
This Is a Publication of
The American Association for Artificial Intelligence

This electronic document has been retrieved from the
American Association for Artificial Intelligence

445 Burgess Drive
Menlo Park, California 94025

(415) 328-3123
(415) 321-4457
info@aaai.org

http://www.aaai.org

(For membership information,
consult our web page)

The material herein is copyrighted material. It may not be
reproduced in any form by any electronic or

mechanical means (including photocopying, recording,
or information storage and retrieval) without permission

in writing from AAAI.

http://www.aaai.org/home.html

■ Machine-learning research has been making great
progress in many directions. This article summa-
rizes four of these directions and discusses some
current open problems. The four directions are (1)
the improvement of classification accuracy by
learning ensembles of classifiers, (2) methods for
scaling up supervised learning algorithms, (3) rein-
forcement learning, and (4) the learning of com-
plex stochastic models.

The last five years have seen an explosion
in machine-learning research. This ex-
plosion has many causes: First, separate

research communities in symbolic machine
learning, computational learning theory, neur-
al networks, statistics, and pattern recognition
have discovered one another and begun to
work together. Second, machine-learning tech-
niques are being applied to new kinds of prob-
lem, including knowledge discovery in data-
bases, language processing, robot control, and
combinatorial optimization, as well as to more
traditional problems such as speech recogni-
tion, face recognition, handwriting recogni-
tion, medical data analysis, and game playing.

In this article, I selected four topics within
machine learning where there has been a lot of
recent activity. The purpose of the article is to
describe the results in these areas to a broader
AI audience and to sketch some of the open re-
search problems. The topic areas are (1) ensem-
bles of classifiers, (2) methods for scaling up su-
pervised learning algorithms, (3) reinforcement
learning, and (4) the learning of complex sto-
chastic models.

The reader should be cautioned that this ar-
ticle is not a comprehensive review of each of
these topics. Rather, my goal is to provide a
representative sample of the research in each of
these four areas. In each of the areas, there are
many other papers that describe relevant work.
I apologize to those authors whose work I was
unable to include in the article.

Ensembles of Classifiers
The first topic concerns methods for improv-
ing accuracy in supervised learning. I begin by
introducing some notation. In supervised
learning, a learning program is given training
examples of the form {(x1, y1), ..., (xm, ym)} for
some unknown function y = f(x). The xi values
are typically vectors of the form <xi,1, xi,2, ...,
xi,n> whose components are discrete or real val-
ued, such as height, weight, color, and age.
These are also called the features of xi. I use the
notation xij to refer to the jth feature of xi. In
some situations, I drop the i subscript when it
is implied by the context.

The y values are typically drawn from a dis-
crete set of classes {1, ..., K} in the case of clas-
sification or from the real line in the case of re-
gression. In this article, I focus primarily on
classification. The training examples might be
corrupted by some random noise.

Given a set S of training examples, a learning
algorithm outputs a classifier. The classifier is a
hypothesis about the true function f. Given
new x values, it predicts the corresponding y
values. I denote classifiers by h1, ..., hL.

An ensemble of classifiers is a set of classifiers
whose individual decisions are combined in
some way (typically by weighted or unweight-
ed voting) to classify new examples. One of the
most active areas of research in supervised
learning has been the study of methods for
constructing good ensembles of classifiers. The
main discovery is that ensembles are often
much more accurate than the individual clas-
sifiers that make them up.

An ensemble can be more accurate than its
component classifiers only if the individual
classifiers disagree with one another (Hansen
and Salamon 1990). To see why, imagine that
we have an ensemble of three classifiers: {h1, h2,
h3}, and consider a new case x. If the three clas-

Articles

WINTER 1997 97

Machine-Learning Research
Four Current Directions

Thomas G. Dietterich

Copyright © 1997, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1997 / $2.00

ular algorithms. I begin by reviewing the
general techniques.

Subsampling the Training Examples
The first method manipulates the training ex-
amples to generate multiple hypotheses. The
learning algorithm is run several times, each
time with a different subset of the training ex-
amples. This technique works especially well
for unstable learning algorithms—algorithms
whose output classifier undergoes major
changes in response to small changes in the
training data. Decision tree, neural network,
and rule-learning algorithms are all unstable.
Linear-regression, nearest-neighbor, and lin-
ear-threshold algorithms are generally stable.

The most straightforward way of manipulat-
ing the training set is called bagging. On each
run, bagging presents the learning algorithm
with a training set that consists of a sample of
m training examples drawn randomly with re-
placement from the original training set of m
items. Such a training set is called a bootstrap
replicate of the original training set, and the
technique is called bootstrap aggregation
(Breiman 1996a). Each bootstrap replicate con-
tains, on the average, 63.2 percent of the orig-
inal training set, with several training exam-
ples appearing multiple times.

Another training-set sampling method is to
construct the training sets by leaving out dis-
joint subsets of the training data. For example,
the training set can be divided randomly into
10 disjoint subsets. Then, 10 overlapping train-
ing sets can be constructed by dropping out a
different one of these 10 subsets. This same
procedure is used to construct training sets for
tenfold cross-validation; so, ensembles con-
structed in this way are sometimes called cross-
validated committees (Parmanto, Munro, and
Doyle 1996).

The third method for manipulating the
training set is illustrated by the ADABOOST algo-
rithm, developed by Freund and Schapire
(1996, 1995) and shown in figure 2. Like bag-
ging, ADABOOST manipulates the training exam-
ples to generate multiple hypotheses. ADABOOST

maintains a probability distribution pl(x) over
the training examples. In each iteration l, it
draws a training set of size m by sampling with
replacement according to the probability dis-
tribution pl(x). The learning algorithm is then
applied to produce a classifier hl. The error rate
εl of this classifier on the training examples
(weighted according to pl(x)) is computed and
used to adjust the probability distribution on
the training examples. (In figure 2, note that
the probability distribution is obtained by nor-
malizing a set of weights wl(i) over the training
examples.)

sifiers are identical, then when h1(x) is wrong,
h2(x) and h3(x) are also wrong. However, if the
errors made by the classifiers are uncorrelated,
then when h1(x) is wrong, h2(x) and h3(x)
might be correct, so that a majority vote cor-
rectly classifies x. More precisely, if the error
rates of L hypotheses hl are all equal to p < 1/2
and if the errors are independent, then the
probability that the majority vote is wrong is
the area under the binomial distribution where
more than L/2 hypotheses are wrong. Figure 1
shows this area for a simulated ensemble of 21
hypotheses, each having an error rate of 0.3.
The area under the curve for 11 or more hy-
potheses being simultaneously wrong is 0.026,
which is much less than the error rate of the in-
dividual hypotheses.

Of course, if the individual hypotheses make
uncorrelated errors at rates exceeding 0.5, then
the error rate of the voted ensemble increases as
a result of the voting. Hence, the key to success-
ful ensemble methods is to construct individual
classifiers with error rates below 0.5 whose errors
are at least somewhat uncorrelated.

Methods for
Constructing Ensembles

Many methods for constructing ensembles
have been developed. Some methods are gener-
al, and they can be applied to any learning al-
gorithm. Other methods are specific to partic-

Figure 1. The Probability That Exactly l (of 21) Hypotheses Will
Make an Error, Assuming Each Hypothesis Has an Error Rate of 0.3

and Makes Its Errors Independently of the Other Hypotheses.

Articles

98 AI MAGAZINE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20

Pr
ob

ab
il

it
y

Number of classifiers in error

The effect of the change in weights is to
place more weight on training examples that
were misclassified by hl and less weight on ex-
amples that were correctly classified. In subse-
quent iterations, therefore, ADABOOST con-
structs progressively more difficult learning
problems.

The final classifier, hf, is constructed by a
weighted vote of the individual classifiers.
Each classifier is weighted according to its ac-
curacy for the distribution pl that it was
trained on.

In line 4 of the ADABOOST algorithm (figure
2), the base learning algorithm Learn is called
with the probability distribution pl. If the
learning algorithm Learn can use this probabil-
ity distribution directly, then this procedure
generally gives better results. For example,
Quinlan (1996) developed a version of the de-
cision tree–learning program C4.5 that works
with a weighted training sample. His experi-
ments showed that it worked extremely well.
One can also imagine versions of back propa-
gation that scaled the computed output error
for training example (xi, yi) by the weight pl(i).
Errors for important training examples would
cause larger gradient-descent steps than errors
for unimportant (low-weight) examples.

However, if the algorithm cannot use the
probability distribution pl directly, then a
training sample can be constructed by drawing
a random sample with replacement in propor-
tion to the probabilities pl. This procedure
makes ADABOOST more stochastic, but experi-
ments have shown that it is still effective.

Figure 3 compares the performance of C4.5
to C4.5 with ADABOOST.M1 (using random sam-
pling). One point is plotted for each of 27 test
domains taken from the Irvine repository of
machine-learning databases (Merz and Mur-
phy 1996). We can see that most points lie
above the line y = x, which indicates that the
error rate of ADABOOST is less than the error rate
of C4.5. Figure 4 compares the performance of
bagging (with C4.5) to C4.5 alone. Again, we see
that bagging produces sizable reductions in the
error rate of C4.5 for many problems. Finally,
figure 5 compares bagging with boosting (both
using C4.5 as the underlying algorithm). The
results show that the two techniques are com-
parable, although boosting appears to still
have an advantage over bagging.

Manipulating the Input Features A sec-
ond general technique for generating multiple
classifiers is to manipulate the set of input fea-
tures available to the learning algorithm. For
example, in a project to identify volcanoes on
Venus, Cherkauer (1996) trained an ensemble
of 32 neural networks. The 32 networks were

based on 8 different subsets of the 119 available
input features and 4 different network sizes.
The input-feature subsets were selected (by
hand) to group features that were based on dif-
ferent image-processing operations (such as
principal component analysis and the fast
Fourier transform). The resulting ensemble
classifier was able to match the performance of
human experts in identifying volcanoes.

Articles

WINTER 1997 99

Input: a set S, of m labeled examples: S = {(xi, yi), i = 1, 2, . . . ,m},
labels yi ∈ Y = {1, . . . ,K}
Learn (a learning algorithm)
a constant L.

[1] initialize for all i: w1(i) := 1/m initialize the weights
[2] for ` = 1 to L do
[3] for all i: p`(i) := w`(i)/(

∑
i
w`(i)) compute normalized weights

[4] h` := Learn(p`) call Learn with normalized weights.
[5] εγ̀ :=

∑
i
p`(i)[[h`(xi) 6= yi]] calculate the error of h`

[7] if εγ̀> 1/2 then
[8] L := `−©1
[9] goto 13
[10] βγ̀ := εγ̀/(1−©εγ̀)
[11] for all i: w`+1(i) := w`(i)βγ

1−©[[h`(xi) 6=yi]]
` compute new weights

[12] end for

[13] Output: hf (x) = argmax
y∈Y

L∑
`=1

(∥
log

1

βγ̀

)∥
[[h`(x) = y]]

Figure 2. The ADABOOST.M1 Algorithm.
The formula [[E]] is 1 if E is true and 0 otherwise.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Er
ro

r
R

at
e

of
 C

4.
5

Error Rate of AdaBoost with C4.5

Figure 3. Comparison of ADABOOST.M1 (applied to C4.5) with C4.5 by Itself.
Each point represents 1 of 27 test domains. Points lying above the diagonal line
exhibit lower error with ADABOOST.M1 than with C4.5 alone. Based on data from
Freund and Schapire (1996). As many as 100 hypotheses were constructed.

the input features are highly redundant.

Manipulating the Output Targets A
third general technique for constructing a
good ensemble of classifiers is to manipulate
the y values that are given to the learning algo-
rithm. Dietterich and Bakiri (1995) describe a
technique called error-correcting output coding
(ECOC). Suppose that the number of classes, K,
is large. Then, new learning problems can be
constructed by randomly partitioning the K
classes into two subsets: Al and Bl. The input
data can then be relabeled so that any of the
original classes in set Al are given the derived
label 0, and the original classes in set Bl are giv-
en the derived label 1. These relabeled data are
then given to the learning algorithm, which
constructs a classifier hl. By repeating this
process L times (generating different subsets Al

and Bl), we obtain an ensemble of L classifiers
h1, ... , hL.

Now, given a new data point x, how should
we classify it? The answer is to have each hl

classify x. If hl(x) = 0, then each class in Al re-
ceives a vote. If hl(x) = 1, then each class in Bl

receives a vote. After each of the L classifiers
has voted, the class with the highest number
of votes is selected as the prediction of the en-
semble.

An equivalent way of thinking about this
method is that each class j is encoded as an L-
bit code word Cj, where bit l is 1 if and only if
j ∈ Bl. The l-th learned classifier attempts to
predict bit l of these code words. When the L
classifiers are applied to classify a new point x,
their predictions are combined into an L-bit
string. We then choose the class j whose code
word Cj is closest (in Hamming distance) to the
L-bit output string. Methods for designing
good error-correcting codes can be applied to
choose the code words Cj (or, equivalently,
subsets Al and Bl).

Dietterich and Bakiri report that this tech-
nique improves the performance of both the
C4.5 and back-propagation algorithms on a va-
riety of difficult classification problems. Re-
cently, Schapire (1997) showed how ADABOOST

can be combined with error-correcting output
coding to yield an excellent ensemble-classifi-
cation method that he calls ADABOOST.OC. The
performance of the method is superior to the
ECOC method (and bagging) but essentially
the same as another (complex) algorithm
called ADABOOST.M2. Hence, the main advan-
tage of ADABOOST.OC is implementation simplic-
ity: It can work with any learning algorithm
for solving two-class problems.

Ricci and Aha (1997) applied a method that
combines error-correcting output coding with
feature selection. When learning each classifi-

Tumer and Ghosh (1996) applied a similar
technique to a sonar data set with 25 input fea-
tures. However, they found that deleting even
a few of the input features hurt the perfor-
mance of the individual classifiers so much
that the voted ensemble did not perform well.
Obviously, this technique only works when

Articles

100 AI MAGAZINE

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Er
ro

r
R

at
e

of
 C

4.
5

Error Rate of Bagged C4.5

Figure 4. Comparison of Bagging (applied to C4.5) with C4.5 by Itself.
Each point represents 1 of 27 test domains. Points lying above the diagonal line
exhibit lower error with bagging than with C4.5 alone. Based on data from Freund
and Schapire (1996). Bagging voted 100 classifiers.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Er
ro

r
ra

te
 o

f
B

ag
gi

n
g

w
it

h
 C

4

Error rate of AdaBoost with C4

Figure 5. Comparison of Bagging (applied to C4.5)
with ADABOOST.M1 (applied to C4.5).

Each point represents 1 of 27 test domains. Points lying above the diagonal line
exhibit lower error with boosting than with bagging. Based on data from Freund
and Schapire (1996).

er, hl, they apply feature-selection techniques
to choose the best features for learning the
classifier. They obtained improvements in 7 of
10 tasks with this approach.

Injecting Randomness The last general-
purpose method for generating ensembles of
classifiers is to inject randomness into the
learning algorithm. In the back-propagation
algorithm for training neural networks, the
initial weights of the network are set random-
ly. If the algorithm is applied to the same train-
ing examples but with different initial weights,
the resulting classifier can be different (Kolen
and Pollack 1991).

Although this method is perhaps the most
common way of generating ensembles of neur-
al networks, manipulating the training set
might be more effective. A study by Parmanto,
Munro, and Doyle (1996) compared this tech-
nique to bagging and tenfold cross-validated
committees. They found that cross-validated
committees worked best, bagging second best,
and multiple random initial weights third best
on one synthetic data set and two medical di-
agnosis data sets.

For the C4.5 decision tree algorithm, it is also
easy to inject randomness (Kwok and Carter
1990). The key decision of C4.5 is to choose a
feature to test at each internal node in the de-
cision tree. At each internal node, C4.5 applies
a criterion known as the information-gain ratio
to rank the various possible feature tests. It
then chooses the top-ranked feature-value test.
For discrete-valued features with V values, the
decision tree splits the data into V subsets, de-
pending on the value of the chosen feature.
For real-valued features, the decision tree splits
the data into two subsets, depending on
whether the value of the chosen feature is
above or below a chosen threshold. Dietterich
and Kong (1995) implemented a variant of
C4.5 that chooses randomly (with equal proba-
bility) among the top 20 best tests. Table 1
compares a single run of C4.5 to ensembles of

200 classifiers constructed by bagging C4.5 and
injecting randomness into C4.5. The results
show that injecting randomness obtains the
best performance in three of the domains. In
particular, notice that injected randomness ob-
tains perfect test-set performance in the letter-
recognition task.

Ali and Pazzani (1996) injected randomness
into the FOIL algorithm for learning Prolog-
style rules. FOIL works somewhat like C4.5 in
that it ranks possible conditions to add to a
rule using an information-gain criterion. Ali
and Pazzani computed all candidate condi-
tions that scored within 80 percent of the top-
ranked candidate and then applied a weighted
random-choice algorithm to choose among
them. They compared ensembles of 11 classi-
fiers to a single run of FOIL and found statisti-
cally significant improvements in 15 of 29
tasks and statistically significant loss of perfor-
mance in only one task. They obtained similar
results using 11-fold cross-validation to con-
struct the training sets.

Raviv and Intrator (1996) combine boot-
strap sampling of the training data with in-
jecting noise into the input features for the
learning algorithm. To train each member of
an ensemble of neural networks, they draw
training examples with replacement from the
original training data. The x values of each
training example are perturbed by adding
Gaussian noise to the input features. They re-
port large improvements in a synthetic
benchmark task and a medical diagnosis task.

A method closely related to these techniques
for injecting randomness is the Markov chain
Monte Carlo (MCMC) method, which has been
applied to neural networks by MacKay (1992)
and Neal (1993) and to decision trees by Chip-
man, George, and McCulloch (1996). The basic
idea of the MCMC method (and related meth-
ods) is to construct a Markov process that gen-
erates an infinite sequence of hypotheses hl. In
a Bayesian setting, the goal is to generate each

Task Test-Set Size C4.5 200-Fold Bootstrap C4.5 200-Fold Random C4.5
Vowel 462 0.5758 0.5152 0.48701

Soybean 376 0.1090 0.0984 0.1090
Part of Speech 3060 0.0827 0.0765 0.07882

NETTALK 7242 0.3000 0.26703 0.25003

Letter Recognition 4000 0.2010 0.00383 0.00003

1. Difference from C4.5 significant at p < 0.05.
2. 256-fold random.
3. Difference from C4.5 significant at p < 0.001.

Articles

WINTER 1997 101

Table 1. Results on Five Domains (best error rate in boldface).

parison with bagging, they found that their
method gave excellent results in four real-world
domains.

Abu-Mostafa (1990) and Caruana (1996) de-
scribe a technique for training a neural network
on auxiliary tasks as well as the main task. The
key idea is to add some output units to the net-
work whose role is to predict the values of the
auxiliary tasks and to include the prediction er-
ror for these auxiliary tasks in the error criteri-
on that back propagation seeks to minimize.
Because these auxiliary output units are con-
nected to the same hidden units as the primary
task output, the auxiliary outputs can influence
the behavior of the network on the primary
task. Parmanto et al. (1994) show that diverse
classifiers can be learned by training on the
same primary task but with many different aux-
iliary tasks. One good source of auxiliary tasks
is to have the network attempt to predict one of
its input features (in addition to the primary
output task). They apply this method to med-
ical diagnosis problems.

More recently, Munro and Parmanto (1997)
developed an approach in which the value of
the auxiliary output is determined dynamically
by competition among the set of networks.
Each network has a primary output y and a sec-
ondary (auxiliary) output z. During training,
each network looks at the training example x
and computes its primary and secondary output
predictions. The network whose secondary out-
put prediction is highest is said to be the winner
for this example. It is given a target value for z
of 1; the remaining networks are given a target
value of 0 for the secondary output. All net-
works are given the value yi as the target for the
primary output. The effect is to encourage dif-
ferent networks to become experts at predicting
the secondary output z in different regions of
the input space. Because the primary and sec-
ondary output share the hidden layer, the errors
in the primary output become decorrelated.
They show that this method substantially out-
performs an ensemble of ordinary networks
trained using different initial random weights
when trained on a synthetic classification task.

