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Abstract 

A system has been developed that automatically extracts the iris 
region from photographs, computes the iris color in CIE u´v´ diagram 
color space, and corrects the color based on a standard calibration 
target. This system has advantages over previous manual methods in 
that it (1) is much less time-consuming because it is fully automatic, 
(2) corrects for the variability inherent in a film-based photographic 
process, (3) allows for greater objectivity and reproducibility, and (4) 
uses a mathematical foundation that enables quantification and 
statistical analysis. Preliminary experimental results show that color 
correction significantly improves grading accuracy. 
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1   Introduction 

The relationship between iris color and some eye diseases has been studied [Moss 
et al., 1987]. It has also been reported that some ocular medications may cause 
changes in iris color. So, iris color quantification is useful for epidemiological 
description of the distribution of iris color in selected populations and for clinical 
detection of iris color changes in individuals over time.  

Traditionally, the measurement of iris color has relied on manual comparison 
of iris photographs with a series of iris standard photographs [Seddon et al., 
1990; AREDES].  While useful, the manual method has several disadvantages: 
(1) Being a subjective process, the manual method shows large variability among 
graders (different people have different spectral sensitivity) and by the same 
grader over time. (2) Manual methods are time-consuming. (3) As commonly 
utilized, the traditional method has limited capacity to account for the variability 
inherent in taking and developing photographs, such as exposure time, 
development time, and variability in the film emulsion and the processing 
chemistry. (4) Manual grading only gives qualitative results that are difficult to 
use for iris color change detection and statistical analysis. (5) Although a human 
can discriminate subtle differences in relative color, there is limited ability to 
classify color into absolute categories.  

Recently, there have been some attempts to measure iris color quantitatively 
and automatically. German et al. [1998] studied the response of an ocular drug 
based on the color in Red-Green-Blue (RGB) color space. While RGB is a 
quantitative color model, it is not uniform in that the perceptual difference 
between colors is not proportional to distance in color space.  Takamoto et al. 
[2001] developed a method that automatically computed changes in iris features 
(area and intensity) under different exposures.  However, no measurement of iris 
color was performed. Melgosa et al. [2000] used a CIE LAB color model to 
quantify iris color. Using a set of 72 synthetic iris samples as standards, 40 real 
iris images and 25 visual prostheses were classified into one of 72 categories 
based on the nearest standard in CIE LAB color space. No iris color correction 
was reported in their work.  

The goal of this work is to develop a method to objectively describe iris color, 
color-correct iris images obtained under different conditions, and automatically 
classify iris images with high accuracy. 

2   Materials and Photography Protocol 

The iris photographs from living subjects, one eye each, were selected because 
they constituted a range of iris color − blue, hazel and brown. These subjects 
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were of particular interest because photographs of their eyes provide the 
standards currently used in the Wisconsin Classification, adopted by two large 
studies, the Beaver Dam Eye Study and the Age-Related Eye Disease Study 
[Klein et al., 1998], to categorize iris pigmentation. For each of the three standard 
iris images, 18 copies were taken with different color filters so that the images 
were color-skewed compared with the images under normal conditions. These 
photographs were used for two purposes: to see how the measured colors of iris 
standards were distributed across the scale, and to test whether our color-
correction technique could adequately correct for deliberate variations in the 
photographic process.  

The living human subjects were photographed using a protocol developed for 
taking fundus reflex photographs in epidemiological and clinical trials such as the 
Age-Related Eye Study. To test the calibration procedure, photographs of the 
same human subjects were considered to be test subjects and copied on a Sickles 
Chromapro slide duplicating machine. This system contains three color wheels in 
the illumination path, allowing for deliberate and controlled introduction of 
different color biases. Slides were photographed with no color bias, with yellow 
bias, magenta bias, and cyan bias. At each setting, a standard calibration target 
(Kodak rectangle 6-step gray scale) was also photographed to provide a reference 
for correcting iris color during subsequent image processing. The photographs 
were digitized using a Nikon LS-3510AF film scanner.  

3 Methods and Algorithm 

3.1 Measurement of Iris Pigmentation 

It is important to select a good color model to represent colors in the application 
problem because different color spaces convey different information about color 
[Wyszecki, 1982]. For iris color analysis an ideal color space should have the 
following properties: 1) the color space is objective and an accurate 
representation of color. 2) distance in color space is uniform, both with respect to 
perceptual difference and with respect to amount of iris pigmentation. 3) color 
comparison is invariant to luminance (lightness) differences. 

