashion motivated by economic considerations. Under what conditions do existing ISPs
have incentive to invest in more bandwidth?

As the network evolves, we may expect monopolies to turn intooligopolies, thereby leading to an improvement
in social value. Alternately, the price of stability for profit may be high enough in highly competitive markets so
as to deter entry of new ISPs (and thereby hurt social value inthe long term). Likewise, under what conditions do
existing ISPs have incentive to invest in more bandwidth? Weintraub et al. [16] recently studied these questions
in the context of latency-based network pricing games.
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A Altruistic ISPs and the optimal social value

Does inefficiency arise in network pricing games due to the selfishness of the ISPs, or the selfishness of the users, or
both? In order to answer this question and better understandthe game, in this section we consider a version of the
game in which ISPs are altruistic, and try to achieve good social efficiency (albeit without centralized collaboration).
In particular, each ISP commits to a priceπe, and tries to maximize the amount of traffic it carries subject to capacity
constraints—the ISP’s utility from carrying anfe amount of traffic isfe whenfe ≤ ce and0 otherwise. Prices on
edges are set according to market supply and demand of bandwidth. We use the superscriptA to denote the price of
anarchy and stability in this version of the game.

In this section we assume that demand curves are step functions with a finite number of steps. Further, to simplify
exposition, we assume that the instance contains a finite number of users, each with a unit amount of flow and uniform
value. (The two assumptions are equivalent.) We first characterize the optimal solution to a network pricing game with
respect to social value. Then the following linear program computes the optimum:

maximize
∑

u

`u

∑

P∈Pu

fP (LP1)

subject to
∑

P∈Pu

fP ≤ 1 ∀u

∑

P :e∈P

fP ≤ ce ∀e

fP ≥ 0 ∀u, P ∈ Pu

Hereu indexes users, andPu denotes the set of source-sink paths available to useru, and`u denotes the user’s
per-unit value. The dual to this program defines prices supporing the optimal solution:

minimize
∑

e

πece +
∑

u

su (LP2)

subject to
∑

e∈P

πe ≥ `u − su ∀u, P ∈ Pu

πe ≥ 0 ∀e

su ≥ 0 ∀u
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The variables in this dual program can be interpreted as follows:πe is the price charged by edgee; su is the surplus
of useru after it has paid the price on a min-price path.

We now show that when ISPs are altruistic, all possible equilibria constitute feasible solutions to the programs
LP1 andLP2 that together satisfy complementary slackness. The LP duality theorem then implies that all equilibria
in this game are optimal with respect to value.

Theorem 16 In any network, the set of Nash equilibria for NPGA is identical to the set of optimal solutions to the
primal and dual programsLP1 andLP2 above, i.e.POA

A
Val

= POS
A
Val

= 1.

Proof: First we note that any pair of optimal solutions to the above primal and dual form a Nash equilibrium—as noted
before, users are not motivated to deviate; furthermore, complementary slackness implies that any ISP with non-zero
residual capacity charges a price of zero, therefore, no unilateral deviation on part of the ISP can lead to higher flow
on its edge.

Next, consider any equilibrium. Then, any edge with non-zero residual capacity and non-zero price can lower
its price and potentially improve its usage. Therefore, at equilibrium all edges with non-zero prices are saturated.
Furthermore, anys − t path that is not a least costs − t path has zero flow along it. In other words, flow and prices
together satisfy complementary slackness conditions, andare therefore optimal.
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