In addition to these methods for training en-
sembles of neural networks, there are also meth-
ods that are specific to decision trees. Buntine
(1990) developed an algorithm for learning op-
tion trees. These are decision trees where an in-
ternal node can contain several alternative
splits (each producing its own sub–decision
tree). To classify an example, each of these
sub–decision trees is evaluated, and the result-
ing classifications are voted. Kohavi and Kunz
(1997) describe an option tree algorithm and
compare its performance to bagged C4.5 trees.

hypothesis hl with probability P(hl|S), where S is
the training sample. P(hl|S) is computed in the
usual way as the (normalized) product of the like-
lihood P(S|hl) and the prior probability P(hl) of
hl. To apply MCMC, we define a set of operators
that convert one hl into another. For a neural
network, such an operator might adjust one of
the weights in the network. In a decision tree,
the operator might interchange a parent and a
child node in the tree or replace one node with
another. The MCMC process works by maintain-
ing a current hypothesis hl. At each step, it selects
an operator, applies it (to obtain hl+1), and then
computes the likelihood of the resulting classifier
on the training data. It then decides whether to
keep hl+1 or discard it and go back to hl. Under
various technical conditions, it is possible to
prove that a process of this kind eventually con-
verges to a stationary probability distribution in
which the hl‘s are sampled in proportion to their
posterior probabilities. In practice, it can be diffi-
cult to tell when this stationary distribution is
reached. A standard approach is to run the
Markov process for a long period (discarding all
generated classifiers) and then collect a set of L
classifiers from the Markov process. These classi-
fiers are then combined by weighted vote accord-
ing to their posterior probabilities.

Algorithm-Specific Methods for Generat-
ing Ensembles In addition to these general-
purpose methods for generating diverse ensem-
bles of classifiers, there are several techniques
that can be applied to the back-propagation al-
gorithm for training neural networks.

Rosen (1996) trains several neural networks si-
multaneously and forces the networks to be di-
verse by adding a correlation penalty to the error
function that back propagation minimizes.
Specifically, during training, Rosen keeps track of
the correlations in the predictions of each net-
work. He applies back propagation to minimize
an error function that is a sum of the usual
squared output prediction error and a term that
measures the correlations with the other net-
works. He reports substantial improvements in
three simple synthetic tasks.

Opitz and Shavlik (1996) take a similar ap-
proach, but they use a kind of genetic algorithm
to search for a good population of neural net-
work classifiers. In each iteration, they apply ge-
netic operators to the current ensemble to gen-
erate new network topologies. These networks
are then trained using an error function that
combines the usual squared output prediction
error with a multiplicative term that incorpo-
rates the diversity of the classifiers. After training
the networks, they prune the population to re-
tain the N best networks using a criterion that
considers both accuracy and diversity. In a com-

Articles

102 AI MAGAZINE

They show that option trees generally match
the performance of bagging and produce a
much more understandable result.

This completes my review of methods for
generating ensembles using a single learning
algorithm. Of course, one can always generate
an ensemble by combining classifiers con-
structed by different learning algorithms.
Learning algorithms based on very different
principles will probably produce very diverse
classifiers. However, often some of these classi-
fiers perform much worse than others. Further-
more, there is no guarantee of diversity. Hence,
when classifiers from different learning algo-
rithms are combined, they should be checked
(for example, by cross-validation) for accuracy
and diversity, and some form of weighted com-
bination should be used. This approach has
been shown effective in some applications (for
example, Zhang, Mesirov, and Waltz [1992]).

Methods for Combining Classifiers
Given that we have trained an ensemble of
classifiers, how should we combine their indi-
vidual classification decisions? Many methods
have been explored. They can be subdivided
into unweighted vote, weighted vote, and gat-
ing networks.

The simplest approach is to take an un-
weighted vote, as is done in bagging, ECOC,
and many other methods. Although it might
appear that more intelligent voting schemes
should do better, the experience in the fore-
casting literature has been that simple, un-
weighted voting is robust (Clemen 1989). One
refinement on simple majority vote is appro-
priate when each classifier hl can produce
class-probability estimates rather than a simple
classification decision. A class-probability esti-
mate for data point x is the probability that the
true class is k: P(f(x) = k|hl), for k = 1, ..., K. We
can combine the class probabilities of all the
hypotheses so that the class probability of the
ensemble is:

The predicted class of x is then the class having
the highest class probability.

Many different weighted voting methods
have been developed for ensembles. For regres-
sion problems, Perrone and Cooper (1993) and
Hashem (1993) apply least squares regression
to find weights that maximize the accuracy of
the ensemble on the training data. They show
that the weight applied to hl should be inverse-
ly proportional to the variance of the estimates
of hl. A difficulty with applying linear least
squares is that the various hypotheses hl can be
correlated highly. They describe methods for

P f k
L

P f k h
L

(()) (() |).x x= = =
=

1
1l

lΣ

choosing less correlated subsets of the ensem-
ble and combining them by linear least
squares.

For classification problems, weights are usu-
ally obtained by measuring the accuracy of
each individual classifier hl on the training da-
ta (or a holdout data set) and constructing
weights that are proportional to these accura-
cies. Ali and Pazzani (1996) describe a method
that they call likelihood combination, in which
they apply the naive Bayes algorithm (see The
Naive Bayes Classifier) to learn weights for clas-
sifiers. In ADABOOST, the weight for classifier hl

is computed from the accuracy of hl measured
on the weighted training distribution that was
used to learn hl. A Bayesian approach to
weighted vote is to compute the posterior
probability of each hl. This method requires
the definition of a prior distribution P(hl) that
is multiplied with the likelihood P(S|hl) to esti-
mate the posterior probability of each hl. Ali
and Pazzani experiment with this method. Ear-
lier work on Bayesian voting of decision trees
was performed by Buntine (1990).

The third approach to combining classifiers
is to learn a gating network or a gating func-
tion that takes as input x and produces as out-
put the weights wl to be applied to compute
the weighted vote of the classifiers hl. Jordan
and Jacobs (1994) learn gating networks that
have the form

In other words, zl is the dot product of a para-
meter vector vl with the input feature vector x.
The output weight wl is then the so-called soft-
max of the individual zl‘s. As with any learning
algorithm, there is a risk of overfitting the
training data by learning the gating function
in addition to learning each of the individual
classifiers. (Below, I discuss the hierarchical
mixture-of-experts method developed by Jor-
dan and Jacobs that learns the wl and the gat-
ing network simultaneously.)

A fourth approach to combining classifiers,
called stacking, works as follows: Suppose we
have L different learning algorithms A1, ..., AL

and a set S of training examples {(x1, y1), …, (xm,
ym)}. As usual, we apply each of these algo-
rithms to our training data to produce hy-
potheses h1, …, hL. The goal of stacking is to
learn a good combining classifier h* such that
the final classification will be computed by h *
(h1(x), …, hL(x)). Wolpert (1992) proposed the
following scheme for learning h* using a form
of leave-one-out cross-validation.

Let

z v
T

l l
= x.

w e ez
u

zu
l

l= / Σ

Articles

WINTER 1997 103

classifier from H. Most of our learning algo-
rithms consider very large hypothesis spaces;
so, even after eliminating hypotheses that mis-
classify training examples, there are many hy-
potheses remaining. All these hypotheses ap-
pear equally accurate with respect to the
available training data. We might have reasons
for preferring some of these hypotheses over
others (for example, preferring simpler hy-
potheses or hypotheses with higher prior prob-
ability), but nonetheless, there are typically
many plausible hypotheses. From this collec-
tion of surviving hypotheses in H, we can eas-
ily construct an ensemble of classifiers and com-
bine them using the methods described earlier.

A second cause of the need for ensembles is
that our learning algorithms might not be able
to solve the difficult search problems that we
pose. For example, the problem of finding the
smallest decision tree that is consistent with a
set of training examples is NP-hard (Hyafil and
Rivest 1976). Hence, practical decision tree al-
gorithms use search heuristics to guide a
greedy search for small decision trees. Similar-
ly, finding the weights for the smallest possible
neural network consistent with the training
examples is also NP-hard (Blum and Rivest
1988). Neural network algorithms therefore
use local search methods (such as gradient de-
scent) to find locally optimal weights for the
network. A consequence of these imperfect
search algorithms is that even if the combina-
tion of our training examples and our prior
knowledge (for example, preferences for sim-
ple hypotheses, Bayesian priors) determines a
unique best hypothesis, we might not be able
to find it. Instead, we typically find a hypoth-
esis that is somewhat more complex (or has
somewhat lower posterior probability). If we
run our search algorithms with a slightly dif-
ferent training sample or injected noise (or any
of the other techniques described earlier), we
find a different (suboptimal) hypothesis.
Therefore, ensembles can be seen as a way of
compensating for imperfect search algorithms.

A third cause of the need for ensembles is
that our hypothesis space H might not contain
the true function f. Instead, H might include
several equally good approximations to f. By
taking weighted combinations of these approx-
imations, we might be able to represent classi-
fiers that lie outside H. One way to understand
this point is to visualize the decision bound-
aries constructed by learning algorithms. A de-
cision boundary is a surface such that examples
that lie on one side of the surface are assigned
to a different class than examples that lie on
the other side of the surface. The decision
boundaries constructed by decision tree–learn-

be a classifier constructed by algorithm Al ap-
plied to all the training examples in S except
example i. In other words, each algorithm is
applied to the training data m times, leaving
out one training example each time. We can
then apply each classifier

to example xi to obtain the predicted class

This procedure gives us a new data set contain-
ing level-two examples whose features are the
classes predicted by each of the L classifiers.
Each example has the form

Now, we can apply some other learning algo-
rithm to this level-two data to learn h*.
Breiman (1996b) applied this approach to
combining different forms of linear regression
with good results.

Why Ensembles Work
I already gave the basic intuition for why en-
sembles can improve performance: Uncorrelat-
ed errors made by the individual classifiers can
be removed by voting. However, there is a
deeper question lurking here: Why should it be
possible to find ensembles of classifiers that
make uncorrelated errors? There is another
question as well: Why shouldn’t we be able to
find a single classifier that performs as well as
the ensemble?

There are at least three reasons why good en-
sembles can be constructed and why it might
be difficult or impossible to find a single clas-
sifier that performs as well as the ensemble. To
understand these reasons, we must consider
the nature of machine-learning algorithms.
Machine-learning algorithms work by search-
ing a space of possible hypotheses H for the
most accurate hypothesis (that is, the hypoth-
esis that best approximates the unknown func-
tion f). Two important aspects of the hypothe-
sis space H are its size and the possibility it
contains good approximations to f.

If the hypothesis space is large, then we
need a large amount of training data to con-
strain the search for good approximations.
Each training example rules out (or makes less
plausible) all those hypotheses in H that mis-
classify it. In a two-class problem, ideally each
training example can eliminate half of the hy-
potheses in H; so, we require O(log|H|) exam-
ples to select a unique classifier from H.

The first cause of the need for ensembles is
that the training data might not provide suffi-
cient information for choosing a single best

〈 … 〉(ˆ , ˆ , , ˆ), .y y y yi i i
L

i
1 2

iylˆ

l

(–)i

h

l

(–)i

h

I already gave
the basic

intuition for
why

ensembles
can improve

performance:
Uncorrelated
errors made

by the
individual
classifiers

can be
removed by

voting.
However,
there is a

deeper
question

lurking here:
Why should

it be
possible to

find
ensembles of

classifiers
that make

uncorrelated
errors?

Articles

104 AI MAGAZINE

ing algorithms are line segments (or, more gen-
erally, hyperplane segments) parallel to the co-
ordinate axes. If the true boundary between
two classes is a diagonal line, then decision tree
algorithms must approximate the diagonal by
a “staircase” of axis-parallel segments (figure 6).
Different bootstrap training samples (or differ-
ent weighted samples created by ADABOOST)
shift the locations of the staircase approxima-
tion, and by voting among these different ap-
proximations, it is possible to construct better
approximations to the diagonal decision
boundary.

Interestingly, these improved staircase ap-
proximations are equivalent to complex deci-
sion trees. However, these trees are so large
that were we to include them in our hypothe-
sis space H the space would be far too large for
the available training data. Hence, we can see
that ensembles provide a way of overcoming
representational inadequacies in our hypothe-
sis space.

Open Problems
Concerning Ensembles
Ensembles are well established as a method for
obtaining highly accurate classifiers by com-
bining less accurate ones. There are still many
questions, however, about the best way to con-
struct ensembles as well as issues about how
best to understand the decisions made by en-
sembles.

Faced with a new learning problem, what is
the best approach to constructing and applying
an ensemble of classifiers? In principle, there
can be no single best ensemble method, just as
there can be no single best learning algorithm.
However, some methods might be uniformly
better than others, and some methods might
be better than others in certain situations.

Experimental studies have shown that AD-
ABOOST is one of the best methods for con-
structing ensembles of decision trees. Schapire
(1997) compares ADABOOST.M2 and ADABOOST.OC

to bagging and error-correcting output coding
and shows that the ADABOOST methods are gen-
erally superior. However, Quinlan (1996) has
shown that in domains with noisy training da-
ta, ADABOOST.M1 can perform badly—it places
high weight on incorrectly labeled training ex-
amples and, consequently, constructs bad clas-
sifiers. Kong and Dietterich (1995) showed that
combining bagging with error-correcting out-
put coding improved the performance of both
methods, which suggests that combinations of
other ensemble methods should be explored as
well. Dietterich and Kong also showed that er-
ror-correcting output coding does not work
well with highly local algorithms (such as

nearest-neighbor methods).
There have been few systematic studies of

methods for constructing ensembles of neural
networks, rule-learning systems, and other
types of classifier. Much work remains in this
area.

Although ensembles provide accurate classi-
fiers, some problems may limit their practical
application. One problem is that ensembles
can require large amounts of memory to store
and large amounts of computation to apply.
For example, earlier I mentioned that an en-
semble of 200 decision trees attains perfect
performance on a letter-recognition bench-
mark task. However, these 200 decision trees
require 59 megabytes of storage, which makes
them impractical for most present-day com-
puters. An important line of research, there-
fore, is to find ways of converting these ensem-
bles into less redundant representations,
perhaps through the deletion of highly corre-
lated members of the ensemble or by represen-
tational transformations.

A second difficulty with ensemble classifiers
is that an ensemble provides little insight into
how it makes its decisions. A single decision
tree can often be interpreted by human users,
but an ensemble of 200 voted decision trees is
much more difficult to understand. Can meth-
ods be found for obtaining explanations (at
least locally) from ensembles? One example of
work on this question is Craven’s TREPAN algo-
rithm (Craven and Shavlik 1996).

Scaling Up Machine-
Learning Algorithms

A second major research area has explored
techniques for scaling up learning algorithms
so that they can apply to problems with mil-
lions of training examples, thousands of fea-
tures, and hundreds of classes. Large machine-

Figure 6. Decision Boundaries.
a. This figure shows the true diagonal decision boundary and three staircase ap-
proximations to it (of the kind that are created by decision tree algorithms). b.
This figure shows the voted decision boundary, which is a much better approxi-
mation to the diagonal boundary.

Articles

WINTER 1997 105

Class 1

Class 2

Class 1

Class 2

a b

for some threshold value θ. The standard ap-
proach is to sort the training examples at the
current node according to the values of feature
xj and then make a sequential pass over the
sorted examples to choose the threshold θ. In
standard depth-first algorithms, the data must
be sorted by each candidate feature xj at each
node of the tree, which can become expensive.

Shafer, Agrawal, and Mehta (1996) describe
their SPRINT method in which the training data
are broken up into a separate disk file for each
attribute (and sorted by attribute value). For
feature j, the disk file contains records of the
form <i, xij, yi>, where i is the index of the train-
ing example, xij is the value of feature j for
training example i, and yi is the class of exam-
ple i. To choose a splitting threshold θ for fea-
ture j, it is a simple matter to make a serial scan
of this disk file and construct class histograms
for each potential splitting threshold. Once a
value is chosen, the disk file is partitioned
(logically) into two files, one containing exam-
ples with values less than or equal to θ and the
other containing examples with values greater
than θ. As these files are written to disk, a hash
table is built (in the main memory) in which
the index for each training example i is associ-
ated with the left or right child nodes of the
newly created split. Then, each of the disk files
for the other attributes xl, l ≠ j is read and split
into a file for the left child and a file for the
right child. The index of each example is
looked up in the hash table to determine the
child to which it belongs. SPRINT can be paral-
lelized easily, and it has been applied to data
sets containing 2.5 million examples. Mehta,
Agrawal, and Rissanen (1996) have developed
a closely related algorithm, SLIQ, that makes
more use of main memory but also scales to
millions of training examples and is slightly
faster than SPRINT. Both SPRINT and SLIQ scale ap-
proximately linearly in the number of training
examples and the number of features, aside
from the cost of performing the initial sorting
of the data (which need only be done once).

A third approach to large data sets is to take
advantage of ensembles of decision trees
(Chan and Stolfo 1995). The training data can
randomly be partitioned into N disjoint sub-
sets. A separate decision tree can be grown
from each subset in parallel. The trees can then
vote to make classification decisions. Although
the accuracy of each of the individual decision
trees is less than the accuracy of a single tree
grown with all the data, the accuracy of the en-
semble is often better than the accuracy of a
single tree. Hence, with N parallel processors,
we can achieve a speedup of N in the time re-
quired to construct the decision trees.

learning problems are beginning to arise in
database-mining applications, where there can
be millions of transactions every day and
where it is desirable to have machine-learning
algorithms that can analyze such large data
sets in just a few hours of computer time. An-
other area where large learning problems arise
is in information retrieval from full-text data-
bases and the World Wide Web. In informa-
tion retrieval, each word in a document can be
treated as an input feature; so, each training
example can be described by thousands of fea-
tures. Finally, applications in speech recogni-
tion, object recognition, and character recog-
nition for Chinese and Japanese present
situations in which hundreds or thousands of
classes must be discriminated.

Learning with Large Training Sets
Decision tree algorithms have been extended
to handle large data sets in three different
ways. One approach is based on intelligently
sampling subsets of the training data as the
tree is grown. To describe how this process
works, I must review how decision tree algo-
rithms operate.

Decision trees are constructed by starting
with the entire training set and an empty tree.
A test is chosen for the root of the tree, and the
training data are then partitioned into disjoint
subsets depending on the outcome of the test.
The algorithm is then applied recursively to
each of these disjoint subsets. The algorithm
terminates when all (or most) of the training
examples within a subset of the data belong to
the same class. At this point, a leaf node is cre-
ated and labeled with the class.

The process of choosing a test for the root of
the tree (or for the root of each subtree) in-
volves analyzing the training data and choos-
ing the one feature that is the best predictor of
the output class. In a large and redundant data
set, it might be possible to make this choice
based on only a sample of the data. Musick,
Catlett, and Russell (1993) presented an algo-
rithm that dynamically chooses the sample
based on how difficult the decision is at each
node. The algorithm typically behaves by us-
ing a small sample near the root of the tree and
then progressively enlarging the sample as the
tree grows. This technique can reduce the time
required to grow the tree without reducing the
accuracy of the tree at all.

A second approach is based on developing
clever data structures that avoid the need to
store all training data in random-access mem-
ory. The hardest step for most decision tree al-
gorithms is to find tests for real-valued fea-
tures. These tests usually take the form xj ≤ θ

Large
machine-
learning

problems are
beginning

to arise
in database-

mining
applications,

where there
can be

millions of
transactions

every day and
where it is

desirable to
have

machine-
learning

algorithms
that can
analyze

such large
data sets in

just a few
hours of

computer
time.

Articles

106 AI MAGAZINE

A fourth approach to the problem of choos-
ing splits for real-valued input features is to
discretize the values of such features. For ex-
ample, one feature of a training example
might be employee income measured in dol-
lars. This could take on tens of thousands of
distinct values, and the running time of most
decision-tree learning algorithms is linear in
the number of distinct values of each feature.
This problem can be solved by grouping in-
come into a small number of ranges (for exam-
ple, $0–$10,000; $10,000–$25,000; $25,000–
$50,000; $50,000–$100,000; and greater than
$100,000). If the ranges are chosen well, the re-
sulting decision trees will still be accurate. Sev-
eral simple and fast algorithms have been de-
veloped for choosing good discretization
points (Kohavi and Sahami 1996; Fayyad and
Irani 1993; Catlett 1991).

A very effective rule-learning algorithm,
called RIPPER, has been developed by William
Cohen (1995) based on an earlier algorithm,
IREP, developed by Furnkranz and Widmer
(1994). RIPPER constructs rules of the form test1
` test2 ` … ` testl ⇒ ci, where each test has the
form xj = θ (for discrete features) or xj ≤ θ or xj

> θ (for real-valued features). A rule is said to
cover a training example if the example satis-
fies all the tests on the left-hand side of the
rule. For a training set of size m, the run time
of RIPPER scales as O(m(log m)2). This is a major
improvement over the rule-learning program
C4.5RULES (Quinlan 1993), which scales as
O(m3).

Figure 7 shows pseudocode for RIPPER. RIPPER

works by building an initial set of rules and op-
timizing the set of rules k times, where k is a
parameter (typically set to 2). I describe RIPPER

for the case where there are only two classes, 1
and 2. Examples of class 1 will be referred to as
the positive examples, and examples of class 2
will be referred to as the negative examples.
RIPPER can easily be extended to handle larger
numbers of classes.