RGB color space does not meet the above criteria because it is not a uniform 
color space and, furthermore, some colors have negative coefficients. The 
Commission International de l´Eclairage (CIE) XYZ color system does not have 
negative coefficients and is defined relative to RGB by a linear transformation 
[Fairchild, 2001]. The X, Y and Z, when normalized, become x, y, and z. The 
variables x,y,z are chromaticity values, which depend on the hue and saturation of 
the color only. If two colors differ only in luminance, they have the same x,y,z 
values. Because the sum of the x,y,z components is 1, only two of the three values 
need to be explicitly expressed. Normally, the x and y chromaticity values are 
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used, defining the CIE xy color space.  While widely used, x,y chromaticity has 
the disadvantage of being non-uniform. To overcome this weakness, CIE defined 
a uniform chromaticity scale diagram (also known as the CIE 1976 UCS 
diagram) called the u´,v´ diagram [Hunt, 1998]. We chose the CIE u´v´ color 
space to describe iris color because it is a uniform color space and is independent 
of luminance. Using this color space, the two color components can be plotted on 
a 2D plane, providing computational and graphical display advantages over 3D 
color spaces. 

3.2 Iris Segmentation using the EM Algorithm 

Since iris photographs contain more than just the iris, other parts such as the pupil 
and sclera had to be separated from the iris “region of interest” (ROI). This 
segmentation problem requires partitioning the pixels in the image into iris and 
non-iris clusters based on their color components and locations. 

For each pixel in the image, if we associate with it a vector x specifying its 
color, we can form a feature vector space V.  Assume the image can be divided 
into m segments based on a similarity metric defined in the feature vector space 
V. The distribution of the feature vectors in each segment can be modeled as a 
Gaussian distribution. Assume the parameters for ith segment are �i = (µi, σi), and 
the probability of a pixel chosen from this segment is �i when drawing a pixel 
from the image. Then the probability of a feature vector x being generated from 
the image is P(x) = �i p(x | �i ) �i.  For a given image, combining all the 
probabilities for the pixels, we can have the data likelihood function L(x, u) =  Π 
p(x,u).  Thus, the segmentation problem has been formulated to find the unknown 
parameters �i for all segments and assign every pixel in the image into one 
segment, which will have the maximum data likelihood function value.  

Considering this as an incomplete data problem, what is missing is information 
indicating which cluster each pixel was drawn from. The Expectation-
Maximization (EM) algorithm [McLachlan and Krishnan, 1996] can be used to 
solve problems of this type. 

The EM algorithm recursively estimates both the missing data and the 
unknown model parameters. First, given an initial guess for the missing values, 
i.e., assignment of each pixel to a cluster, the method computes the maximum 
likelihood estimate of the model parameters for each cluster from the pixels 
assigned to the cluster. Second, based on the estimated model parameters for 
every cluster, the probability of each pixel belonging to that cluster is calculated. 
Each pixel is then reassigned to the cluster with highest probability. 

One disadvantage of the EM algorithm is that it can get “stuck” at a local 
maximum when searching the parameter space. We get around this problem by 
carefully selecting initial values of the parameters. We can first detect edge points 
in the image in order to find the approximate boundaries of the iris, and then fit 
ellipses to these edge points. The two ellipses form a ring and the area inside the 
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ring is the ROI for the iris. The parameters (mean and standard deviation) 
estimated from the pixels in the ROI are good initial values for the EM algorithm.  

Since iris color changes over time can be very small, we need to compute iris 
color as accurately as possible. The edge detection-based method alone is not 
enough for this purpose for the following reasons: (1) We would like the whole 
process be automatic, but illumination and exposure variations make it difficult to 
set all the parameters for edge detection automatically. (2) The boundaries of the 
iris may not fit the ellipse shape model well. (3) The images contain noise and the 
ROI may include other features such as crypts. 

The algorithm we developed to segment the iris region contains the following 
steps: 
1) Detect edge points and select those that approximately 

bound the inner and outer contours of the iris. 
2) Fit the inner and outer edge point sets with two ellipses, 

forming an annulus that partitions the image into two sets 
of pixels, iris and non-iris. 

3) Compute parameters for each cluster based on the color 
vector values of the pixels in the cluster. The mean of 
each cluster is the centroid of the cluster in feature 
space. 

4) Based on the current cluster parameters, at each pixel 
compute its distance in feature space to the centroid of 
each cluster.  

5) Reassign each pixel to its closest cluster, taking into 
account the image coordinates of the pixel.  

6) Repeat steps 3-5 until convergence is achieved. 

