

The Dimension-Join: A New Index for Data Warehouses
Pedro Bizarro and Henrique Madeira

University of Coimbra, Portugal
Dep. Engenharia Informática – CISUC

3030-397, Coimbra – Portugal
bizarro@dei.uc.pt, henrique@dei.uc.pt

Abstract

There are several auxiliary pre-computed access structures that allow faster answers by reading less base data.
Examples are materialized views, join indexes, B-tree and bitmap indexes. This paper proposes dimension-join,
a new type of index especially suited for data warehouses. The dimension-join borrows ideas from several
concepts. It is a bitmap index, it is a multi-table join and when being used one of the tables is not read to
improve performance. It is a multi-table join because it holds information belonging to two tables, which is
similar to the join index proposed by Valduriez. However, instead of being composed by the tables’ primary
keys, the dimension-join index is a bitmap index over the fact table using values from a dimension column. The
dimension-join index is very useful when selecting facts depending on dimension tables belonging to snowflakes.
The dimension-join represents a direct connection between the fact table and a table in the snowflake that can
avoid several joins and produce enormous performance improvements. This paper also evaluates experimentally
the dimension-join indexes using the TPC-H benchmark and shows that this new index structure can
dramatically improve the performance for some queries.

1. Introduction

Data warehouses (DWs) often grow to sizes of gigabytes or terabytes of information,
which makes the performance of the queries issued by decision support tools one of the most
important issues in Data Warehousing. In logical terms, a data warehouse is organized
according to the multidimensional model. Each dimension of this model represents a different
perspective for the analysis of the business. For instance, in the classical example of a chain
of stores, some of the dimensions are products, stores, and time. Each cell within the
multidimensional structure (a cube in this three dimension example) contains data (typically
numerical facts). For example, a single cell may contain the total sales for a given product in a
given store in a single day.

Although the data in a data warehouse could be stored in a multidimensional database
server (e.g., Oracle Express server), most of the data warehouses and OLAP applications store
the data in a relational database. That is, the multidimensional model is implemented as one
or more star schemes. Each star scheme consists in a large central fact table surrounded by
several dimensional tables, which are related to the fact table by foreign keys [1].

Fact tables store business measures (profit, units, etc) and have millions of records or
more. These tables normally have few (6 to 15) attributes. Dimension tables store information
characterizing the facts. Examples of typical dimensions are stores, suppliers, products, time,
etc. Dimensions are often denormalized, have few rows (hundreds or thousands) and many
columns (10 to 60). The central fact table is usually normalized, since it is the biggest table
and any redundancy would lead to excessive space allocation.

Typical queries join facts and some of the dimensions and the results are limited
normally by restrictions imposed in the dimensions. Because joining tables is such a heavy
operation and since the fact table is enormous, several solutions have been proposed in the
literature to optimize joins (see the related work section for references).

Some of the algorithms that implement joins use auxiliary structures and some do not.
In general, the ones that do not use auxiliary structures are good choices for ad hoc queries
but they normally present worse performances. Algorithms using auxiliary structures have
better performances but the data warehouse administrator has to choose which auxiliary
structures to use since the alternatives are plenty.

This paper reviews the most common joining algorithms and proposes a join using a
new type of index, the dimension-join index based on the join index proposed by Valduriez
[2] and resorting to function based-indexes, a feature available in Oracle DBMS. The
Valduriez join index makes the joins faster while the proposed dimension-join index avoids
run-time joins (like materialized views [3]) by storing the primary key of one table and a
column of another table. Basically, the Valduriez method reads data from the first table, then
reads data from the join-index and finally reads data from the second table. With the
dimension-join, the first table is never read because the desired values are in the index. This
improvement significantly improves the performance.

The remainder of this paper is organized as follows: section 2 presents related work
regarding pre-computed access structures and algorithms for ad hoc joins. Section 3 reviews
the currently used cached structures to aid joins. Section 4 presents some techniques that
better use pre-computed structures. Section 5 presents the dimension-join along with a
motivation example. Section 6 consists of experiment details and performance figures and
section 7 ends the paper with the conclusions and future work.