To build a set of rules, RIPPER constructs one
rule at a time. Before learning each rule, it di-
vides the training data into a growing set (con-
taining two-thirds of the data) and a pruning
set (containing the remaining one-third). It
then iteratively adds tests to the rule until the
rule covers no negative examples. Tests are se-
lected using an information-gain heuristic de-
veloped for Quinlan’s (1990) FOIL system. Once
a rule is grown, it is immediately pruned by
deleting tests in reverse order, testl, testl–1, …,
test1, to find the pruned rule that maximizes the
quantity (p – n)/(p + n), where p is the number
of positive pruning examples covered by the
pruned rule, and n is the number of negative

pruning examples covered by the pruned rule.
Once the rule has been grown and pruned,

RIPPER adds it to the rule set and discards all
training examples that are covered by this new
rule. It uses a description-length criterion to de-
cide when to stop adding rules. The description
length of a set of rules is the number of bits
needed to represent the rules plus the number
of bits needed to identify the training examples
that are exceptions to the rules. Minimum–de-
scription-length criteria of this kind have been
applied successfully to rule- and tree-learning
algorithms (Quinlan and Rivest 1989). RIPPER

stops adding rules when the description length
of the rule set is more than 64 bits larger than
the best description length observed to this
point. It then considers the rules in reverse or-
der and deletes any rule that will reduce the to-
tal description length of the rule set.

To optimize a set of rules, RIPPER considers
deleting each rule in turn and regrowing and

Articles

WINTER 1997 107

Figure 7. The RIPPER Algorithm (Cohen 1995).

procedure BuildRuleSet(P ,N)
P = positive examples
N = negative examples
RuleSet = {}
DL = DescriptionLength(RuleSet, P,N)
while P 6= {}

// Grow and prune a new rule
split (P,N) into (GrowPos,GrowNeg) and (PrunePos, PruneNeg)
Rule := GrowRule(GrowPos,GrowNeg)
Rule := PruneRule(Rule, PrunePos, PruneNeg)
add Rule to RuleSet
if DescriptionLength(RuleSet, P,N) > DL+ 64 then

// Prune the whole rule set and exit
for each rule R in RuleSet (considered in reverse order)

if DescriptionLength(RuleSet−©{R}, P,N) < DL then
delete R from RuleSet
DL := DescriptionLength(RuleSet, P,N)
end if

end for
return (RuleSet)
end if

DL := DescriptionLength(RuleSet, P,N)
delete from P and N all examples covered by Rule
end while

end BuildRuleSet

procedure OptimizeRuleSet(RuleSet, P,N)
for each rule R in RuleSet

delete R from RuleSet
UPos := examples in P not covered by RuleSet
UNeg := examples in N not covered by RuleSet
split (UPos, UNeg) into (GrowPos,GrowNeg) and (PrunePos, PruneNeg)
RepRule := GrowRule(GrowPos,GrowNeg)
RepRule := PruneRule(RepRule, PrunePos, PruneNeg)
RevRule := GrowRule(GrowPos,GrowNeg,R)
RevRule := PruneRule(RevRule, PrunePos, PruneNeg)
choose better of RepRule and RevRule and add to RuleSet
end for

end OptimizeRuleSet

procedure Ripper(P,N, k)
RuleSet := BuildRuleSet(P,N)
repeat k times RuleSet := OptimizeRuleSet(RuleSet, P,N)
return (RuleSet)
end Ripper

first. For discrete feature j, the mutual infor-
mation weight wj can be computed as

where P(y = c) is the proportion of training ex-
amples in class c, and P(xj = v) is the probability
that feature j takes on value v. For real-valued
features, the sums become integrals that must
be approximated. A good approximation is to
apply a discretization algorithm, such as the
one advocated by Fayyad and Irani (1993);
convert the real-valued feature into a discrete-
valued feature; and then apply the previous
formula. Wettschereck and Dietterich (1995)
have obtained good results with nearest-neigh-
bor algorithms using mutual information
weighting.

A problem with mutual information weight-
ing is that it treats each feature independently.
For features whose predictive power is only ap-
parent in combination with other features, mu-
tual information assigns a weight of zero. For
example, a difficult class of learning problems
involves learning parity functions with ran-
dom irrelevant features. A parity function over
n binary features is equal to 1 if and only if an
odd number of the features are equal to 1. Sup-
pose we define a learning problem in which
there are 4 relevant features and 10 irrelevant
(random) binary features, and the class is the 4-
parity of the 4 relevant features. The mutual in-
formation weights of all features will be ap-
proximately zero using the previous formula.

An algorithm that overcomes this problem
(and is one of the most successful preprocess-
ing algorithms to date) is the RELIEF-F algorithm
(Kononenko 1994), which is an extension of
an earlier algorithm called RELIEF (Kira and Ren-
dell 1992). The basic idea of these algorithms is
to draw examples at random, compute their
nearest neighbors, and adjust a set of feature
weights to give more weight to features that
discriminate the example from neighbors of
different classes. Specifically, let x be a ran-
domly chosen training example, and let xs and
xd be the two training examples nearest to x (in
Euclidean distance) in the same class and in a
different class, respectively. The goal of RELIEF is
to set the weight wj on input feature j to be

In other words, the weight wj should be maxi-
mized when xd has a high probability of taking
on a different value for feature j, and xs has a
low probability of taking on a different value for
feature j. RELIEF-F computes a more reliable esti-
mate of this probability difference by comput-
ing the B nearest neighbors of x in each class.

w P x x P x xj j j
d

j j
s= ≠ ≠() – ().

w P y c x v
P y c x v

P y c P x vj
v c

j
j

j

= ∑ ∑ = = ⋅
= =

= =
(,) log

(,)

() ()
,

repruning it. Two candidate replacement rules
are grown and pruned. The first candidate is
grown starting with an empty rule, whereas
the second candidate is grown starting with
the current rule. The better of the two candi-
dates is selected (using a description-length
heuristic) and added to the rule set.

Cohen compared RIPPER to C4.5RULES on 37
data sets and found that RIPPER matched or beat
C4.5RULES in 22 of the 37 problems. The rule
sets that it finds are always smaller than those
constructed by C4.5RULES. An implementation
of RIPPER is available for research use from Co-
hen (www.research.att.com/~wcohen/rip-
perd.html).

Learning with Many Features
In many learning problems, there are hun-
dreds or thousands of potential features de-
scribing each input object x. Popular learning
algorithms such as C4.5 and back propagation
do not scale well when there are many fea-
tures. Indeed, from a statistical point of view,
examples with many irrelevant, but noisy, in-
put features provide little information. It is
easy for learning algorithms to be confused by
the noisy features and construct poor classi-
fiers. Hence, in practical applications, it is wise
to carefully choose which features to provide
to the learning algorithm.

Research in machine learning has sought to
automate the selection and weighting of fea-
tures, and many different algorithms have
been developed for this purpose. An excellent
review has been written by Wettschereck, Aha,
and Mohri (1997). A comprehensive review of
the statistical literature on feature selection
can be found in Miller (1990). I discuss a few of
the most significant methods here.

Three main approaches have been pursued.
The first approach is to perform some initial
analysis of the training data and select a sub-
set of the features to feed to the learning algo-
rithm. A second approach is to try different
subsets of the features on the learning algo-
rithm, estimate the performance of the algo-
rithm with these features, and keep the sub-
sets that perform best. The third approach is
to integrate the selection and weighting of
features directly into the learning algorithm.
I discuss two examples of each approach.

Selecting and Weighting Features by
Preprocessing A simple preprocessing
technique is to compute the mutual informa-
tion (also called the information gain) be-
tween each input feature and the class. The
mutual information between two random vari-
ables is the average reduction in uncertainty
about the second variable given a value of the

Articles

108 AI MAGAZINE

Figure 8 describes the RELIEF-F algorithm. In
this algorithm, δ(u, v) for two feature values u
and v is defined as follows:

Kononenko, Simec, and Robnik-Sikonja
(1997) have shown that RELIEF-F is effective at
detecting relevant features, even when these
features are highly dependent on other fea-
tures.

For the 4-parity problem mentioned previ-
ously (with 10 irrelevant random features), RE-
LIEF-F can correctly separate the 4 relevant fea-
tures from the 10 irrelevant ones given 400
training examples. Kononenko computes the
10 nearest neighbors in each class (that is, B =
10). In his experiments, he sets the number of
sample points L to be equal to the number of
training examples, but in large data sets, good
results can be obtained from much smaller
samples.

Kononenko et al. have also experimented
with integrating RELIEF-F into a decision
tree–learning algorithm called ASSISTANT-R. They
show that ASSISTANT-R is able to perform much
better than the original ASSISTANT program
(which uses mutual information to choose fea-
tures) in domains with highly dependent fea-
tures but gives essentially the same perfor-
mance in domains with independent features.

Selecting and Weighting Features by
Testing with the Learning Algorithm
John, Kohavi, and Pfleger (1994) describe a
computationally expensive method that they
call the wrapper method for selecting input fea-
tures. The idea is to generate sets of features,
run the learning algorithm using only these
features, and evaluate the resulting classifiers
using 10-fold cross-validation (or a single hold-
out set). In 10-fold cross-validation, the train-
ing data are subdivided randomly into 10 dis-
joint equal-sized sets. The learning algorithm
is applied 10 times, each time on a training set
containing all but one of these subsets. The re-
sulting classifier is tested on the one-tenth of
the data that was held out. The performance of
the 10 classifiers (on their 10 respective hold-
out sets) is averaged to provide an estimate of
the overall performance of the learning algo-
rithm when trained with the given features.

Kohavi and John explored step-wise selec-
tion algorithms that start with a set of features
(for example, the empty set) and considered
adding or deleting a single feature. The possi-
ble changes to the feature set are evaluated (us-
ing 10-fold cross-validation), and the best
change is made. Then, a new set of changes is

δ(,)u v

u v

u v

u v

= =
≠

| – | for real - valued features

0 if

1 if for discrete features.

considered. This method is only practical for
data sets with relatively small numbers of fea-
tures and fast learning algorithms, but it gave
excellent results on the University of Califor-
nia at Irvine benchmarks.

Moore and Lee (1994) describe a much more
efficient approach to feature selection that
combines leave-one-out cross-validation
(LOOCV) with the nearest-neighbor algo-
rithm. In leave-one-out cross-validation, each
training example is temporarily deleted from
the training data, and the nearest-neighbor
learning algorithm is applied to predict the
class of the example. The total number of clas-
sification errors is the leave-one-out cross-vali-
dated estimate of the error rate of the learning
algorithm. Moore and Lee use the LOOCV er-
ror to compare different sets of features with
the goal of finding the set of relevant features
that minimizes the LOOCV error.

They combine two clever ideas to achieve
this. The first idea is called racing: Suppose we
are considering two different sets of relevant
features, A and B. We repeatedly choose a
training example at random, temporarily
delete it from the training set, and apply the
nearest-neighbor rule to classify it using the
features in set A and the features in set B. We
count the number of classification errors corre-
sponding to each set. As we process more and
more training examples in this leave-one-out
fashion, the error rate for feature set A can be-
come so much larger than the error rate for B
that we can conclude with high confidence
that B is the better feature set and terminate
the race. In their paper, Moore and Lee (1994)
apply Bayesian statistics to make this termina-
tion decision.

The second idea is based on schemas. We
can represent each set of relevant features by a

Figure 8. The RELIEF-F Algorithm.

Articles

WINTER 1997 109

procedure Relief-F(L,B)
L = the number of random examples to draw
B = the number of near neighbors to compute
for all features j: wj := 0.0
pc := the fraction of the training examples belonging to class c
for l := 1 to L do

randomly select an instance (xt, yt)
let Hit be the set of B examples (xi, yi) nearest to xt such that yi = yt.
for each class c 6= yt

let Mc be a set of B examples (xi, yi) nearest to xt such that yi = c.
end for

for each feature j

wj := wj −©1

LB

∑
(xi,yi)∈Hit

δγ(xtj , xij) +
∑
c 6=yt

py
(1−©pc)LB

∑
(xi,yi)∈Mc

δγ(xtj , xij)

end for j
end for l

return wj ∀ j .
end Relief-F

to see which works better with various learn-
ing algorithms.

Integrating Feature Weighting into the
Learning Algorithm I now discuss two
methods that integrate feature selection direct-
ly into the learning algorithm. Both of them
have been shown to work well experimentally,
and the second method, called WINNOW, works
extremely well in problems with thousands of
potentially relevant input features.

The first algorithm is called the variable-ker-
nel similarity metric, or VSM method (Lowe
1995). VSM is a form of Gaussian radial basis
function method. To classify a new data point
xt, it defines a multivariate Gaussian probabili-
ty distribution ϕ centered on xt with standard
deviation σ. Each example (xt,yi) in the training
data set “votes” for class yi with an amount
ϕ(||xi – xt ||; σ). The class with the highest vote
is assigned to be the class yt = f(xt) of the data
point xt.

The key to the effectiveness of VSM is that it
learns a weighted distance metric for measur-
ing the distance between the new data point x
and each training point xi. VSM also adjusts the
size σ of the Gaussian distribution depending
on the local density of training examples in the
neighborhood of xt.

In detail, VSM is controlled by a set of learned
feature weights w1, …, wn, a kernel radius para-
meter r, and a number of neighbors R. To classify
a new data point xt, VSM first computes the
weighted distances to the R nearest neighbors
(xi,yi):

It then computes a kernel width σ from the av-
erage distance to the R/2 nearest neighbors:

Finally, it computes the probability that the
next point xt belongs to each class c (the quan-
tity vi is the vote from training example i):

VSM then guesses the class with the highest
probability.

How does VSM learn the values of the feature
weights and the kernel radius r? It does so by
performing gradient-descent search to mini-
mize the LOOCV accuracy of the VSM classifier.
Lowe (1995) shows how to compute the gradi-
ent of the LOOCV error with respect to each of
the weights wj and the parameter r. Starting

P f c
v y c

vt

R
i i

ii

[()]
[[]]

.x = = =∑
=1

v di i= exp(– /)2 2σ

σ =
=

∑2

1

2r
R

d
i

R

i

/

.

d w x xi

n

j tj ij
j

= ∑ ()
=1

2 2
–

bit vector where a 1 in position j means that
feature j is relevant, and a 0 means it is irrele-
vant. A schema is a vector containing 0s, 1s,
and ❀s. A ❀ in position j means that this fea-
ture should be selected randomly to be relevant
50 percent of the time. Moore and Lee race
pairs of schemas against one another as fol-
lows: A training example is randomly selected
and temporarily deleted from the training set.
The nearest-neighbor algorithm is applied to
classify it using each of the two schemas being
raced. To classify an example using a schema,
features indicated by a 0 are ignored, features
indicated by a 1 are selected, and features indi-
cated by a ❀ are selected with probability 0.5.
Suppose, for illustration, that we have five fea-
tures. Moore and Lee begin by conducting five
simultaneous pairwise races:

1❀❀❀❀ races against 0❀❀❀❀

❀1❀❀❀ races against ❀0❀❀❀

❀❀1❀❀ races against ❀❀0❀❀

❀❀❀1❀ races against ❀❀❀0❀

❀❀❀❀1 races against ❀❀❀❀0

All the races are terminated as soon as one of
the schemas is found to be better than its oppo-
nent. In the next iteration, all single-bit refine-
ments of the winning schema are raced against
one another. For example, suppose schema 1
was the winner of the first race. Then, the next
iteration involves the following four pairwise
races:

11❀❀❀ races against 01❀❀❀

❀11❀❀ races against ❀10❀❀

❀1❀1❀ races against ❀1❀0❀

❀1❀❀1 races against ❀1❀❀0

This process continues until all the ❀s are re-
moved from the winning schema. Moore and
Lee found that this method never misses im-
portant relevant features, even when the fea-
tures are highly dependent. However, in some
rare cases, the races can take a long time to
conclude. The problem appears to be that the
algorithm can be slow to replace a ❀ with a 0.
In contrast, the algorithm is quick to replace a
❀ with a 1. Moore and Lee, therefore, investi-
gated an algorithm, called SCHEMATA+, that ter-
minates each race after 2000 evaluations (in
favor of the 0, using the race statistics to
choose the feature least likely to be relevant).
The median number of training examples that
must be evaluated by SCHEMATA+ is only 13 per-
cent of the number of evaluations required by
greedy forward selection and only 11 percent
of the number of evaluations required by
greedy backward elimination, but it achieves
the same levels of accuracy. An important di-
rection for future research is to compare the
accuracy and speed of SCHEMATA+ and RELIEF-F

Articles

110 AI MAGAZINE

with initial values for these parameters, VSM

computes the R nearest neighbors of each
training example (xi, yi). It then computes the
gradient and performs a search in the direction
of the gradient to minimize LOOCV error (and
keeps this set of nearest neighbors fixed). The
search along the direction of the gradient is
called a line search, and there are several effi-
cient algorithms available (Press et al. 1992).
Even though the weights are changing during
the line search, the set of nearest neighbors
(and the gradient) is not recomputed. Once
the error is minimized along this direction of
the gradient, the R nearest neighbors are re-
computed, a new gradient is computed, and a
new line search is performed. Lowe applied the
conjugate gradient algorithm to select each
new search direction, and he reports that gen-
erally only 5 to 30 line searches were required
to minimize the LOOCV error. The resulting
classifiers gave excellent results on two chal-
lenging benchmark tasks.

The last feature weighting algorithm I dis-
cuss is the WINNOW algorithm developed by Lit-
tlestone (1988). WINNOW is a linear threshold
algorithm for two-class problems with binary
(that is, 0/1 valued) input features. It classifies
a new example x into class 2 if

∑jwjxj > θ
and into class 1 otherwise. WINNOW is an online
algorithm; it accepts examples one at a time
and updates the weights wj as necessary.
Pseudocode for the algorithm is shown in fig-
ure 9.

WINNOW initializes its weights wj to 1. It then
accepts a new example (x, y) and applies the
threshold rule to compute the predicted class
y’. If the predicted class is correct (y’ = y), WIN-
NOW does nothing. However, if the predicted
class is wrong, WINNOW updates its weights as
follows. If y’ = 0 and y = 1, then the weights are
too low; so, for each feature such that xj = 1, wj

:= wj · α, where α is a number greater than 1
called the promotion parameter. If y’ = 1 and y =
0, then the weights were too high; so, for each
feature xj = 1, it decreases the corresponding
weight by setting wj := wj · β, where β is a num-
ber less than 1 called the demotion parameter.

The fact that WINNOW leaves the weights un-
changed when the predicted class is correct is
somewhat puzzling to many people. It turns
out to be critical for its successful behavior,
both theoretically and experimentally. One ex-
planation is that like ADABOOST, this strategy fo-
cuses WINNOW’s attention on its mistakes. An-
other explanation is that it helps prevent
overfitting.

Littlestone’s theoretical analysis of WINNOW

introduced the worst-case mistake bound

method. The idea is to assume that the true
function y = f(x) belongs to some set of classi-
fiers H and derive a bound on the maximum
number of mistakes that WINNOW makes when
an adversary is allowed to choose f and the or-
der in which the training examples are pre-
sented to WINNOW. Littlestone proves the fol-
lowing result:

Theorem 1: Let f be a disjunction of r out of
its n input features. Then, WINNOW will learn f
and make no more than 2 + 3r(1 + log2 n) mis-
takes (for α = 2, β = 1/2, and θ = n).

This theorem shows that the convergence
time of WINNOW is linear in the number of rel-
evant features r and only logarithmic in the to-
tal number of features n. Similar results hold
for other values of the α, β, and θ parameters,
which permits WINNOW to learn functions
where u out of v of the features must be 1 and
many other interesting classes of Boolean
functions.

WINNOW is an example of an exponential up-
date algorithm. The weights of the relevant fea-
tures grow exponentially, but the weights of
the irrelevant features shrink exponentially.
General results in computational learning the-
ory have developed similar exponential update
algorithms for many applications. A common
property of these algorithms is that they excel
when the number of relevant features is small
compared to the total number of features.

WINNOW has been applied to several experi-
mental learning problems. Blum (1997) de-
scribes an application to a calendar scheduling
task. In this task, a calendar system is given a
description of a proposed meeting (including
the list of invitees and their properties). It must
then predict the start time, day of week, loca-
tion, and duration of the meeting. There were

Articles

WINTER 1997 111

procedure Winnow(α, βγ, θγ)
αγ> 1 is the promotion parameter
βγ< 1 is the demotion parameter
θγis the threshold
initialize wj := 1 for all j
for each training example (x, y)

z :=
∑

j
wj ·©xj

y′ :=

{∥
0 if z < θγ
1 if z ≥©θγ

if y′ = 0 and y = 1 then
wj := wj ·©αγfor each j such that xj = 1
end if

else if y′ = 1 and y = 0 then
wj := wj ·©βγfor each j such that xj = 1
end if

end for
end Winnow

Figure 9. The WINNOW Algorithm.

ple, {to, too, two}). WINNOW’s task is to decide
whether each occurrence of these words is cor-
rect or incorrect based on its context.