3.3 Color Calibration 

In the photographic process there are many factors such as film lot, illumination, 
exposure, and development that affect a photograph. Consequently, in order to 
reliably describe iris pigmentation and make images taken at different times 
comparable, we need to correct the iris images to remove these effects. Color 
correction is important for two major purposes:  iris color classification and iris 
color change detection. 

In this section a method is described for color correction based on a standard 
calibration target image associated with each iris image. A standard calibration 
target provided by Kodak was used. This calibration target consists of six wedges 
from dark to light. Each wedge is approximately uniform with known RGB 
intensity values. Color changes are assumed to be independent of position in a 
photograph, so color correction requires estimation of a function y = f(x), where x 
is the color at a pixel in an input image and y is its color-corrected value.  To 
compute f, the calibration target was photographed using different filter settings 
in order to create a set of known, color-skewed images. In addition, at each color 
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filter setting, photographs were taken of the three Wisconsin Iris Standards. The 
color-skewed images of the Standards were used to verify f.  

For each red, green, and blue color component, let the intensity values of the 
six wedges in a color-skewed calibration target image and the non-color-skewed 
calibration target image be ix  and iy , respectively, where i = 1, …, 6.  The color 
correction function f was modeled as a power function y = f(x) = axb, and the 
Lavenberg-Marquardt algorithm was used to compute the least squares error 
estimate of the parameters a and b [Press et al., 1992]. To speed up the 
computation, f can be approximated by a look-up table (LUT), where x 
determines the index into the LUT containing the value f(x). 
 
 

4. Experimental Results 
The three Wisconsin Standard Iris Photographs (blue, hazel, and brown) were 
taken without a color bias using a (60-0-80) filter (i.e., yellow 60, cyan 0, 
magenta 80).  In addition, 18 color-skewed photographs were taken using various 
settings of the three color wheels. 

4.1 Iris Segmentation 

      
(a)                 (b)             (c)        (d)               (e)           (f) 

Fig. 1. Iris Standards under Normal Imaging Conditions and their Iris Segmentation. (a) is Standard 1 (blue), 
(b) is Standard 2 (hazel), (c) is Standard 3 (brown).  (d), (e) and (f) are Iris Segmentation for Iris Standards 
Standard 1, 2 and 3 respectively 

To robustly compute iris color, only the middle-third annulus of the iris was used 
to calculate its mean CIE u´v´ value (Fig. 1). Our  experiments  showed that the 
width of the ring used was not critical for dilated eyes, which are used in our 
study. The boundary of the iris was quite reliably detected. However, in case 
edge positions were mis-detected, for example due to the light reflex at the top of 
Standard 2, the middle third of the annulus gave a better estimate. This strategy 
also is suitable for eyes with arcus seniles, which tends to occur first and most at 
the outer periphery. 
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4.2 The Three Iris Standards in CIE u´v´ Color Space 
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Fig. 2. (u´,1-u´-v´) color coordinates for the three Wisconsin Iris Standards in CIE u´v´ color space. The 
diamond is for Standard1, the rectangle for Standard2, and the triangle for Standard3 

Fig. 2 shows that the three standard irides are well distributed and separated in 
this color space. The linear relationship of iris color ranging from blue to brown 
is due to the fact that color is proportional to one physical parameter, density of 
the pigment melanin. The coordinates shown are (u´,1-u´-v´) because this 
representation makes the relationship between iris colors approximately linear.   

 

4.3 Color Correction Based on Calibration Targets 

In order to determine the soundness and accuracy of using calibration targets as 
the basis for color correction, the three Standard irides and associated calibration 
targets were photographed using various color filters in order to introduce color 
biases. Fig.3 shows the Standard irides photographed with a color-skewing filter 
setting of 90-0-110, which introduces a color bias in yellow and magenta 
compared with the Standards. 

To construct the color-correction function, f, first requires deciding on the type 
of function to use to model the range of iris colors. We evaluated three possible 
models: linear, power, and exponential functions.  Data from the calibration 
target was used to estimate the model parameters, and each model was tested 
using the 18 color-skewed Standards. A good model should map the color values 
of the color-skewed Standards, e.g., (90-0-110), onto the Standards.   