Golding and Roth use two kinds of Boolean
input feature. The first kind are context words.
A context word is a feature that is true if a partic-
ular word (for example, “cloudy”) appears
within 10 words before or after the target word.
The second kind are collocation features. These
test for a string of two words or part-of-speech
tags immediately adjacent to the target word.
For example, the sequence target to VERB is a
collocation feature that checks whether the tar-
get word is immediately followed by the word
to and then a word that can potentially be a
verb (according to a dictionary lookup). Based
on the one-million-word Brown corpus (Kucera
and Francis 1967), Golding and Roth defined
more than 10,000 potentially relevant features.

Golding and Roth applied WINNOW (with α =
3/2, β varying between 0.5 and 0.9, and θ = 1).
They compared its accuracy to the best previ-
ous method, which is a modified naive
Bayesian algorithm. Figure 10 shows the results
for 21 sets of frequently confused words.

An important advantage of WINNOW, in addi-
tion to its speed and ability to operate online,
is that it can adapt rapidly to changes in the
target function. This advantage was shown to
be important in the calendar scheduling prob-
lem, where the scheduling of different types of
meeting can shift when semesters change (or
during summer break). Blum’s experiments
showed that WINNOW was able to respond
quickly to such changes. By comparison, to en-
able the decision tree algorithm to respond to
changes, it was necessary to decide which old
training examples could be deleted. This task is
difficult to do because although some kinds of
meeting might change with the change in se-
mesters, other meetings might stay the same. A
decision to keep, for example, only the most re-
cent 180 training examples means that exam-
ples of rare meetings whose scheduling does
not change will be lost, which hurts the perfor-
mance of the decision tree approach. In con-
trast, because WINNOW only revises the weights
on features when they have the value 1, fea-
tures describing such rare meetings are likely to
retain their weights even as the weights for oth-
er features are being modified rapidly.

Summary: Scaling Up
Learning Algorithms
This concludes my review of methods for scal-
ing up learning algorithms to apply to very
large problems. With the techniques described
here, problems having one million training ex-
amples can be solved in reasonable amounts of

34 input features available, some with many
possible values. Blum defined Boolean features
corresponding to all possible values of all pairs
of the input features. For example, given two
input features—event-type and position-of-at-
tendees—he would define a separate Boolean
feature for each legal combination, such as
event-type = meeting and position-of-atten-
dees = grad-student. There were a total of
59,731 Boolean input features. He then ap-
plied WINNOW with α = 3/2 and β = 1/2. He
modified WINNOW to prune (set to 0) weights
that become very small (less than 0.00001).

WINNOW found that 561 of the Boolean fea-
tures were actually useful for prediction. Its ac-
curacy was better than that of the best previous
classifier for this task (which used a greedy for-
ward-selection algorithm to select relevant fea-
tures for a decision tree–learning algorithm).

Golding and Roth (1996) describe an appli-
cation of WINNOW to context-sensitive spelling
correction. This is the task of identifying
spelling errors where one legal word is substi-
tuted for another, such as “It’s not to late,”
where to is substituted for too. The Random
House dictionary (Flexner 1983) lists many
sets of commonly confused words, and Gold-
ing and Roth developed a separate WINNOW

classifier for each of the listed sets (for exam-

Articles

112 AI MAGAZINE

Figure 10. Comparison of the Percentage of Correct
Classifications for a Modified Bayesian Method and WINNOW for

21 Sets of Frequently Confused Words.
Trained on 80 percent of the Brown corpus and tested on the remaining 20 per-
cent. Points lying above the line y = x correspond to cases where WINNOW is more
accurate.

70

75

80

85

90

95

100

70 75 80 85 90 95 100

W
in

n
ow

 A
cc

u
ra

cy

Modified Bayes Accuracy

computer time. However, it is not clear whether
the current stock of ideas will permit the solu-
tion of problems with billions of training exam-
ples. An important open problem is to gather
more practical experience with very large prob-
lems, so that we can understand their properties
and determine where these algorithms fail.

A recurring theme is the use of subsamples
of the training data to make critical intermedi-
ate decisions (such as the choice of relevant
features). Another theme is the development
of efficient online algorithms, such as WINNOW.
These are anytime algorithms that can produce
a useful answer regardless of how long they are
permitted to run. The longer they run, the bet-
ter the result they produce.

An important open topic is the problem of
handling thousands of output classes. The sec-
tion Ensembles of Classifiers has already de-
scribed the two methods that are most appro-
priate in this case: error-correcting output
coding and ADABOOST.OC. Both of these meth-
ods should scale well with the number of class-
es. Error-correcting output coding has been
tested on problems with as many as 126 classes,
but tests on very large problems with thou-
sands of classes have not yet been performed.

Reinforcement Learning
The previous two sections discussed problems
in supervised learning from examples. This
section addresses problems of sequential deci-
sion making and control that come under the
heading of reinforcement learning.

Work in reinforcement learning dates back to
the earliest days of AI when Arthur Samuel
(1959) developed his famous checkers program.
More recently, there have been several impor-
tant advances in the practice and theory of re-
inforcement learning. Perhaps the most famous
work is Gerry Tesauro’s (1992) TD-GAMMON pro-
gram, which has learned to play backgammon
better than any other computer program and
almost as well as the best human players. Two
other interesting applications are the work of
Zhang and Dietterich (1995) on job-shop sched-
uling and Crites and Barto (1995) on real-time
scheduling of passenger elevators.

Kaelbling, Littman, and Moore (1996) pub-
lished an excellent survey of reinforcement
learning, and Mahadevan and Kaelbling
(1996) report on a recent National Science
Foundation–sponsored workshop on the sub-
ject. Two new books (Barto and Sutton 1997;
Bertsekas and Tsitskilis 1996) describe the new-
ly developed reinforcement learning algo-
rithms and the theory behind them. I summa-
rize these developments here.

An Introduction to
Dynamic Programming
The most important insight of the past five
years is that reinforcement learning is best an-
alyzed as a form of online, approximate dy-
namic programming (Barto, Bradtke, and
Singh 1995). I introduce this insight using the
following notation: Consider a robot interact-
ing with an external environment. At each
time t, the environment is in some state st, and
the robot has available some set of actions A.
The robot executes an action at, which causes
the environment to move to a new state st+1. A
convenient way of specifying the desired be-
havior of the robot is to define an immediate
reward function R(st, a, st+1) that specifies a re-
al-valued reward for this transition from st to
st+1. For example, we can assign a positive re-
ward to actions that reach a desired goal loca-
tion, and we can assign a negative reward to
undesirable actions such as colliding with
walls, people, or other robots. The immediate
reward in all other states could be defined as 0.

Our long-term goal for the robot can then be
defined as some function of the immediate re-
wards it receives. A commonly used criterion is
the cumulative discounted reward,

where 0 ≤ γ < 1 is a discount factor that controls
the relative importance of short-term and
long-term rewards.

A procedure or rule for choosing each action
a given state s is called the policy of the robot,
and it can be formalized as a function a = π(s).
The goal of reinforcement learning algorithms
is to compute the optimal policy, denoted π*,
which maximizes the cumulative discounted
reward.

Researchers in dynamic programming (for
example, Bellman [1957]) found it convenient
to define a real-valued function fπ(s) called the
value function of policy π. The value function
fπ(s) gives the expected cumulative discounted
reward that will be received by starting in state
s and executing policy π. It can be defined re-
cursively by the formula

fπ(s) =
∑s’ P(s’|s, π(s)) · [R(s, π(s), s’) + γfπ(s’)], (1)

where P(s’|s, π(s)) is the probability that the
next state will be s’ given that the current state
is s, and we take action π(s).

Given a policy π, a reward function R, and
the transition probability function P, it is pos-
sible to compute the value function fπ by solv-
ing the system of linear equations containing
one equation of the form of equation 1 for
each possible state s. The system of equations

∑
=

∞

+
t

t
t tR s a s

0
1γ (, ,),

Articles

WINTER 1997 113

backups can be performed in any convenient
order—even at random. The only requirement
is that γ must be small enough so that the sum
of the expected discounted rewards converges,
and the simple backups must be performed un-
til fπ(s) converges for every state s.

Given a value function fπ(s), it is possible to
compute a new policy π’ that is guaranteed to
be at least as good π. This new policy is com-
puted by performing a one-step lookahead
search and choosing the action whose backed-
up value is the largest:

π’(s) := argmaxa ∑s’ P(s’|s, a) [R(s, a, s’)
+ γfπ(s’)]. (3)

In words, we consider each possible action a,
compute its expected backed-up value, and de-
fine π’(s) to be the action that gives the maxi-
mum backed-up value.

By alternately computing the value fπ of pol-
icy πand then updating πusing equation 2, we
can converge to the optimal policy π* and its
optimal value function f*. Note that if we plug
f* into equation 2, the new policy is un-
changed—it is still the optimal policy. This de-
fines the algorithm known as policy iteration,
shown in figure 12. It is easy to show that pol-
icy iteration converges in a fixed number of it-
erations. Unfortunately, each iteration can be
expensive because it requires computing the
value of the current policy.

An alternative to policy iteration is to work
directly with the value function. Bellman
proved that the value function f* of the opti-
mal policy π* is the unique fixed point of the
Bellman equation:

f(s) := maxa ∑s’ P(s’|s, a) [R(s, a, s’) + γf(s’)] (4)

In other words, we perform a one-step looka-
head just as we did for the policy-improve-
ment step of policy iteration, but instead of re-
membering the best action, we update our
estimate of the value of state s. This is called a
Bellman backup. It is more expensive than a
simple backup because we must consider each
possible action a and then each possible result-
ing state s’. By performing enough Bellman
backups in every state, we can converge to the
optimal value function f*. This is called the
value-iteration algorithm, and it is summa-
rized in figure 13.

Unfortunately, value iteration can be more
difficult than policy iteration because (1) each
backup is a more expensive Bellman backup
rather than a simple backup and (2) the value
function can take a long time to converge. In-
deed, it is possible for the optimal policy to
have converged long before the value function
converges.

A hybrid algorithm that combines aspects of

can be solved using standard methods, such as
Gaussian elimination or Gauss-Seidel iteration,
or it can be solved iteratively by converting the
equation into an assignment statement:

fπ(s) := ∑s’ P(s’|s, π(s)) · [R(s, π(s), s’)
+ γfπ(s’)], (2)

This assignment statement is called a simple
backup because it can be viewed as taking the
current estimated value(s) fπ(s’) and “backing
them up” to compute a revised estimate for
fπ(s). An example is shown in figure 11. In state
s, we perform action a = π(s). There are three
possible resulting states:

with probabilities 0.8, 0.1, and 0.1, respective-
ly. The immediate rewards for reaching these
states are 0, 0, and 2, respectively, and the esti-
mated values f(s’) of the states are 10, 5, and 0,
respectively. Assuming γ = 1, the new estimat-
ed value of fπ(s) is

fπ(s) := (0 + 0.8 · 10) + (0 + 0.1 · 5)
+ (2 + 0.1 · 0)
:= 10.5.

To compute the value of a policy, the simple

s s s1 2 3
' ' ', ,, and

Figure 11. An Example of a Simple Backup.
Each arc is labeled with the probability of making the transition. The resulting
states are labeled with their associated immediate reward and their value.

Figure 12. The Policy-Iteration Algorithm.

Articles

114 AI MAGAZINE

s

0

0

2

f(s’)

10

5

0

P(s’|s,a) R(s’|s,a)

a

0.8

0.1

s’

s’

s’1

2

3
0.1

procedure PolicyIteration(P,R)
let πγbe an arbitrary initial policy
repeat until πγis unchanged

perform simple backups to compute fπγfor each state (Equation 2).
update πγfor each state (Equation 3).
end

end PolicyIteration

both value iteration and policy iteration is
called modified policy iteration. This algorithm is
essentially the same as policy iteration except
that only a fixed number of simple backups are
performed in each state in each iteration.
Thus, the estimated value function for the cur-
rent policy fπ does not completely converge to
the correct value function, but under fairly
mild conditions, it can be shown that the algo-
rithm will still converge to the optimal policy.

All three of these algorithms—policy itera-
tion, value iteration, and modified policy iter-
ation—require performing backups in every
state; so, their running time scales with the
number of states. In fact, value iteration can
run for an infinite amount of time without
converging. Policy iteration requires time at
least O(n3) for problems with n states just to
compute the value of the policy in each itera-
tion. For small problems, it is not a difficulty,
but for problems of interest in AI, the state
space often has 1020 or 1040 possible states,
which renders these algorithms infeasible.
Bellman termed this the curse of dimensionality
because the number of states, and, hence, the
running time, increases exponentially with the
number of dimensions in the state space.

Another drawback of these algorithms is
that they require a complete model of the sys-
tem, by which I mean the transition probabil-
ities P(s’|s, a) and the reward function R(s, a,
s’). There are many applications where this
model is unavailable (for example, in a robot
interacting with an unknown environment) or
where the model cannot easily be converted
into a transition probability matrix. For exam-
ple, in the elevator control problem studied by
Crites and Barto (1995), a software simulator is
available that can take a current state s and a
proposed action a and generate the next state
s’ according to the transition probability distri-
bution. However, this distribution is not ex-
plicitly represented anywhere, so it is not avail-
able for direct use by a dynamic programming
algorithm. The problem of constructing an ex-
plicit probability transition matrix and reward
function has been called the curse of modeling,
and in many problems, it is just as severe as the
curse of dimensionality. Reinforcement learn-
ing algorithms provide a way of overcoming
these two curses.

Reinforcement learning algorithms have
introduced three key innovations: (1) sto-
chastic approximation of backups, (2) value-
function approximation, and (3) model-free
learning. I discuss these innovations in the
context of an algorithm known as TD(λ) devel-
oped by Sutton (1988).

Temporal Difference
Learning and TD(λ)

I begin by describing a simplified version of
Sutton’s TD(λ) algorithm, called TD(0). TD(0) is a
method for computing approximate simple
backups online. Suppose we are in state s, and
we follow the current policy by taking action a
= π(s). If we are interacting with a real external
environment (or with a simulator), the envi-
ronment makes a probabilistic transition to a
new state s’ and produces the immediate re-
ward R(s, a, s’). The TD(0) algorithm observes
this new state and reward and updates the val-
ue function as follows:

fπ(s) := (1 – α) fπ(s) + α[R(s, a, s’) + γfπ(s’)],

where α is a learning rate parameter. Typical val-
ues for α are between 0.01 and 0.5. (Technical-
ly, the α values must shrink to 0 over time for
TD(0) to converge.)

The basic idea of TD(0) is that if we visit s
many times and apply action a many times,
then by sampling over time, we get the same
effect as if we performed a simple backup. We
can do this by sampling from the probability
distribution P(s’|s, a) rather than by having di-
rect computational access to P.

This strategy allows TD(0) to compute the
value of a policy without having an explicit
model. The environment serves as its own
model!

When Sutton developed TD(0), he also intro-
duced a second idea. Instead of storing a sepa-
rate value fπ(s) for each state s, suppose we rep-
resent the value function as a neural network
(or some other differentiable function approxi-
mator) of the form f(s, W), where W is a vector
of adjustable weights. With this representation,
we can’t directly assign a value to a state, but we
can adjust the weights so that f(s, W) is closer to
the desired value by defining an error function:

This is (one half) the squared difference be-
tween the current estimated value of state s,
fπ(s, W), and the backed-up value, which is
called the temporal difference error. Our goal is to

J W f s W R s a s f s W() ((,) – [(, , ') (' ,)])= +1
2

2π πγ

Articles

WINTER 1997 115

procedure ValueIteration(P,R)
let f be an arbitrary initial value function
repeat until f is unchanged in all states

for each state s, perform a Bellman backup (Equation 4)
end

for each state s, compute the optimal policy (Equation 3)
end ValueIteration

Figure 13. The Value-Iteration Algorithm.

can be implemented by maintaining a current
gradient vector G:

With this change, we get the full algorithm
TD(λ) shown in figure 15. Readers familiar with
the momentum method for stabilizing back
propagation will note that the eligibility trace
mechanism is similar. However, in the mo-
mentum method, previous weight changes are
remembered, but in the eligibility trace mech-
anism, previous gradient vectors are remem-
bered, and future temporal differences deter-
mine the step size along these previous
gradients.

There have been many theoretical studies of
the behavior of TD(λ). The most general results
have been obtained by Tsitsiklis and Van Roy
(1996). They analyze the case where the func-
tion approximator f(s, W) is a linear combina-
tion of fixed (and arbitrary) orthogonal basis
functions. To analyze how well f(s, W) can ap-
proximate fπ, some notion of the distance be-
tween two value functions is needed. Tsitsiklis
and Van Roy define the following measure:

||f – fπ||D = (∑s[f(s) – fπ(s)]2 D(s))1/2,

where D(s) is the probability that the policy π
visits state s.

With this measure, let

be the best approximation of fπ that can be rep-
resented by a linear combination of the given
basis functions. Tsitsiklis and Van Roy prove
that TD(λ) will converge to a function f such that

The quantity on the left-hand side is the er-
ror between the function f learned by TD(λ) and
the true value function fπ for policy π. The nu-
merator on the right-hand side is the inherent

|| – ||
|| ˆ – * ||

– – /(–)
.f f

f f
D

Dπ
π

γ λ λγ
≤

()1 1 1

f̂ π

G G f s Wt t w t tt
: (,).–= + ∇λ 1

Σ ∇
=

−

∞

− −
i

t i

i
w t i t if s W

0

λ (,)
modify W to reduce the temporal difference
error J(W). Differentiating J(W) (and treating
only the first occurrence of W as adjustable),
we obtain the learning rule

W:= W – α∇ wf(s, W) (fπ(s, W)
– [R(s, a, s’) + γfπ(s’, W)]),

where ∇ wf(s, W) is the gradient of f with respect
to the weights W. This takes a step of size α in
the direction of the decreasing gradient scaled
by the size of the temporal difference error.

By using a smoothly parameterized function
approximation f(s, W), TD(0) can circumvent
the curse of dimensionality, provided that f(s,
W) can accurately approximate the true value
function f(s) with a small number of parame-
ters W.

Sutton introduced one other wonderful idea
in the TD(λ) algorithm—the eligibility trace. Sup-
pose we have visited a sequence of states s1, s2,
..., st, st+1, and we are updating the value of f(st,
Wt). Sutton suggested that we might want to
update the values of the preceding states as well
because the key idea of dynamic programming
is to propagate information about expected re-
wards backward through the state space. Sutton
proposed that we should remember the gradi-
ent ∇ wt-if(st-i,Wt-i) for each state st-i, for i = 1, …, n,
that we have visited. When we update f(st-i,Wt-i)
by taking a step in the direction of –∇ tf(st, Wt),
we also take a smaller step in the direction of
–∇ wt–1f(st-1,Wt-1) and an even smaller step in the
direction of –∇ wt–2f(st-2,Wt-2), and so on. Each step
size will be decreased by a factor of λ < 1, which
gives us the learning rule

The value of λi is called the eligibility of state st-i.
Figure 14 shows the eligibility of a sequence of
states as a bar graph.

The infinite sum

W W f s W f s W

R s a s f s W

i
t i

i
w t i t i t

t t t

: – ((,))((,)

–[(, ,) (,)]).

= ∑

+

=
−

∞

− −

+ +

∇α λ

γ

π

π

0

1 1

Figure 14. A Sequence of States.
The eligibility of each state (with λ = 0.8) is shown as a vertical bar.

Articles

116 AI MAGAZINE

st+1s s s s s s s stt–1t–2t–3t–4t–5t–6t–7

approximation error resulting from the use of
a linear combination of the given, fixed-basis
functions. The denominator is the error that
results from the fact that approximation errors
in one state will be propagated backward to
earlier states. For large λ, the denominator ap-
proaches 1 (no error), but for λ = 0, the denom-
inator becomes 1 – γ, which could be small
and, hence, produce large errors. For this result
to hold, it is essential that the backups per-
formed by TD(λ) be performed according to the
current policy π. If this condition is not ob-
served, then TD(λ) may fail to converge.

The TD(λ) algorithm provides a way of com-
puting the value of a fixed policy without di-
rect access to the transition probabilities and
reward function. However, this algorithm is
only of limited utility unless we can perform
the policy-improvement step from equation 3,
thereby implementing the policy-iteration al-
gorithm. Unfortunately, policy improvement
requires access to a model that can generate
the possible next states and their probabilities.

Applications of TD(λ)

There are many domains where such a model
is available. For example, in game-playing set-
tings, such as backgammon, it is easy to com-
pute the set of available moves from each state
and the probabilities of all successor states.
Hence, TD(λ) can be combined with policy im-
provement to learn an approximately optimal
policy for backgammon, which is what
Tesauro (1995, 1992) did in his famous TD-GAM-
MON system.

TD-GAMMON uses a neural network represen-
tation of the value of a state. The state of the
backgammon game is described by a vector of
198 features that encode the locations of the
pieces on the board and the values shown on
the dice. TD-GAMMON begins with a randomly
initialized neural network. It plays a series of
games against itself. At each step, it makes a
full one-step lookahead search, applies the
neural network to evaluate each of the result-
ing states, and makes the move corresponding
to the highest backed-up value. In short, it ap-
plies equation 3 to compute the action to per-
form next, which is a form of local policy im-
provement. After making the move, it observes
the resulting state and applies the TD(λ) rule to
update the value function. In effect, TD-GAM-
MON is executing a form of modified policy it-
eration where it alternates between one step of
policy evaluation (the TD(λ) update) and one
step of policy improvement (the computation
of the best move to make).

There is no guarantee that this algorithm
will converge to the optimal policy. Indeed, it

is easy to construct examples where the strate-
gy of always performing the best action based
on the current approximation to the value
function, f(s, W), leads to a local minimum.
For example, consider the navigation problem
shown in figure 16. There is a large mountain
separating the start state from the goal. A net-
work of roads passes to the north of the moun-
tain, and a similar (and shorter) network passes
to the south. Suppose that our initial policy
takes us to the north side, and we eventually
reach the goal. After updating our value func-
tion using TD(λ), suppose that the north side
still appears to be shorter than the south side
(because our estimates for the values of the
states along the south side are too high). Then,
in future trials, we will continue to take the
north roads, and we will never try the south-
ern route.

This is called the problem of exploration. The
heart of the problem is that to find the optimal
policy, it is necessary to prove that every off-
policy action leads to expected results that are
worse than the actions of the optimal policy.
In this situation, it is essential to explore the
southern path to determine whether it is worse
(or better!) than the northern path. The strate-
gy of always taking the action that appears to
be optimal based on the current value function
is called the pure exploitation strategy. The ex-
ample in figure 16 shows that the pure ex-
ploitation strategy does not always find the op-
timal policy. Hence, online reinforcement
learning algorithms must balance exploitation
with exploration.

Fortunately, in backgammon, the random
dice rolls inject so much randomness into the
game that TD-GAMMON thoroughly investigates
the possible moves in the game. Experimental-
ly, the performance of TD-GAMMON is outstand-
ing. It plays much better than any other com-
puter program, and it is nearly as good as the
world’s best players. The results of three ver-
sions of the program in three separate matches

Figure 15. The TD(λ) Algorithm for Computing the Value of a Policy π.

Articles

WINTER 1997 117

procedure TD(πγ, λ, γγ, α, s0)
initialize G = 0
initialize W randomly
s0 is the starting state
while W has not converged do

take action a = πγ(st)
observe resulting state st+1 and reward R(st, a, st+1)
G := λG+∇W f(st,W)

W := W −©αG ·©
(∥
f(st,W)−©[R(st, a, st+1) + γγf(st+1,W)]

)∥
end while

return W which defines fπγ

end TD

its resource constraints. The actions in this
search space identify the earliest constraint vi-
olation and repair it by moving tasks later in
time (thus lengthening the schedule). The
search terminates when a violation-free sched-
ule is found.

Zhang and Dietterich reformulated this job-
shop scheduling problem as a reinforcement
learning problem where the optimal policy
chooses a sequence of repairs that produces the
shortest possible schedule. The immediate re-
ward function gives a small cost to each repair
action and a final reward that is inversely pro-
portional to the final length of the schedule.
Zhang and Dietterich applied TD(λ) with a feed-
forward neural network to represent the value
function. The actions in this domain are deter-
ministic, so deliberate exploration is needed.
Their system makes a random exploratory
move with a given probability, β, which is grad-
ually decreased during learning. After learning,
their system finds schedules that are substan-
tially shorter than the best previous method
(for the same expenditure of computer time).
This approach of converting combinatorial op-
timization problems into reinforcement learn-
ing problems should be applicable to many
other important industrial domains.

These two applications show that when a
simulator is available for a task, it is possible to
solve the reinforcement learning problem us-
ing TD(λ) even in very large search spaces. How-
ever, in domains involving interaction with
hard-to-model real-world environments (for
example, robot navigation, factory automa-
tion), some other method is needed. Two ap-
proaches have been explored.

One approach is to learn a predictive model
of the environment by interacting with it.
Each interaction with the environment pro-
vides a training example for supervised learn-
ing of the form s’ = env(s, a), where env is the
environment, s and a are the current state and
action, and s’ is the resulting state. Standard
supervised learning algorithms can be applied
to learn this model, which can then be com-
bined with TD(λ) to learn an optimal policy.

against human players are shown in table 2. In
some situations, the moves chosen by TD-GAM-
MON have been adopted by expert humans.

A similar strategy was applied by Zhang and
Dietterich (1995) to the problem of job-shop
scheduling. In job-shop scheduling, a set of
tasks must be scheduled to avoid resource con-
flicts. Each task requires certain resources
throughout its duration, and each task has pre-
requisite tasks that must be completed before it
can be executed. An optimal schedule is one
that completes all its tasks in the minimum
amount of time but satisfies all resource and
prerequisite constraints.

Zweben, Daun, and Deale (1994) developed
a repair-based search space for this task in
which each state is a complete schedule (that
is, all tasks have assigned start times). The
starting state is a critical path schedule in which
every task is scheduled as early as possible, sub-
ject to its prerequisite constraints and ignoring

Figure 16. Two Networks of Roads around a Mountain.
Without exploration, an initial policy that follows the northern roads will never
discover that the southern roads provide a shorter route to the goal.

Articles

118 AI MAGAZINE

Start G

Program Training Games Opponents Results
TD-GAMMON 1.0 300,000 Robertie, Davis, Magriel –13 pts/51 games (–0.25 ppg)
TD-GAMMON 2.0 800,000 Goulding, Woolsey, Snellings, Russell, Sylvester –7 pts/38 games (–0.18 ppg)
TD-GAMMON 2.1 1,500,000 Robertie –1 pts/40 games (–0.02 ppg)

ppg = points per game.

Table 2. Summary of the Performance of TD-GAMMON against Some of the World’s Best Players.
The results are expressed in net points won (or lost) and in points won per game. Taken from Tesauro (1995).

The second approach is a model-free algo-
rithm called Q-LEARNING, developed by Watkins
(Watkins 1989; Watkins and Dayan 1992),
which is the subject of the next section.

Model-Free Reinforcement
Learning (Q-LEARNING)
Q-LEARNING is an online approximation of value
iteration. The key to Q-LEARNING is to replace
the value function f(s) with an action-value
function, Q(s, a). The quantity Q(s, a) gives the
expected cumulative discounted reward of per-
forming action a in state s and then pursuing
the current policy thereafter. Hence, the value
of a state is the maximum of the Q values for
that state:

f(s) = maxa Q(s,a).

We can write down the Q version of the Bell-
man equation as follows:

Q(s, a) =
∑s’ P(s’|s, a) [R(s, a, s’) + maxa’ γQ(s’, a’)].

The role of the Q function is illustrated in
figure 17, where it is contrasted with the value
function f. In the left part of the figure, we see
that the Bellman backup updates the value of
f(s) by considering the values f(s’) of states that
result from different possible actions. In the
right part of the figure, the analogous backup
works by taking the best of the values Q(s’, a’)
and backing them up to compute an updated
value for Q(s, a).

The Q function can be learned by an algo-
rithm that exploits the same insight as
TD(0)—online sampling of the transition prob-
abilities—and an additional idea—online sam-
pling of the available actions. Specifically, sup-
pose we have visited state s, performed action

a, and observed the resulting state s’ and im-
mediate reward R(s, a, s’). We can update the Q
function as follows:

Q(s, a) := (1 – α)Q(s, a) +
α[R(s, a, s’) + γmaxa Q(s’, a)].

Suppose that every time we visit state s, we
choose the action a uniformly at random.
Then, the effect is to approximate a full Bell-
man backup (see equation 4). Each value Q(s,
a) is the expected cumulative discounted re-
ward of executing action a in s, and the maxi-
mum of these values is f(s). The random choice
of a ensures that we learn Q values for every ac-
tion available in state s. The online updates en-
sure that we experience the resulting states s’
in proportion to their probabilities P(s’|s, a).

In general, we can choose which actions to
perform in any way we like, as long as there is
a nonzero probability of performing every ac-
tion in every state. Hence, a reasonable strate-
gy is to choose the best action (that is, the one
whose estimated value Q(s, a) is largest) most
of the time but to choose a random action
with some small probability. Watkins proves
that as long as every action is performed in
every state infinitely many times, the Q func-
tion converges to the optimal function Q* with
probability 1.

Once we have learned Q*, we must convert
it into a policy. Although this conversion pre-
sented an insurmountable difficulty for TD(0),
it is trivial for the Q representation. The opti-
mal policy can be computed as

π*(s) = argmaxa Q*(s, a).

Crites and Barto (1995) applied Q-LEARNING

to a problem of controlling 4 elevators in a 10-
story office building during peak “down traf-

Articles

WINTER 1997 119

s’2s’1

s’1 s’1 s’1,a ,a ,a4 5 6

s,a1

,a ,a ,a4 5 6s’ s’ s’2 2 2Q(s’,a’)

Q(s,a)a3

f(s’)

f(s) s

a a

s’ s’ s’ s’ s’2 3 4 5 6s’

1

1

2

Figure 17. A Comparison of the Value Function f and the Q Function.
Black nodes represent situations where the agent has chosen an action. White nodes are states where the agent has not yet chosen an action.

ING is to the problem of assigning radio chan-
nels for cellular telephone traffic. Singh and
Bertsekas (1997) showed that Q-LEARNING could
find a much better policy than some sophisti-
cated and complex published methods.

Open Problems in
Reinforcement Learning
Many important problems remain unsolved in
reinforcement learning, which reflects the rel-
ative youth of the field. I discuss a few of these
problems here.

First, the use of multilayer sigmoidal neural
networks for value-function approximation
has worked, but there is no reason to believe
that such networks are well suited to reinforce-
ment learning. First, they tend to forget
episodes (both good and bad) unless they are
retrained on the episodes frequently. Second,
the need to make small gradient-descent steps
makes learning slow, particularly in the early
stages. An important open problem is to clarify
what properties an ideal value-function ap-
proximator would possess and develop func-
tion approximators with these properties. Ini-
tial research suggests that value-function
approximators should be local averagers that
compute the value of a new state by interpolat-
ing among the values of previously visited
states (Gordon 1995).

A second key problem is to develop rein-
forcement methods for hierarchical problem
solving. For very large search spaces, where the
distance to the goal and the branching factor
are big, no search method can work well. Of-
ten such large search spaces have a hierarchical

fic.” People press elevator call buttons on the
various floors of the building to call the eleva-
tor to the floor. Once inside the elevator, they
can also press destination buttons to request
that the elevator stop at various floors. The el-
evator control decisions are (1) to decide, after
stopping at a floor, which direction to go next
and (2) to decide, when approaching a floor,
whether to stop at the floor or skip it. Crites
and Barto applied rules to make the first deci-
sion; so, the reinforcement learning problem is
to learn whether to stop or skip floors. The goal
of the controller is to minimize the square of
the time that passengers must wait for the ele-
vator to arrive after pressing the call button.

Crites and Barto used a team of four Q-learn-
ers, one for each of the four elevator cars. Each
Q-function was represented as a neural net-
work with 47 input features, 20 sigmoidal hid-
den units, and 2 linear output units (to repre-
sent Q(s, stop) and Q(s, skip)). The immediate
reward was the (negative of the) squared wait
time since the previous action. They employed
a form of random exploration in which ex-
ploratory actions are more likely to be chosen
if they have higher estimated Q values.

Figure 18 compares the performance of the
learned policy to that of eight heuristic algo-
rithms, including the best nonproprietary al-
gorithms. The left-hand graph shows the
squared wait time, and the right-hand graph
shows the percentage of passengers that had to
wait more than 60 seconds for the elevator.
The learned Q policy performs better than all
the other methods.

Another interesting application of Q-LEARN-

Figure 18. Comparison of Learned Elevator Policy Q with Eight Published Heuristic Policies.

Articles

120 AI MAGAZINE

0

100

200

300

400

500

600

700

SECTOR DLB HUFF/B LQF HUFF FIM ESA/nq ESA Q

Sq
ua

re
d

W
ai

t T
im

e

Policy

0

0.2

0.4

0.6

0.8

1

SECTOR DLB HUFF/B LQF HUFF FIM ESA/nq ESA Q

Pe
rc

en
t

of
 w

ai
ts

 >
 6

0
se

co
n

d
s

Policy

1.12 2.74

|̂ |̂

(or approximately hierarchical) structure that
can be exploited to reduce the cost of search.
There have been several studies of ideas for hi-
erarchical reinforcement learning (for exam-
ple, Dayan and Hinton [1993], Kaelbling
[1993], and Singh [1992]).

The third key problem is to develop intelli-
gent exploration methods. Weak exploration
methods that rely on random or biased ran-
dom choice of actions cannot be expected to
scale well to large, complex spaces. A property
of the successful applications shown previous-
ly (particularly, backgammon and job-shop
scheduling) is that even random search reach-
es a goal state and receives a reward. In do-
mains where success is contingent on a long
sequence of successful choices, random search
has a low probability of receiving any reward.
More intelligent search methods, such as
means-ends analysis, need to be integrated in-
to reinforcement learning systems as they have
been integrated into other learning architec-
tures such as SOAR (Laird, Newell, and Rosen-
bloom 1987) and PRODIGY (Minton et al. 1989).

A fourth problem is that optimizing cumu-
lative discounted reward is not always appro-
priate. In problems where the system needs to
operate continuously, a better goal is to maxi-
mize the average reward per unit time. Howev-
er, algorithms for this criterion are more com-
plex and not as well behaved. Several new
methods have been put forward recently (Ma-
hadevan 1996; Ok and Tadepalli 1996;
Schwartz 1993).

The fifth, and perhaps most difficult, prob-
lem is that existing reinforcement learning al-
gorithms assume that the entire state of the
environment is visible at each time step. This
assumption is not true in many applications,
such as robot navigation or factory control,
where the available sensors provide only par-
tial information about the environment. A few
algorithms for the solution of hidden-state re-
inforcement learning problems have been de-
veloped (Littman, Cassandra, and Kaelbling
1995; McCallum 1995; Parr and Russell 1995;
Cassandra, Kaelbling, and Littman 1994). Ex-
act solution appears to be difficult. The chal-
lenge is to find approximate methods that
scale well to large hidden-state applications.

Despite these substantial open problems, re-
inforcement learning methods are already be-
ing applied to a wide range of industrial prob-
lems where traditional dynamic programming
methods are infeasible. Researchers in the area
are optimistic that reinforcement learning al-
gorithms can solve many problems that have
resisted solution by machine-learning meth-
ods in the past. Indeed, the general problem of

choosing actions to optimize expected utility
is exactly the problem faced by general intelli-
gent agents. Reinforcement learning provides
one approach to attacking these problems.

Learning Stochastic Models
The final topic that I discuss is the area of learn-
ing stochastic models. Traditionally, re-
searchers in machine learning have sought
general-purpose learning algorithms—such as
the decision tree, rule, neural network, and
nearest-neighbor algorithms—that could effi-
ciently search a large and flexible space of clas-
sifiers for a good fit to training data. Although
these algorithms are general, they have a major
drawback. In a practical problem where there is
extensive prior knowledge, it can be difficult to
incorporate this prior knowledge into these
general algorithms. A secondary problem is
that the classifiers constructed by these general
learning algorithms are often difficult to inter-
pret—their internal structure might not have
any correspondence to the real-world process
that is generating the training data.

Over the past five years or so, there has been
tremendous interest in a more knowledge-
based approach based on stochastic modeling.
A stochastic model describes the real-world
process by which the observed data are gener-
ated. Sometimes, the terms generative stochastic
model and causal model are used to emphasize
this perspective. The stochastic model is typi-
cally represented as a probabilistic network—a
graph structure that captures the probabilistic
dependencies (and independencies) among a
set of random variables. Each node in the
graph has an associated probability distribu-
tion, and from these individual distributions,
the joint distribution of the observed data can
be computed. To solve a learning problem, the
programmer designs the structure of the graph
and chooses the forms of the probability distri-
butions, yielding a stochastic model with
many free parameters (that is, the parameters
of the node-probability distributions). Given a
training sample, learning algorithms can be
applied to determine the values of the free pa-
rameters, thereby fitting the model to the data.
Once a stochastic model has been learned,
probabilistic inference can be carried out to
support tasks such as classification, diagnosis,
and prediction.

More details on probabilistic networks are
given in two recent textbooks: Jensen (1996)
and Castillo, Gutierrez, and Hadi (1997).

Probabilistic Networks
Figure 19 is an example of a probabilistic net-

Articles

WINTER 1997 121

P(A, B|C) = P(A|C) · P(B|C).

In the graph, Age affects Insulin only through
the Diabetes node; so, Age and Insulin are con-
ditionally independent given Diabetes. More
generally, given the values of its parents, a
node is independent of all other nodes in the
graph except its descendants. Formally,

P(A, B|Parents(A))
= P(B|Parents(A)) · P(A|Parents(A)),

unless B is a descendent of A.
In addition to specifying the structure of the

network, we need to specify how each proba-
bility distribution is represented. One standard
approach is to discretize the variables into a
small number of values and represent each
probability distribution as a table. For exam-
ple, suppose we discretized Age into the values
{0–25, 26–50, 51–75, > 75}, Preg into the values
{0, 1, > 1}, and Mass into the values {0–50 kilo-
grams (kg), 51–100 kg, > 100 kg}. Then, the
probability distributions for these three nodes
could be represented by the probability tables
shown in table 3. The learning task is to fill in
the probability values in these tables. The table
for P(A) requires three independent parameters
(because the four values must sum to 1). The
table for P(N) requires 2 parameters, and the
table for P(M|A, N) requires 24 parameters (be-
cause each row must sum to 1). Similar tables
would be required for the other three nodes in
the network.

Given a set of training examples, this learn-
ing problem is easy to solve. Each probability
can be computed directly from the training da-
ta. For example, the cell P(N = 1) can be com-
puted as the proportion of patients in the sam-
ple that had exactly 1 pregnancy. The
parameter P(M = 51–100|A = 26–50, N = 1) is
the fraction of training examples with Age =
26–50 and Preg = 1 that have a Mass = 51–100
kg. Technically, these are the maximum-likeli-
hood estimates of each of the probabilities. A
difficulty that can arise is that some of the cells
in the tables can have few examples; so, the re-
sulting probability estimates are uncertain.
One solution is to smooth probabilities for ad-
jacent cells in the table. For example, we might
require that P(M = 51–100|A = 26–50, N = 1)
have a value similar to P(M = 51–100|A =
26–50, N = >1). Of course, we could also take
an ensemble approach and generate an ensem-
ble of fitted stochastic models, as described in
the section Ensembles of Classifiers.

The process of learning a stochastic model
consists of three steps: (1) choosing the graph
structure, (2) specifying the form of the proba-
bility distribution at each node in the graph,
and (3) fitting the parameters of these proba-
bility distributions to the training data. In

work that might be used to diagnose diabetes.
There are six variables (with their abbrevia-
tions): (1) Age: age of patient (A); (2) Preg:
number of pregnancies (N); (3) Mass: body
mass (M); (4) Insulin: Blood-insulin level (after
a glucose-tolerance test) (I); (5) Glucose: blood-
glucose level (after a glucose-tolerance test)
(G); and (6) Diabetes: true if the patient has di-
abetes (D).

In a medical diagnosis setting, the first five
variables would be observed and then the com-
puter would estimate the probability that the
patient has diabetes (that is, estimate the prob-
ability that the diabetes variable is true).

This network corresponds to the following
decomposition of the joint-probability distrib-
ution among the six variables:

P(A, N, M, I, G, D) = P(A) · P(N) · P(M|A, N)
· P(D|M, A, N) · P(I|D) · P(G|I, D).

Each node in the network corresponds to a
probability distribution of the form
P(Node|Parents), where the Parents of Node are
the nodes with arcs pointing to Node. In other
words, if we believe the network is a correct
representation of the relationships among the
variables, then it should be possible to factor
the joint probability distribution into the
product of these smaller distributions.