     
              (a)               (b)           (c)        (d)                   (e) 

Fig. 3.  (a),(b),(c) are Standards under color skewed with a 90-0-110 filter,  (d), (e) shows images of the 
calibration target using the non-color-skewed filter (60-0-80) and the color-skewed filter (90-0-110) 
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Table 1. Predictions of the blue intensity values for the color-corrected Standards  

Standard 1 Standard 2 Standard 3  
Pred. Real Pred. Real Pred. Real 

Linear 50.31 56.38 31.77 40.74 10.62 24.31 
Exponential 68.75 56.38 59.74 40.74 50.89 24.31 

Power 54.50 56.38 38.14 40.74 20.35 24.31 
 
Table 1 shows the three candidate models computed from the calibration target 

data, and their predictions of the blue intensity values for the color-corrected 
Standards. All three models fit the wedge data well, with squared residual values 
greater than 0.99. However, for the three Standard iris color values, the linear 
model predicts values that are too low, and the exponential model predicts values 
that are too high. The reason is that the six wedges in the calibrate target have 
blue intensities ranging from 69 to 134, while the blue intensity of the three 
Standards are all less than 50, so predicting the values of the Standards requires 
extrapolation of the function f. The extrapolation error increases with distance 
from the wedge points. The power function model is the best predictor for the 
Standards.  

 
4.4 The Iris Colors Before Color Correction and After Color Correction 
 
Ideally, the color correction process should eliminate color-skew effects 
completely, so that the irides in all color-corrected images for a given Standard 
have identical CIE u´v´ coordinates. However, because of noise and modeling 
error, the color-corrected values will be clustered around the true value (Fig. 4). 
The clusters associated with the three Standards overlap one another 
significantly, showing that without color correction there is no reliable way to 
classify these images correctly. After color correction, however, the three clusters 
are well separated. To further verify this point, we computed the standard 
deviation of the u´ and (1-u´-v´) color coordinates for each cluster. The within-
cluster standard deviation for each Standard after color correction is in the range 
of 1/3 to 1/9 of that before color correction. 
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Fig. 4. The distribution of the three Standards in CIE u´v´ color space under 19 different filter settings (18 
color-skewed settings plus 1 non-color-skewed setting). The left is before color correction, and the right is 
after color correction 

As a final evaluation of the color-correction function, each color-skewed image 
was classified as one of the three Standards based on the minimum distance in 
color space to the Standards. We evaluated the classification results before and 
after color correction using an error matrix and kappa index [Bishop et al., 1975].  

Table 2. Error Matrix for Iris Color Classification. The rows represent the predicted class and the columns 
represent the correct class  

Before Color Correction After Color Correction  
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Class1 16 3 0 19 0 0 
Class2 2 14 3 0 19 0 
Class3 0 1 18 0 0 19 

 
The kappa index for the error matrix before color correction is 0.763. After 

color correction, all the irides were correctly classified, resulting in a kappa index 
value of 1.0. The Z-value in the Z-test for whether the difference between the 
accuracies in the two error matrices is significant is -3.2796. This value is less 
than -2.3263, which is the z value at 0.01 significance level, so the classification 
accuracy after color correction is significantly improved than before color 
correction.  
 

              
Fig. 5. The left image is the original iris image, the middle one is the color corrected image, and the right one 
is the iris segmentation. 

We also tested our color correction method and segmentation algorithm on 50 
iris images other than the Standards. Fig. 5 gives one example showing the color 
correction and iris segmentation results. Since there are no ground truth iris color 
categories for  those images, we are collecting retinal pigment concentration data 
for further experiments. 
 

5. Concluding Remarks 
A system has been developed that automatically extracts the iris region from 
photographs, computes iris color in CIE u´v´ color space, and corrects the color 
based on a standard calibration target.  Using the uniform CIE u´v´ color space 
has advantages over the color spaces used in other systems for evaluating iris 
color because it (3) has the property that distance between two colors is 
proportional to the amount of pigmentation, (2) separates luminance from color 
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components, and (3) allows the 2D color components to be conveniently 
displayed to the user.  

Color correction based on a calibration target image was shown to significantly 
improve iris classification for a set of 18 color-skewed images of the three 
Wisconsin Iris Standards.  Because the color intensity range of the Kodak 
calibration target is quite different from the range of iris colors, extrapolation of 
the color correction function from the calibration target values is necessary to 
predict color-corrected iris values. If a different calibration wedge was designed 
specifically for this application so that the wedge colors were more similar to real 
iris colors, the color-correction function could be estimated even more accurately. 

In future work we intend to test how well the method works for color 
correction of more iris images, and how color correction improves the iris color 
grading. Color correction of the color bias introduced by illumination and 
exposure differences is also worth exploring. In CIE u´v´ color space the three 
Standards are very nearly linearly related.  However, it is not clear how iris color 
and amount of melanin are quantitatively related. This quantitative relationship is 
of interest because it could be used to estimate density of melanin in the iris. 
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