The structure of the network—particularly
the arcs that are absent—can be viewed as
specifying conditional independencies. Two
variables A and B are conditionally indepen-
dent given C if

Figure 19. A Probabilistic Network for Diabetes Diagnosis.

Articles

122 AI MAGAZINE

Diabetes

Insulin

Glucose

Age Preg

Mass

most current applications, steps 1 and 2 are
performed by a user, and step 3 is performed
by a learning algorithm. However, later in this
section, I briefly discuss methods for automat-
ing step 1—learning the graph structure.

Once we learn the model, how can we apply
it to predict whether new patients have dia-
betes? For a new case, we observe the values of
all the variables in the model except for the Di-
abetes node. Our goal is to compute the prob-
ability of the node; that is, we seek the distrib-
ution P(D|A, N, M, I, G). We could precompute
this distribution offline before observing any
of the data, but the resulting conditional prob-
ability table would be immense. A better ap-
proach is to wait until the values of the vari-
ables have been observed and then compute
the single corresponding row of the class prob-
ability table.

This inference problem has been studied in-
tensively, and a general and elegant algo-
rithm—the junction-tree algorithm—has been
developed (Jensen, Lauritzen, and Olesen 1990).
In addition, efficient online algorithms have
been discovered (D’Ambrosio 1993). In the

worst case, these algorithms require exponential
time, but if the probabilistic network is sparsely
connected, the running time is reasonable.

The Naive Bayes Classifier
A simple approach to stochastic modeling for
classification problems is the so-called naive
Bayes classifier (Duda and Hart 1973). In this
approach, the training examples are assumed
to be produced by the probabilistic network
shown in figure 20, where the class variable is
y, and the features are x1, …, xn. According to
this model, the environment generates an ex-
ample by first choosing (stochastically) which
class to generate. Then, once the class is cho-
sen, the features describing the example are
generated independently according to their in-
dividual distributions P(xj|y).

In most applications, the values of the fea-
tures are discretized so that each feature takes
on only a small number of discrete values. The
probability distributions are represented as ta-
bles as in the diabetes example, and the net-
work can be learned directly from the training
data by counting the fraction of examples in

Age P(A)
0–25
26–50
51–75
> 75

Articles

WINTER 1997 123

Table 3. Probability Tables for the Age, Preg, and Mass Nodes from Figure 19.
A learning algorithm must fill in the actual probability values based on the observed training data.

Preg P(N)
0
1
>1

P(M|A, N)
Age Preg 0–50 51–100 >100
0–25 0
0–25 1
0–25 > 1
26–50 0
26–50 1
26–50 >1
51–75 0
51–75 1
51–75 >1
>75 0
>75 1
>75 > 1

petitive with, or superior to, C4.5. Domingos
and Pazzani showed that the algorithm is ro-
bust to violations of the assumption that the
features are generated independently.

Naive Unsupervised Learning
An important application of stochastic models
is to problems of unsupervised learning. In un-
supervised learning, we are given a collection
of examples {x1, …, xm}, and our goal is to con-
struct some model of how these examples are
generated. For example, we might believe that
these examples belong to some collection of
classes, and we want to determine the proper-
ties of these classes. This is sometimes called
clustering the data into classes, and many algo-
rithms have been developed that apply a mea-
sure of the distance between two examples to
group together nearby examples.

A stochastic modeling approach for unsu-
pervised learning works essentially the same
way as for supervised learning. We begin by
defining the structure of the model as a proba-
bilistic network. One commonly used model is
the same naive network used by the naive
Bayes classifier shown in figure 20.

Although we can use the same network
structure, the problem of learning the parame-
ters of the network is much more difficult be-
cause our data do not contain the values of the
class variable y. This is a simple case of the
problem of fitting stochastic models that con-
tain hidden variables, which are variables whose
values are not observed in the training data.

Many different algorithms have been devel-
oped for fitting networks containing hidden
variables. As with the naive Bayes classification
algorithm, the basic goal (at least for this arti-
cle) is to compute the maximum-likelihood es-
timates of the parameters of the network,
which I shall refer to as the vector of weights
W. In other words, we want to find the value
of W that maximizes P(S|W), where S is the ob-
served training sample. This is typically formu-
lated as the equivalent problem of maximizing
the log likelihood: log P(S|W). Under the as-
sumption that each training example in S is
generated independently, this is equivalent to
maximizing ∑i log P(xi|W), where xi is the i-th
training example.

I briefly sketch three algorithms: (1) gradient
descent, (2) expectation maximization, and (3)
Gibbs sampling.

Gradient Descent for Bayes Networks
Russell et al. (1995) describe a method for com-
puting the gradient of the log likelihood:
∇ wlogP(xi|W). Let us focus on a particular node
in the network representing variable V. Let U
be the parents of V, and let w = P(V = v|U = u)

each class that take on each feature value.
Because of the simple form of the network,

it is easy to derive a classification rule through
the application of Bayes’ rule. Suppose there
are only two classes, 1 and 2. Then, our deci-
sion rule is to classify a new example into class
1 if P(y = 1|x) > P(y = 2|x) or, equivalently, if P(y
= 1|x)/P(y = 2|x) > 1. By Bayes’s rule, we can
write

P(y = 1|x) = P(x|y = 1) · P(y = 1)/P(x)
P(y = 2|x) = P(x|y = 2) · P(y = 2)/P(x).

Dividing the first equation by the second al-
lows us to cancel the normalizing denomina-
tor P(x) and obtain

The quantity P(x|y = 1) is just the product of
the individual probabilities P(xj|y = 1); so, we
have

This gives the decision rule that we should
classify an example into class 1 if and only if

Despite the fact that the naive Bayes model
barely deserves the name model in many appli-
cations, it performs surprisingly well. Figure 21
compares the performance of C4.5 to the naive
Bayes classifier on 28 benchmark tasks
(Domingos and Pazzani 1996). The results
show that except for a few domains where
naive Bayes performs badly, it is typically com-

P x y
P x y

P x y
P x y

P x y
P x y

P y
P y

n

n

(|)
(|)

(|)
(|)

(|)
(|)

()
()

.

1

1

2

2

1
2

1
2

1
2

1
2

1

=
=

⋅ =
=

…

=
=

⋅ =
=

>

P y
P y

P x y P x y
P x y P x y

P x y P y
P x y P y

n

n

(|)
(|)

(|) (|)
(|) (|)

(|) ()
(|) ()

.

=
=

=

= ⋅ =
= ⋅ =

= ⋅ =
= ⋅ =

1
2

1 1
2 2

1 1
2 2

1 2

1 2

x
x

L

L

P y
P y

P y P y
P y P y

(|)
(|)

(|) ()
(|) ()

.
=
=

= = ⋅ =
= ⋅ =

1
2

1 1
2 2

x
x

x
x

Articles

124 AI MAGAZINE

y

x1 x2 x3 xn

Figure 20. Probabilistic Network for the Naive Bayes Classifier.

be the entry in the conditional probability
table for V when V = v and U = u. Then, Russell
et al. show that

The conditional probability in the numerator
can be computed by any algorithm for infer-
ence in probabilistic networks (including the
junction-tree algorithm mentioned earlier).

With this formula, the gradient of the para-
meters of a network can be computed with re-
spect to a training sample S. We can then apply
standard gradient-descent algorithms, such as
fixed step-size methods or the conjugate gradi-
ent algorithm, to search for the maximum-
likelihood set of weights. One subtlety is that
we must ensure that the weights lie between 0
and 1 and sum to 1 appropriately. It suffices to
constrain and renormalize them after each
step of gradient descent. Russell et al. have test-
ed this algorithm on a wide variety of proba-
bilistic network structures.

The Expectation Maximization Algo-
rithm The second algorithm is the expecta-
tion-maximization (EM) algorithm (Dempster,
Laird, and Rubin 1976). EM can be applied to
probabilistic networks if the node-probability
distributions belong to the exponential family
of distributions (which includes the binomial,
multinomial, exponential, poisson, and nor-
mal distributions). In particular, conditional
probability tables have multinomial distribu-
tions; so, the EM algorithm can be applied to
the case described in this article.

The EM algorithm is an iterative algorithm
that starts with an initial value for W and incre-
mentally modifies W to increase the likelihood
of the observed data. One way to understand
EM is to imagine that each training example is
augmented to include parameters describing
values of the hidden variables. For concrete-
ness, consider the simple case of figure 20 with
the class variable y hidden. Assume y takes on
two values, 1 and 2. Then, we would augment
each training example with P(y = 1|x) and P(y =
2|x). (Actually, the P(y = 2|x) is redundant in
this case because P(y = 2|x) = 1 – P(y = 1|x)).
More generally, each observed example xi will
be augmented with the expected values of the
sufficient statistics for describing the probabili-
ty distribution of the hidden variables.

The EM algorithm alternates between two
steps until W converges:

First is the E-step: Given the current value of
W, compute the augmentations P(yi = 1|xi) and
P(yi = 2|xi) for each example xi.

Second is the M-step: Given the augmented
data set, compute the maximum-likelihood es-
timates for W under the assumption that the

∂
∂

= = =log (|) (, | ,)
.

P W
w

P V v U u W
w

i ix x

probability distribution of the values of the
hidden variables is correctly specified in each
augmented training example.

In the case of figure 20, the E-step applies
Bayes’s theorem:

P(yi = 1|xi) = P(xi|yi = 1) · P(yi = 1)/P(xi).

All the quantities on the right-hand side can
be computed given the current value for W.
The quantity P(xi|yi = 1) is the product of P(xij|yi

= 1) for each feature j, and P(yi = 1) is the cur-
rent estimated probability of generating an ex-
ample in class 1, P(y = 1).

The M-step for naive Bayes classification
must estimate each of the weights from the
augmented training examples. To estimate P(y
= 1), we sum the augmented value P(yi = 1) over
all i and divide by the sample size m:

To estimate the conditional probability that
feature xj is 1 for examples in class 1, we take
each training example i that has xij = 1, sum up
the augmented values P(yi = 1), and divide by
the total P(y = 1):

In effect, we treat each augmented training ex-
ample as if it were a member of class 1 with
probability P(yi = 1) and as if it were a member
of class 2 with probability 1 – P(yi = 1).

A well-known application of the EM algo-
rithm in unsupervised clustering is the AUTO-
CLASS program (Cheeseman et al. 1988). In ad-
dition to discrete variables (of the kind I have
been discussing), AUTOCLASS can handle contin-

P x y
P y

P yj i x iij
(|)

()
(){ | }= = =

=
∑ ==1 1

1
1

11

P y
m

P yi i() ().= = Σ =1
1

1

Articles

WINTER 1997 125

20

30

40

50

60

70

80

90

100

20 30 40 50 60 70 80 90 100

C
4.

5
A

cc
u

ra
cy

Naive Bayes Accuracy

Figure 21. Comparison of C4.5 and the Naive
Bayesian Classifier on 28 Data Sets.

the network and setting l to zero. We then re-
peat the following loop L times.

First, compute new values for y1, …, yn: From
the probabilistic network in figure 20, we can
compute P(yi|W, xi) because we know (current
guesses for) W and (observed values for) xi. To
sample from this distribution, we flip a biased
coin with probability of heads P(yi|W, xi).

Second, compute new values for W: Let w0
be the parameter that represents the probabil-
ity of generating an example from class 0. Sup-
pose the prior distribution, P(w0), is the uni-
form distribution for all values 0 ≤ w0 ≤ 1. Let
m0 be the number of training examples (cur-
rently) assigned to class 0. Then, the posterior
probability P(w0|y1, …, ym) has a special form
known as a beta distribution with parameters
m0 + 1 and m – m0 + 1. Algorithms are available
for drawing samples from this distribution.

Similarly, let wjv0 be the parameter that rep-
resents the probability that the j-th feature will
have the value v when drawn from class 0: P(xj

= v|yj = 0). Again assuming uniform priors for
P(wjv0), this variable also has a beta distribution
with parameters cjv0 + 1 and m0 – cjv0 + 1, where
cjv0 is the number of training examples in class
0 having xj = v. As with w0, we can sample from
this distribution.

We can do the same thing for the parame-
ters concerning class 1: wjv1.

Third, record the value of the parameter vec-
tor. Let l := l + 1 and set Wl := W. To allow the
Gibbs sampler to converge to a stationary dis-
tribution, we should perform some number of
iterations before recording L values of the pa-
rameter vector. This procedure gives us an en-
semble of L probabilistic networks that can be
applied to classify new data points.

There is a close resemblance between Gibbs
sampling and the EM algorithm. In both algo-
rithms, the training examples are augmented
with information about the hidden variables. In
EM, this information describes the probability
distribution of the hidden variables, whereas in
Gibbs sampling, this information consists of
random values drawn according to the probabil-
ity distribution. In EM, the parameters are recom-
puted to be their maximum-likelihood estimates
based on the current values of the hidden vari-
ables, whereas in Gibbs sampling, new parame-
ter values are sampled from the posterior distri-
bution given the current values of the hidden
variables. Hence, EM can be viewed as a maxi-
mum-likelihood approximation (or MAP ap-
proximation) to Gibbs sampling.

One potential problem that can arise in
Gibbs sampling is caused by symmetries in the
stochastic model. In the case we are consider-
ing, for example, suppose there are two true

uous variables. Instead of computing the max-
imum-likelihood estimates of the parameters,
it adopts a prior probability distribution over
the parameter values and computes the maxi-
mum a posteriori probability (MAP) values.
This is easily accomplished by a minor modifi-
cation of EM. One of the most interesting appli-
cations of AUTOCLASS was to the problem of an-
alyzing the infrared spectra of stars. AUTOCLASS

discovered a new class of star, and this discov-
ery was subsequently accepted by astronomers
(Cheeseman et al. 1988).

Gibbs Sampling The final algorithm that I
discuss is a Monte Carlo technique called Gibbs
sampling (Geman and Geman 1984). Gibbs
sampling is a method for generating random
samples from a joint-probability distribution
P(A1, …, An) when sampling directly from the
joint distribution is difficult. Suppose we know
the conditional distribution of each variable Ai

in terms of all the others: P(A1|A2, …, An),
P(A2|A1, A3, …, An), …, P(An|A1, …, An-1). The
Gibbs sampler works as follows: We start with a
set of arbitrary values, a1, …, an, for the random
variables. For each value of i, we then sample a
new value ai for random variable Ai according
to the distribution P(Ai|A1 = a1, …, Ai–1 = ai–1, Ai+1
= ai+1, …, An = an). If we repeat this long enough,
then under certain mild conditions the empir-
ical distribution of these generated points will
converge to the joint distribution.

How is this useful for learning in probabilis-
tic networks? Suppose we want to take a full
Bayesian approach to learning the unknown
parameters in the network. In such cases, we
want to compute the posterior probability of
the unknown parameters given the data. Let
W denote the vector of unknown parameters.
In a full Bayesian approach, we treat W as a
random variable with a prior probability distri-
bution P(W). Given the training examples {x1,
…, xm}, we want to compute P(W|x1, …, xm),
which is difficult because of the hidden classes
y1, …, ym. However, using the Gibbs sampler,
we can generate samples from the distribution

P(W, y1, …, ym|x1, …, xm).

Then, by simply ignoring the y values, we ob-
tain samples for W: W1, …, WL.

These W values constitute an ensemble of
learned values for the network parameters. To
classify a new data point x, we can apply each
of the values of Wl to predict the class of x and
have them vote. The voting is with equal
weight. If some W values have higher posterior
probability than others, then they will appear
more often in our sample.

To apply the Gibbs sampler to our unsuper-
vised learning problem, we begin by choosing
random initial values for the parameters W of

Articles

126 AI MAGAZINE

underlying hidden classes, class A and class B.
We want the model to generate examples from
class A when y = 1 and from class B when y =
2. However, there is nothing to force the mod-
el to do this. It could just as easily use y = 1 to
represent examples of class B and y = 2 to rep-
resent examples of class A. If permitted to run
long enough, in fact, the Gibbs sampler should
explore both possibilities. If our sample of
weight vectors Wl includes weight vectors cor-
responding to both of these alternatives, then
when we combine these weight vectors, we
will get bad results. In practice, this problem
often does not arise, but in general, steps must
be taken to remove symmetries from the mod-
el (see Neal [1993]).

Gibbs sampling is a general method; it can
often be applied in situations where the EM al-
gorithm cannot. The generality of Gibbs sam-
pling has made it possible to construct a gen-
eral-purpose programming environment,
called BUGS, for learning stochastic models
(Gilks, Thomas, and Spiegelhalter 1993). In
this environment, the user specifies the graph
structure of the stochastic model, the form of
the probability distribution at each node, and
prior distributions for each parameter. The sys-
tem then develops a Gibbs sampling algorithm
for fitting this model to the training data. BUGS

can be downloaded from www.mrc-bsu.cam.
ac.uk/bugs/.

More Sophisticated Stochastic Models
This section presents three examples of more
sophisticated stochastic models that have been
developed: (1) the hierarchical mixture of ex-
perts (HME) model, (2) the hidden Markov
model (HMM), and (3) the dynamic probabilis-
tic network (DPN). Like the naive model from
figure 20, these models can be applied to a
wide number of problems without performing
the kind of detailed modeling of causal con-
nections that we performed in the diabetes ex-
ample from figure 19.

The Hierarchical Mixture of Experts
The HME model (Jordan and Jacobs 1994) is in-
tended for supervised learning in situations
where one believes the training data are being
generated by a mixture of separate experts. For
example, in a speech-recognition system, we
might face the task of distinguishing the spo-
ken words bee, tree, gate, and mate. This task
naturally decomposes into two hard subprob-
lems: (1) distinguishing bee from tree and (2)
distinguishing gate from mate.

Figure 22 shows the probabilistic network
for a simple mixture-of-experts model for this
case. According to this model, a training exam-
ple (xi, yi) is generated by first generating the

data points xi, then choosing an expert ei sto-
chastically (depending on the value of xi), and
then choosing the class yi depending on the
values of xi and ei.

There are two things to note about this
model. First, the direction of causality is re-
versed from the naive Bayes network of figure
20. Second, if we assume that all the features of
each xi will always be observed, we do not
need to model the probability distribution
P(X) on the bottom node in the graph. Third,
unless we make some strong assumptions, the
probability distribution P(Y|X, E) is going to be
extremely complex because it must specify the
probability of the classes as a function of every
possible combination of features for X and ex-
pert E.

In their development of this general model,
Jordan and Jacobs assume that each probabili-
ty distribution has a simple form (see figure 23,
which shows the model as a kind of neural net-
work classifier). Each value of the random vari-
able E specifies a different expert. The input
features x are fed into each of the experts and
into a gating network. The output of each ex-
pert is a probability distribution over the pos-
sible classes. The output of the gate is a proba-
bility distribution over the experts. This overall
model has the following analytic form:

where the index e varies over the different ex-
perts. The value ge(x) is the output of the gating
network for expert e. The value pe(y|x) is the
probability distribution over the various class-
es output by expert e.

Jordan and Jacobs have investigated net-
works where the individual experts and the
gating network have simple forms. In a two-
class problem, each expert has the form

where

is the transpose of a vector of parameters, x is
the vector of input feature values, and σ is the
usual logistic sigmoid function 1/(1 + exp(·)).

The gating network was described earlier in
Ensembles of Classifiers. The gating values are
computed according to

In other words, ze is the dot product of a weight
vector ve and the input features x. The output ge

is the soft-max of the ze values. The ge values are
all positive and sum to 1. This is known as the
multinomial logit model in statistics.

The problem of learning the parameters for

g e ee
z

u
ze u= Σ/ .

z ve e
T= x

we
T

P y we e
T(|) (),x x= σ

P y g p y x
e

e e(|) () (|),x x= ∑

Articles

WINTER 1997 127

can be the same for all states: P(o|s). In this
variation, the HMM is equivalent to a stochastic
finite-state automaton (FSA). At each time
step, the FSA makes a probabilistic state transi-
tion and then generates an output letter.

Another common variation on HMMs is to
include an absorbing state or halting state as
one of the values of the state variable. If the
HMM makes a transition into this state, it termi-
nates the string being generated, permitting
HMMs to model strings of variable length.

HMMs have been applied widely in speech
recognition, where the alphabet of letters con-
sists of frames of the speech signal (Rabiner
1989). Each word in the language can be mod-
eled as an HMM. Given a new spoken word, a
speech-recognition system computes the like-
lihood that each of the word HMMs generated
this spoken word. The recognizer then predicts
the most likely word. A similar analysis can be
applied at the level of whole sentences by con-
catenating word-level HMMs. Then, the goal is
to find the sentence most likely to have gener-
ated to speech signal.

To learn an HMM, a set of training examples
is provided, where each example is a string.
The sequence of states that generated the
string is hidden. Once again, however, the EM

algorithm can be applied. In the context of
HMMs, it is known as the Baum-Welch, or for-
ward-backward, algorithm. In the E-step, the
algorithm augments each training example
with statistics describing the hypothesized
string of states that generated the example. In
the M-step, the parameters of the probability
distributions are reestimated from the aug-
mented training data.

Stolcke and Omohundro (1994) developed
algorithms for learning the structure and para-
meters of HMMs from training examples. They
applied their techniques to several problems in
speech recognition and incorporated their al-
gorithm into a speaker-independent speech-
recognition system.

The Dynamic Probabilistic Network In
the HMM, the number of values for the state
variable at each point in time can become
large. Consequently, the number of parameters
in the state-transition probability distribution
P(st|st–1) can become intractably large. One so-
lution is to represent the causal structure with-
in each state by a stochastic model. For exam-
ple, consider a mobile robot with a steerable
television camera. The images observed by the
camera will be the output alphabet of the HMM.
The hidden state will consist of the location of
the robot within a room and the direction the
camera is pointing. Suppose there are 100 pos-
sible locations and 15 possible camera direc-

a mixture-of-experts model is similar to the
problem of unsupervised learning, except that
here, the hidden variable is not the class yi of
each training example i but, rather, the expert
ei that was responsible for generating the train-
ing example. If we knew which expert generat-
ed each training example, then we could fit the
parameters directly from the training data, as
we did for the naive Bayes algorithm. Jordan
and Jacobs have applied both gradient-descent
and the EM algorithm to solve this learning
problem. For the particular choice of sigmoid
and soft-max functions for the experts and
gates, the EM algorithm has a particularly effi-
cient implementation as a sequence of weight-
ed least squares problems.

The simple one-level hierarchy of experts
shown in figure 22 can be extended to deeper
hierarchies. Figure 24 shows a three-level hier-
archy. All the fitting algorithms apply to this
more general case as well.

The Hidden Markov Model Figure 25
shows the probabilistic network of a hidden
Markov model (HMM) (Rabiner 1989). An HMM

generates examples that are strings of length n
over some alphabet A of letters. Hence, each
example x is a string of letters: o1o2…on(where
the o stands for observable). To generate a
string, the HMM begins by generating an initial
state s1 according to probability distribution
P(s1). From this state, it then generates the first
letter of the string according to the distribu-
tion P(o1|s1). It then generates the next state s2
according to P(s2|s1). Then, it generates the sec-
ond letter according to P(o2|s2), and so on.

In some applications, the transition proba-
bility distribution is the same for all pairs of
adjacent state variables: P(st|st–1). Similarly, the
output (or emission) probability distribution

Articles

128 AI MAGAZINE

Y

X

E

Figure 22.
Probabilistic Model

Describing a Mixture
of Experts.

GateExpert 1 Expert 2

X

Y

Figure 23. The Mixture-of-Experts Model Viewed
as a Specialized Neural Network.

tions. In an HMM, the hidden state will be a sin-
gle variable with 1500 possible values.

However, suppose that the robot has sepa-
rate commands to change its location and
steer its camera. At each time step, it chooses
to perform exactly one of these two actions.
Then, it makes sense to represent the hidden
state by two separate state variables: (1) robot
location and (2) camera direction. Figure 26
shows the resulting stochastic model, which is
variously called a DPN (Kanazawa, Koller, and
Russell 1995), a dynamic belief network (Dean
and Kanazawa 1989), and a factorial HMM

(Ghamramani and Jordan 1996).
Unfortunately, inference and learning with

DPNs is computationally challenging. The over-
all approach of applying the EM algorithm or
Gibbs sampling is still sound. However, the E-
step of computing the augmented training ex-
amples is itself difficult. Ghahramani and Jor-
dan (1996) and Kanazawa, Koller, and Russell
(1995) describe algorithms that can perform
approximate E-steps. A recent review of this ac-
tive research area can be found in Smyth,
Heckerman, and Jordan (1997).

Application-Specific
Stochastic Models
A major motivation for the stochastic model-
ing approach to machine learning is to com-
municate background knowledge to the learn-
ing algorithm. Although the general models
discussed here achieve this goal to some ex-
tent, it is possible to go much further in this di-
rection, and many applications of machine
learning are pursuing this approach. To give a
flavor of the kinds of model being developed,
I describe one example from the many recently
published papers.

Revow, Williams, and Hinton (1996) devel-
oped a stochastic model for handwritten digit
recognition, shown in figure 27. To generate a
digit according to this model, we first random-
ly choose one of the 10 digits, which deter-
mines the home locations of 8 points that con-
trol a uniform B spline (denoted h1, …, h8 in
the figure). The B spline specifies the shape of
the digit. The next step randomly perturbs
these control points (using a Gaussian distrib-
ution) to produce the control points that will
be used to generate the handwritten digit (de-
noted k1, …, k8 in the figure).

Next we generate a six-degree-of-freedom
affine transformation that models translation,
rotation, skewing, and so on. From the ran-
domly chosen affine transformation and the
control points, we deterministically lay out a
sequence of beads along the spline curve.
These beads act as circular Gaussian ink gener-

ators that ink the pixels in the image. A para-
meter σ specifies the standard deviation of the
Gaussian ink generators. The beads are placed
a distance 2σ apart along the spline; hence, the
number of beads varies as a function of σ. At
this point, we have made all the choices that
are independent of the image pixels.

Now, the model generates N inked pixels (in-
dicated in the diagram by the box with an N in
the lower left corner). To generate each pixel, it
first generates a Boolean variable that indicates
whether the pixel will be a noise pixel or a pixel
from the digit. If it is a noise pixel, the location
is chosen uniformly at random and inked. If it
is a digit pixel, one of the l beads is chosen at
random (specified by the variable bead index),
and a pixel is inked according to a symmetric
Gaussian probability distribution.

The parameters of the model include the
probability of noise pixels, the standard devia-

Articles

WINTER 1997 129

Y

E3

E2

E1

X

Figure 24. The Hierarchical Mixture-of-Experts Model.

S1 S2 S3 Sn

O1 O2 O3 On

Figure 25. The Probabilistic Network for a Hidden Markov Model.

O1 O2 O3 On

L1 L2 L3 Ln

D1 D2 D3 Dn

digit
h1 h8

affine
transform

knots
k1 k8

beads
b1 bl

bead
index

location
noise

digit vs.

pixel

bead

N

the probability that a given digit model gener-
ated the given image.

In practice, Revow et al. take a maximimum-
likelihood approach. They compute the values
for the control points (k1, …, k8), σ, and the
noise-digit choices that maximize the likeli-
hood of generating the observed image. The EM

algorithm is applied to compute this. Figure 28
shows the fitting of the model for a 3 and for a
5 to a typical image. Notice that during the fit-
ting, σ is initialized to a large value so that the
ink generators are likely to capture inked pix-
els. When EM begins to converge, σ is decreased
(according to a given schedule), and new beads
are positioned along the spline using the cur-
rent value of σ. Then, fitting is resumed. This
task is performed approximately six times for
each image.

Now let’s consider learning. The goal of
learning is to learn for each digit the home lo-
cations of the control points and the variance
for perturbing these control points. In addi-
tion, the parameters controlling the affine
transformation must be learned, but these pa-
rameters are assumed to be the same for all
classes. To solve this learning problem, Revow
et al. again apply EM. In the E-step, the training
examples are augmented with the maximum-
likelihood locations of the control points and
the value of σ, which are computed using a
nested EM, as described earlier. In the M-step,
the average home location of each control
point and the average σ are computed. The
model for each digit is trained by fitting only
to training examples of that digit. The running
time is dominated by the cost of the inner
(classification) EM algorithm.

Revow et al. report results that are competi-
tive with the best-known methods on the task
of recognizing digits from U.S. mail zip codes.
To achieve this performance, they use some
postprocessing steps that analyze how well
each digit model fits the image. They also con-
sidered learning mixtures of digit models for
cases where there are significantly different
ways of writing a digit (for example, the digit
7 with and without a central horizontal bar).

The advantage of the stochastic modeling
approach is that learning is fast both computa-
tionally, because EM is quick, and statistically,
because there are only 22 parameters in each
digit model (2 coordinates for each control
point and 6 affine transformation parameters).
Another advantage is that the digit images do
not need to be preprocessed (for example, to
remove slants and scale to a standard size).
This preprocessing can be a significant source
of errors as well as require extra implementa-
tion effort. A related advantage is that the sto-

tion σ of the Gaussian ink generators, the vari-
ance of the Gaussian used to perturb the con-
trol points, the parameters controlling the
affine transformation, and the home locations
of the eight control points.

We want to perform two tasks with this
model: (1) classification and (2) learning. Let
us consider classification first. Given an image
and 10 learned spline models, our goal is to
find the spline model that is most likely to
have generated the image. We do this by com-
puting the probability that the spline model
for each digit generated the image. This com-
putation is difficult because we are given only
the locations of the inked pixels and the (hy-
pothesized) class of the digit. In principle, we
should consider all possible locations for the
control points, all possible values for σ, and all
possible choices for whether each inked pixel
is a noise pixel or a digit pixel. Each such com-
bination could have generated the observed
image (with a certain probability). We should
integrate over these parameters to compute

Articles

130 AI MAGAZINE

O1 O2 O3 On

L1 L2 L3 Ln

D1 D2 D3 Dn

Figure 26. A Simple Dynamic Probabilistic Network with Two Independent
State Variables: Robot Location (Lt) and Camera Direction (St).

digit
h1 h8

affine
transform

knots
k1 k8

beads
b1 bl

bead
index

location
noise

digit vs.

pixel

bead

N

Figure 27. Probabilistic Network for
Generating a Digit and Choosing N Pixels to Ink.

chastic models can fit a single digit in the con-
text of several other digits—so that precise seg-
mentation is not required prior to classifica-
tion. The primary disadvantage is that
classification is slower because of the need to
perform a search to fit each digit model.

Learning the Structure
of Stochastic Models
All the methods I have discussed to this point
learn the parameters of a stochastic model
whose structure is given. An important re-
search question is whether this structure can
be learned from data as well. Recent research
has made major progress in developing algo-
rithms for this problem.

One of the first algorithms was developed by
Chow and Liu (1968) for learning a network
structure in the form of a directed tree. This al-
gorithm first constructs a complete undirected
graph where the nodes are the variables, and
the edges are labeled with the mutual informa-
tion between the variables. The algorithm then
finds the maximum weighted spanning tree of
this graph, chooses a root node arbitrarily, and
orders the arcs to point away from the root. A
nice feature of this algorithm is that it is quite
fast—it runs in polynomial time.

Cooper and Herskovits (1992) developed an
algorithm, called K2, for learning the structure
of a stochastic model where all variables are
observed in the training data. They adopt a
maximum a posteriori (MAP) approach within
a Bayesian framework. The key contribution of
their paper was to derive a formula for the pos-
terior probability of a network. This formula
can be updated incrementally as changes are
made to the network.

Using their formula, they implemented a
simple greedy search algorithm for finding (ap-
proximately) the MAP network structure. Their
algorithm requires the user to provide an or-
dering of the variables, and it will consider
adding arcs only from variables earlier in the
ordering to variables later in the ordering. This
approach significantly constrains the search
and also ensures that the learned network will
remain acyclic. K2 begins with a network hav-
ing no arcs—all variables are independent of
one another. K2 evaluates the posterior proba-
bility of adding each possible single edge and
makes the highest-ranking addition. This
greedy algorithm is continued until no single
change improves the posterior probability.

Heckerman, Geiger, and Chickering (1995)
describe a modification to the K2 method for
computing posterior probabilities and a local
search algorithm that uses this improvement.
Their method requires a prior probability dis-

tribution in the form of a prior network and
two parameters: (1) an equivalent sample size
(which controls how much new data are re-
quired to override the prior) and (2) a penalty
for each arc that is different from the prior net-
work. Their local search algorithm considers
all one-step changes to the network (arc addi-
tion, deletion, and reversal) and retains the
change that most increases the posterior prob-
ability of the network. They obtain results
comparable to K2. Interesting, they found that
the most important role for the prior network
was to provide a good starting point for local
search (rather than to bias the objective func-
tion for guiding the search).

Friedman and Goldszmidt (1996) developed
a network learning algorithm, called tree-aug-
mented naive Bayes (TAN), specifically for su-
pervised learning. The TAN algorithm starts
with a naive Bayes network of the kind shown

Articles

WINTER 1997 131

Figure 28. Some Stages of Fitting Models to an Image of a 3
(from Revow et al. [1996]. Reproduced with permission.).

The image is displayed in the top row. The next row shows the model for a 3
being fitted. The bottom row attempts to fit the model of a 5. The light circles in-
dicate the value of σ. In the bottom two rows, the image has been artificially
thinned so that the circles are visible.

Spirtes, Glymour, and Scheines (1993) and the
references therein.

Summary: Stochastic Models
This completes my review of methods for
learning with stochastic models. There are sev-
eral good survey articles of this topic (Buntine
1996, 1994; Heckerman 1996).

The area of stochastic modeling is active
right now. Journals and conferences that were
once devoted exclusively to neural network
applications are now presenting many papers
on stochastic modeling. The research commu-
nity is still gathering experience and develop-
ing improved algorithms for fitting and rea-
soning with stochastic models. Many of the
stochastic models we would like to work with
are intractable. The challenge is to find gener-
al-purpose, tractable approximation algo-
rithms for reasoning with these elegant and
expressive stochastic models.

Concluding Remarks
Any survey must choose particular areas and
omit others. Let me briefly mention some oth-
er active areas. A central topic in machine
learning is the control of overfitting. There
have been many developments in this area as
researchers explored various penalty functions
and resampling techniques (including cross-
validation) for preventing overfitting. An un-
derstanding of the overfitting process has been
obtained through the statistical concepts of
bias and variance, and several authors have de-
veloped bias-variance decompositions for clas-
sification problems.

Another active topic has been the study of
algorithms for learning relations expressed as
Horn-clause programs. This area is also known
as inductive logic programming, and many al-
gorithms and theoretical results have been de-
veloped in this area.

Finally, many papers have addressed practi-
cal problems that arise in applications such as
visualization of learned knowledge, methods
for extracting understandable rules from neur-
al networks, algorithms for identifying noise
and outliers in data, and algorithms for learn-
ing easy-to-understand classifiers.

There have been many exciting develop-
ments in the past five years, and the relevant
literature in machine learning has been grow-
ing rapidly. As more areas within AI and com-
puter science apply machine-learning methods
to attack their problems, I expect that the flow
of interesting problems and practical solutions
will continue. It is an exciting time to be work-
ing in machine learning.

in figure 20 and considers adding arcs to im-
prove the posterior probability of the network.
They apply a modification of the Chow and
Liu algorithm to learn a tree structure of arcs
connecting the xj variables to one another. Fig-
ure 29 shows a network learned by TAM for a di-
abetes diagnosis problem. Compared to figure
19, the directions of the arcs are wrong.
Nonetheless, the network gives accurate classi-
fications. Figure 30 compares the performance
of TAN to C4.5 on 22 benchmark problems. The
plot shows that TAN outperforms C4.5 on most
of the domains.

There are many other important papers on
the topic of structure learning for probabilistic
networks. Four important references are (1)
Verma and Pearl (1990), (2) Spirtes and Meek
(1995), (3) Spiegelhalter et al. (1993), and (4)

Articles

132 AI MAGAZINE

Preg Age Insulin DPF Mass Glucose

Diabetes

Figure 29. Probabilistic Network Constructed by the TAN

Algorithm for a Diabetes Diagnosis Task.

65

70

75

80

85

90

95

100

65 70 75 80 85 90 95 100

A
cc

u
ra

cy
 o

f
T

A
N

Accuracy of C4.5

Figure 30. Comparison of TAN and C4.5 on 22 Benchmark Tasks.
Points above the diagonal line correspond to cases where

TAN gave more accurate results than C4.5.

References
Abu-Mostafa, Y. 1990. Learning from Hints in Neural
Networks. Journal of Complexity 6:192–198.

Ali, K. M., and Pazzani, M. J. 1996. Error Reduction
through Learning Multiple Descriptions. Machine
Learning 24(3): 173–202.

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995.
Learning to Act Using Real-Time Dynamic Program-
ming. Artificial Intelligence 72:81–138.

Barto, A. G., and Sutton, R. 1997. Introduction to Re-
inforcement Learning. Cambridge, Mass.: MIT Press.

Bellman, R. E. 1957. Dynamic Programming. Prince-
ton, N.J.: Princeton University Press.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dy-
namic Programming. Belmont, Mass.: Athena Scientif-
ic.

Blum, A., and Rivest, R. L. 1988. Training a 3-Node
Neural Network Is NP-Complete (Extended Ab-
stract). In Proceedings of the 1988 Workshop on Com-
putational Learning Theory, 9–18. San Francisco,
Calif.: Morgan Kaufmann.

Blum, A. 1997. Empirical Support for WINNOW and
Weighted-Majority Algorithms: Results on a Calen-
dar Scheduling Domain. Machine Learning 26(1):
5–24.

Breiman, L. 1996a. Bagging Predictors. Machine
Learning 24(2): 123–140.

Breiman, L. 1996b. Stacked Regressions. Machine
Learning 24:49–64.

Buntine, W. 1996. A Guide to the Literature on
Learning Probabilistic Networks from Data. IEEE
Transactions on Knowledge and Data Engineering
8:195–210.

Buntine, W. 1994. Operations for Learning with
Graphical Models. Journal of Artificial Intelligence Re-
search 2:159–225.

Buntine, W. L. 1990. A Theory of Learning Classifi-
cation Rules. Ph.D. thesis, School of Computing Sci-
ence, University of Technology.

Caruana, R. 1996. Algorithms and Applications for
Multitask Learning. In Proceedings of the Thirteenth
International Conference on Machine Learning, ed. L.
Saitta, 87–95. San Francisco, Calif.: Morgan Kauf-
mann.

Cassandra, A. R.; Kaelbling, L. P.; and Littman, M. L.
1994. Acting Optimally in Partially Observable Sto-
chastic Domains. In Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence,
1023–1028. Menlo Park, Calif.: American Associa-
tion for Artificial Intelligence.

Castillo, E.; Gutierrez, J. M.; and Hadi, A. 1997. Ex-
pert Systems and Probabilistic Network Models. New
York: Springer-Verlag.

Catlett, J. 1991. On Changing Continuous Attributes
into Ordered Discrete Attributes. In Proceedings of the
European Working Session on Learning, ed. Y. Ko-
dratoff, 164–178. Berlin: Springer-Verlag.

Chan, P. K., and Stolfo, S. J. 1995. Learning Arbiter
and Combiner Trees from Partitioned Data for Scal-
ing Machine Learning. In Proceedings of the First Inter-
national Conference on Knowledge Discovery and Data
Mining, 39–44. Menlo Park, Calif.: AAAI Press.

Cheeseman, P.; Self, M.; Kelly, J.; Taylor, W.; Free-
man, D.; and Stutz, J. 1988. Bayesian Classification.
In Proceedings of the Seventh National Conference
on Artificial Intelligence, 607–611. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Cherkauer, K. J. 1996. Human Expert-Level Perfor-
mance on a Scientific Image Analysis Task by a Sys-
tem Using Combined Artificial Neural Networks. In
Working Notes of the AAAI Workshop on Integrat-
ing Multiple Learned Models, ed. P. Chan, 15–21.
Available at www.cs.fit.edu/imlm/.

Chipman, H.; George, E.; and McCulloch, R. 1996.
Bayesian CART, Department of Statistics, University
of Chicago. Available at gsbrem.uchicago.edu/Pa-
pers/cart.ps.

Chow, C., and Liu, C. 1968. Approximating Discrete
Probability Distributions with Dependence Trees.
IEEE Transactions on Information Theory 14:462–467.

Clemen, R. T. 1989. Combining Forecasts: A Review
and Annotated Bibliography. International Journal of
Forecasting 5:559–583.

Cohen, W. W. 1995. Fast Effective Rule Induction. In
Proceedings of the Twelfth International Conference on
Machine Learning, 115–123. San Francisco, Calif.:
Morgan Kaufmann.

Cooper, G. F., and Herskovits, E. 1992. A Bayesian
Method for the Induction of Probabilistic Networks
from Data. Machine Learning 9:309–347.

Craven, M. W., and Shavlik, J. W. 1996. Extracting
Tree-Structured Representations from Trained Net-
works. In Advances in Neural Information Processing
Systems 8, eds. D. S. Touretzky, M. C. Mozer, and M.
Hasselmo, 24–30. Cambridge, Mass. MIT Press.

Crites, R. H., and Barto, A. G. 1995. Improving Ele-
vator Performance Using Reinforcement Learning.
In Advances in Neural Information Processing Systems 8,
1017–1023. San Francisco, Calif.: Morgan Kauf-
mann.

D’Ambrosio, B. 1993. Incremental Probabilistic In-
ference. In Ninth Annual Conference on Uncertainty on
AI, eds. D. Heckerman and A. Mamdani, 301–308.
San Francisco, Calif.: Morgan Kaufmann.

Dayan, P., and Hinton, G. 1993. Feudal Reinforce-
ment Learning. In Advances in Neural Information
Processing Systems 5, 271–278. San Francisco, Calif.:
Morgan Kaufmann.

Dean, T., and Kanazawa, K. 1989. A Model for Rea-
soning about Persistence and Causation. Computa-
tional Intelligence 5(3): 142–150.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1976.
Maximum Likelihood from Incomplete Data via the
EM Algorithm. Journal of the Royal Statistical Society B
39: 1–38.

Dietterich, T. G., and Bakiri, G. 1995. Solving Multi-
class Learning Problems via Error-Correcting Output
Codes. Journal of Artificial Intelligence Research
2:263–286.

Dietterich, T. G., and Kong, E. B. 1995. Machine
Learning Bias, Statistical Bias, and Statistical Vari-
ance of Decision Tree Algorithms, Department of
Computer Science, Oregon State University. Avail-
able at ftp.cs.orst.edu/pub/tgd/papers/tr-bias.ps.gz.

Articles

WINTER 1997 133

Bayesian Networks, MSR-TR-95-06, Advanced Tech-
nology Division, Microsoft Research, Redmond,
Washington.

Heckerman, D.; Geiger, D.; and Chickering, D. M.
1995. Learning Bayesian Networks: The Combina-
tion of Knowledge and Statistical Data. Machine
Learning 20:197–243.

Hyafil, L., and Rivest, R. L. 1976. Constructing Opti-
mal Binary Decision Trees Is NP-Complete. Informa-
tion Processing Letters 5(1): 15–17.

Jensen, F. V.; Lauritzen, S. L.; and Olesen, K. G. 1990.
Bayesian Updating in Recursive Graphical Models by
Local Computations. Computational Statistical Quar-
terly 4:269–282.

Jensen, F. 1996. An Introduction to Bayesian Networks.
New York: Springer.

John, G.; Kohavi, R.; and Pfleger, K. 1994. Irrelevant
Features and the Subset Selection Problem. In Pro-
ceedings of the Eleventh International Conference on Ma-
chine Learning, 121–129. San Francisco, Calif.: Mor-
gan Kaufmann.

Jordan, M. I., and Jacobs, R. A. 1994. Hierarchical
Mixtures of Experts and the EM Algorithm. Neural
Computation 6(2): 181–214.

Kaelbling, L. P. 1993. Hierarchical Reinforcement
Learning: Preliminary Results. In Proceedings of the
Tenth International Conference on Machine Learning,
167–173. San Francisco, Calif.: Morgan Kaufmann.

Kaelbling, L. P.; Littman, M. L.; and Moore, A. W.
1996. Reinforcement Learning: A Survey. Journal of
Artificial Intelligence Research 4:237–285.

Kanazawa, K.; Koller, D.; and Russell, S. 1995. Sto-
chastic Simulation Algorithms for Dynamic Proba-
bilistic Networks. In Proceedings of the Eleventh Con-
ference on Uncertainty in Artificial Intelligence,
346–351. San Francisco, Calif.: Morgan Kaufmann.

Kira, K., and Rendell, L. A. 1992. A Practical Ap-
proach to Feature Selection. In Proceedings of the
Ninth International Conference on Machine Learning,
249–256. San Francisco, Calif.: Morgan Kaufmann.

Kohavi, R., and Kunz, C. 1997. Option Decision
Trees with Majority Votes. In Proceedings of the Four-
teenth International Conference on Machine Learning,
161–169. San Francisco, Calif.: Morgan Kaufmann.

Kohavi, R., and Sahami, M. 1996. Error-Based and
Entropy-Based Discretizing of Continuous Features.
In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, 114–119. San
Francisco, Calif.: Morgan Kaufmann.

Kolen, J. F., and Pollack, J. B. 1991. Back Propagation
Is Sensitive to Initial Conditions. In Advances in
Neural Information Processing Systems 3, 860–867. San
Francisco, Calif.: Morgan Kaufmann.

Kong, E. B., and Dietterich, T. G. 1995. Error-Correct-
ing Output Coding Corrects Bias and Variance. In
The Twelfth International Conference on Machine
Learning, eds. A. Prieditis and S. Russell, 313–321.
San Francisco, Calif.: Morgan Kaufmann.

Kononenko, I. 1994. Estimating Attributes: Analysis
and Extensions of Relief. In Proceedings of the 1994
European Conference on Machine Learning, 171–182.
Amsterdam: Springer Verlag.

Domingos, P., and Pazzani, M. 1996. Beyond Indepen-
dence: Conditions for the Optimality of the Simple
Bayesian Classifier. In Proceedings of the Thirteenth Inter-
national Conference on Machine Learning, ed. L. Saitta,
105–112. San Francisco, Calif.: Morgan Kaufmann.

Duda, R. O., and Hart, P. E. 1973. Pattern Classifica-
tion and Scene Analysis. New York: Wiley.

Fayyad, U. M., and Irani, K. B. 1993. Multi-Interval
Discretization of Continuous-Valued Attributes for
Classification Learning. In Proceedings of the Thir-
teenth International Joint Conference on Artificial
Intelligence, 1022–1027. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Flexner, S. B. 1983. Random House Unabridged Dictio-
nary, 2d ed. New York: Random House.

Freund, Y., and Schapire, R. E. 1995. A Decision-The-
oretic Generalization of On-Line Learning and an
Application to Boosting. In Proceedings of the Second
European Conference on Computational Learning Theo-
ry, 23–37. Berlin: Springer-Verlag.

Freund, Y., and Schapire, R. E. 1996. Experiments
with a New Boosting Algorithm. In Proceedings of the
Thirteenth International Conference on Machine Learn-
ing, ed. L. Saitta, 148–156. San Francisco, Calif.: Mor-
gan Kaufmann.

Friedman, N., and Goldszmidt, M. 1996. Building
Classifiers Using Bayesian Networks. In Proceedings
of the Thirteenth National Conference on Artificial
Intelligence, 1277–1284. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Furnkranz, J., and Widmer, G. 1994. Incremental Re-
duced Error Pruning. In Proceedings of the Eleventh In-
ternational Conference on Machine Learning, 70–77.
San Francisco, Calif.: Morgan Kaufmann.

Geman, S., and Geman, D. 1984. Stochastic Relax-
ation, Gibbs Distributions, and the Bayesian Restora-
tion of Images. IEEE Transactions on Pattern Analysis
and Machine Intelligence 6:721–741.

Ghahramani, Z., and Jordan, M. I. 1996. Factorial
Hidden Markov Models. In Advances in Neural Infor-
mation Processing Systems 8, eds. D. S. Touretzky, M.
C. Mozer, and M. Hasselmo, 472–478. Cambridge,
Mass.: MIT Press.

Gilks, W.; Thomas, A.; and Spiegelhalter, D. 1993. A
Language and Program for Complex Bayesian Mod-
elling. The Statistician 43:169–178.

Golding, A. R., and Roth, D. 1996. Applying WINNOW

to Context-Sensitive Spelling Correction. In Proceed-
ings of the Thirteenth International Conference on Ma-
chine Learning, ed. L. Saitta, 182–190. San Francisco,
Calif.: Morgan Kaufmann.

Gordon, G. J. 1995. Stable Function Approximation
in Dynamic Programming. In Proceedings of the
Twelfth International Conference on Machine Learning,
261–268. San Francisco, Calif.: Morgan Kaufmann.

Hansen, L., and Salamon, P. 1990. Neural Network
Ensembles. IEEE Transactions on Pattern Analysis and
Machine Intelligence 12:993–1001.

Hashem, S. 1993. Optimal Linear Combinations of
Neural Networks. Ph.D. thesis, School of Industrial
Engineering, Purdue University.

Heckerman, D. 1996. A Tutorial on Learning with

Articles

134 AI MAGAZINE

Kononenko, I.; Simec, E.; and Robnik-Sikonja, M.
1997. Overcoming the Myopic of Inductive Learning
Algorithms with RELIEF-F. Applied Intelligence. Forth-
coming.

Kucera, H., and Francis, W. N. 1967. Computational
Analysis of Present-Day American English. Providence,
R.I.: Brown University Press.

Kwok, S. W., and Carter, C. 1990. Multiple Decision
Trees. In Uncertainty in Artificial Intelligence 4, eds. R.
D. Schachter, T. S. Levitt, L. N. Kannal, and J. F. Lem-
mer, 327–335. Amsterdam: Elsevier Science.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
SOAR: An Architecture for General Intelligence. Arti-
ficial Intelligence 33(1): 1–64.

Littlestone, N. 1988. Learning Quickly When Irrele-
vant Attributes Abound: A New Linear-Threshold Al-
gorithm. Machine Learning 2:285–318.

Littman, M. L.; Cassandra, A.; and Kaelbling, L. P.
1995. Learning Policies for Partially Observable En-
vironments: Scaling Up. In Proceedings of the Twelfth
International Conference on Machine Learning,
362–370. San Francisco, Calif.: Morgan Kaufmann.

Lowe, D. G. 1995. Similarity Metric Learning for a
Variable-Kernel Classifier. Neural Computation 7(1):
72–85.

MacKay, D. 1992. A Practical Bayesian Framework
for Backpropagation Networks. Neural Computation
4(3): 448–472.

Mahadevan, S. 1996. Average Reward Reinforcement
Learning: Foundations, Algorithms, and Empirical
Results. Machine Learning 22:159–195.

Mahadevan, S., and Kaelbling, L. P. 1996. The Na-
tional Science Foundation Workshop on Reinforce-
ment Learning. AI Magazine 17(4): 89–97.

McCallum, R. A. 1995. Instance-Based Utile Distinc-
tions for Reinforcement Learning with Hidden State.
In Proceedings of the Twelfth International Conference
on Machine Learning, 387–396. San Francisco, Calif.:
Morgan Kaufmann.

Mehta, M.; Agrawal, R.; and Rissanen, J. 1996. SLIQ: A
Fast Scalable Classifier for Data Mining. In Lecture
Notes in Computer Science, 18–32. New York: Springer-
Verlag.

Merz, C. J., and Murphy, P. M. 1996. UCI Repository
of Machine Learning Databases. Available at
www.ics.uci.edu/mlearn/MLRepository.html.

Miller, A. J. 1990. Subset Selection in Regression. New
York: Chapman and Hall.

Minton, S.; Carbonell, J. G.; Knoblock, C. A.; Kuok-
ka, D. R.; Etzioni, O.; and Gil, Y. 1989. Explanation-
Based Learning: A Problem-Solving Perspective. Arti-
ficial Intelligence 40:63–118.

Moore, A. W., and Lee, M. S. 1994. Efficient Algo-
rithms for Minimizing Cross-Validation Error. In Pro-
ceedings of the Eleventh International Conference on Ma-
chine Learning, eds. W. Cohen and H. Hirsh, 190–198.
San Francisco, Calif.: Morgan Kaufmann.

Munro, P., and Parmanto, B. 1997. Competition
among Networks Improves Committee Performance.
In Advances in Neural Information Processing Systems 9,
592–598. Cambridge, Mass.: MIT Press.

Musick, R.; Catlett, J.; and Russell, S. 1992. Decision-

Theoretic Subsampling for Induction on Large Data-
bases. In Proceedings of the Tenth International Confer-
ence on Machine Learning, ed. P. E. Utgoff, 212–219.
San Francisco, Calif.: Morgan Kaufmann.

Neal, R. 1993. Probabilistic Inference Using Markov
Chain Monte Carlo Methods, CRG-TR-93-1, Depart-
ment of Computer Science, University of Toronto.

Ok, D., and Tadepalli, P. 1996. Auto-Exploratory Av-
erage Reward Reinforcement Learning. In Proceed-
ings of the Thirteenth National Conference on Arti-
ficial Intelligence, 881–887. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Opitz, D. W., and Shavlik, J. W. 1996. Generating Ac-
curate and Diverse Members of a Neural-Network
Ensemble. In Advances in Neural Information Process-
ing Systems 8, eds. D. S. Touretzky, M. C. Mozer, and
M. Hesselmo, 535–541. Cambridge, Mass.: MIT Press.

Parmanto, B.; Munro, P. W.; and Doyle, H. R. 1996.
Improving Committee Diagnosis with Resampling
Techniques. In Advances in Neural Information Pro-
cessing Systems 8, eds. D. S. Touretzky, M. C. Mozer,
and M. Hesselmo, 882–888. Cambridge, Mass.: MIT
Press.

Parmanto, B.; Munro, P. W.; Doyle, H. R.; Doria, C.;
Aldrighetti, L.; Marino, I. R.; Mitchel, S.; and Fung, J.
J. 1994. Neural Network Classifier for Hepatoma De-
tection. In Proceedings of the World Congress on Neural
Networks 1, 285–290. Hillsdale, N.J.: Lawrence Erl-
baum.

Parr, R., and Russell, S. 1995. Approximating Opti-
mal Policies for Partially Observable Stochastic Do-
mains. In Proceedings of the Fourteenth Internation-
al Joint Conference on Artificial Intelligence,
1088–1094. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Perrone, M. P., and Cooper, L. N. 1993. When Net-
works Disagree: Ensemble Methods for Hybrid Neur-
al Networks. In Neural Networks for Speech and Image
Processing, ed. R. J. Mammone. New York: Chapman
and Hall.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Ver-
rerling, W. T. 1992. Numerical Recipes in C: The Art of
Scientific Computing, 2d ed. Cambridge, U.K.: Cam-
bridge University Press.

Quinlan, J. R. 1996. Bagging, Boosting, and C4.5. In
Proceedings of the Thirteenth National Conference
on Artificial Intelligence, 725–730. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Quinlan, J. R. 1993. C4.5: Programs for Empirical
Learning. San Francisco, Calif.: Morgan Kaufmann.

Quinlan, J. R. 1990. Learning Logical Definitions
from Relations. Machine Learning 5(3): 239–266.

Quinlan, J. R., and Rivest, R. L. 1989. Inferring Deci-
sion Trees Using the Minimum Description Length
Principle. Information and Computation 80:227–248.

Rabiner, L. R. 1989. A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recog-
nition. In Proceedings of the IEEE 77(2): 257–286.
Washington, D.C.: IEEE Computer Society.

Raviv, Y., and Intrator, N. 1996. Bootstrapping with
Noise: An Effective Regularization Technique. Con-
nection Science 8(3–4): 355–372.

Articles

WINTER 1997 135

Sutton, R. S. 1988. Learning to Predict by the Meth-
ods of Temporal Differences. Machine Learning 3(1):
9–44.

Tesauro, G. 1995. Temporal Difference Learning and
TD-GAMMON. Communications of the ACM 28(3):
58–68.

Tesauro, G. 1992. Practical Issues in Temporal Differ-
ence Learning. Machine Learning 8:257–278.

Tsitsiklis, J. N., and Van Roy, B. 1996. An Analysis of
Temporal-Difference Learning with Function Ap-
proximation, LIDS-P-2322, Laboratory for Informa-
tion and Decision Systems, Massachusetts Institute
of Technology.

Tumer, K., and Ghosh, J. 1996. Error Correlation and
Error Reduction in Ensemble Classifiers. Connection
Science 8(3–4): 385–404.

Verma, T., and Pearl, J. 1990. Equivalence and Syn-
thesis of Causal Models. In Proceedings of the Sixth
Conference on Uncertainty in Artificial Intelligence,
220–227. San Francisco, Calif.: Morgan Kaufmann.

Watkins, C. J. C. H. 1989. Learning from Delayed Re-
wards. Ph.D. thesis, King’s College, Oxford.

Watkins, C. J., and Dayan, P. 1992. Technical Note:
Q-LEARNING. Machine Learning 8:279–292.

Wettschereck, D.; Aha, D. W.; and Mohri, T. 1997. A
Review and Empirical Evaluation of Feature Weight-
ing Methods for a Class of Lazy Learning Algorithms.
Artificial Intelligence Review 10:1–37.

Wettschereck, D., and Dietterich, T. G. 1995. An Ex-
perimental Comparison of the Nearest-Neighbor
and Nearest-Hyperrectangle Algorithms. Machine
Learning 19:5–27.

Wolpert, D. 1992. Stacked Generalization. Neural
Networks 5(2): 241–260.

Zhang, W., and Dietterich, T. G. 1995. A Reinforce-
ment Learning Approach to Job-Shop Scheduling. In
Proceedings of the Twelfth International Joint Con-
ference on Artificial Intelligence, 1114–1120. Menlo
Park, Calif.: International Joint Conferences on Arti-
ficial Intelligence.

Zhang, X.; Mesirov, J. P.; and Waltz, D. L. 1992. Hy-
brid System for Protein Secondary Structure Predic-
tion. Journal of Molecular Biology 225:1049–1063.

Zweben, M; Daun, B.; and Deale, M. 1994. Schedul-
ing and Rescheduling with Iterative Repair. In Intel-
ligent Scheduling 8, eds. M. Zweben and M. Fox,
241–255. San Francisco, Calif.: Morgan Kaufmann.

Thomas G. Dietterich (Ph.D,
Stanford University) has been a
faculty member in computer sci-
ence at Oregon State University
since 1985. He also held a position
as senior scientist at Arris Pharma-
ceutical Corporation from 1991 to
1993, where he applied machine-
learning methods to drug design

problems. He is editor (with Jude Shavlik) of Readings
in Machine Learning and executive editor of the jour-
nal Machine Learning. His e-mail address is
tgd@cs.orst.edu.

Revow, M.; Williams, C. K. I.; and Hinton, G. E.
1996. Using Generative Models for Handwritten Dig-
it Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 18(6): 592–606.

Ricci, F., and Aha, D. W. 1997. Extending Local
Learners with Error-Correcting Output Codes, Naval
Center for Applied Research in Artificial Intelligence,
Washington, D.C.

Rosen, B. E. 1996. Ensemble Learning Using Decor-
related Neural Networks. Connection Science 8(3–4):
373–384.

Russell, S.; Binder, J.; Koller, D.; and Kanazawa, K.
1995. Local Learning in Probabilistic Networks with
Hidden Variables. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelli-
gence, 1146–1152. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Samuel, A. L. 1959. Some Studies in Machine Learn-
ing Using the Game of Checkers. IBM Journal of Re-
search and Development 3:211–229.

Schapire, R. E. 1997. Using Output Codes to Boost
Multiclass Learning Problems. In Proceedings of the
Fourteenth International Conference on Machine Learn-
ing, 313–321. San Francisco, Calif.: Morgan Kauf-
mann.

Schwartz, A. 1993. A Reinforcement Learning
Method for Maximizing Undiscounted Rewards. In
Proceedings of the Tenth International Conference on
Machine Learning, ed. P. Utgoff, 298–305. San Francis-
co, Calif.: Morgan Kaufmann.

Shafer, J.; Agrawal, R.; and Mehta, M. 1996. SPRINT: A
Scalable Parallel Classifier for Data Mining. In Pro-
ceedings of the Twenty-Second VLDB Conference,
544–555. San Francisco, Calif.: Morgan Kaufmann.

Singh, S. P. 1992. Transfer of Learning by Composing
Solutions to Elemental Sequential Tasks. Machine
Learning 8(3): 323–340.

Singh, S., and Bertsekas, D. 1997. Reinforcement
Learning for Dynamic Channel Allocation in Cellu-
lar Telephone Systems. In Advances in Neural Infor-
mation Processing Systems 10, 974–980. Cambridge,
Mass.: MIT Press.

Smyth, P.; Heckerman, D.; and Jordan, M. I. 1997.
Probabilistic Independence Networks for Hidden
Markov Probability Models. Neural Computation 9(2):
227–270.

Spiegelhalter, D.; Dawid, A.; Lauritzen, S.; and Cow-
ell, R. 1993. Bayesian Analysis in Expert Systems.
Statistical Science 8:219–282.

Spirtes, P.; Glymour, C.; and Scheines, R. 1993. Cau-
sation, Prediction, and Search. New York: Springer-Ver-
lag. Also available online at hss.cmu.edu/html/de-
partments/philosophy/TETRAD.BOOK/book.html.

Spirtes, P., and Meek, C. 1995. Learning Bayesian
Networks with Discrete Variables from Data. In Pro-
ceedings of the First International Conference on Knowl-
edge Discovery and Data Mining, 294–299. San Francis-
co, Calif.: Morgan Kaufmann.

Stolcke, A., and Omohundro, S. M. 1994. Best-First
Model Merging for Hidden Markov Model Induc-
tion, TR-94-003, International Computer Science In-
stitute, Berkeley, California.

Articles

136 AI MAGAZINE