2. Related work

There are access methods that do not require any auxiliary structure. These algorithms
are especially suited for ad hoc joins because the administrator does not need to guess
anything about what data is the user going to ask for. Examples are the nested block join [4],
sort-merge join [4], simple hash join [4], Grace hash join [5], hybrid hash join, jive-join [6],
slam-join [6] and diag-join [7]. Although users of decision support systems normally pose ad
hoc queries, these algorithms alone are not enough to ensure an acceptable performance.
Some papers refer to them as last resort algorithms [8] because they are slower then the
algorithms that use auxiliary structures.

On the other hand, pre-computed or cached access structures return answers without
reading (partially or totally) the base data in the tables providing a faster answer. However,
these structures need to be maintained; i.e., if the base data changes, the structures must be
updated or rebuilt. Examples are materialized views [3], join indexes [2], B-trees [9] and
bitmap indexes. To the data warehouse administrator, one of the most difficult tasks regarding
using pre-computed structures is to decide how to use them: which ones to use and where to
use them (which joins, which columns, should every possibility be covered?, etc). The task is
particularly difficult because the administrator cannot create materialized views for every
possible query.

See [10] for a thorough analysis of several join algorithms. See [11] for a performance
comparison between join indexes, materialized views and hybrid-hash joins. See [12] for a
better cost model to compare ad hoc joins and for a performance comparison between nested

block join, sort-merge join, simple hash join, Grace hash join, and hybrid hash join. See [13]
and [14] (page 144) for a comparison between B-tree and bitmap indexes.

3. Pre-computed or cached access structures

3.1. B-tree index

The B-tree index is probably the most used pre-computed access structure in database
systems. A B-tree is a balanced tree with each node having hundreds of connections to more
nodes in the next level of the tree. The index is constructed and ordered with values of a
column. The leaf nodes point to rows in the table where the base data is read. B-trees are very
good in environments with mixed reading and writing operations, concurrency, exact searches
and range searches. B-tree indexes are relatively expensive auxiliary structures to maintain
since each one may take up as much space as 20% or more as the table. B-tree indexes present
excellent performance figures when used to find few rows in big tables.

3.2. Bitmap index

A bitmap index is a special kind of index consisting in arrays of bits. Each array
represents one of the values in the indexed column and the bit position in the array
corresponds to the row position in the table. Bitmap indexes are especially good when used in
columns with low cardinality and systems with low concurrency, few updates and searches
with Boolean operations. Bitmap indexes are very frequent in data warehouses since all of
these conditions are found there. A bitmap occupies much less space than a correspondent B-
tree index over the same column if the column has low cardinality. Figure 1 depicts a table
person and 2 bitmap indexes, one on column sex and the other on column city.

...

...

male
male
female
male
female
female
female
male

New York
Chicago
New York
Madison
New York
New York
Chicago
Chicago

sex city

1
1
0
1
0
0
0
1

0
0
1
0
1
1
1
0

1
0
1
0
1
1
0
0

0
1
0
0
0
0
1
1

0
0
0
1
0
0
0
0

F M M NC

index
sex

index
cityperson

Figure 1: Bitmap indexes

Bitmap indexes require low cardinality columns because the more distinct values there

are the biggest the bitmap becomes. Note that in Figure 1, the bitmap over city is 50%
bigger than the bitmap over sex solely because there are more distinct values of city than
there are of sex. There are already algorithms that use compressed bitmap when they became
too sparse [15].

3.3. Materialized view

A materialized view is a very expensive yet very fast pre-computed access method. It
is very expensive because it stores the result of a query, which can be quite big. The first time
the query is asked the server stores its rows. Further calls to the same query retrieve the

already saved result. Of course, this procedure is only cost effective if between several calls
the base data remains the same avoiding rebuilding the view. Storing just a few materialized
views may take as much space as the all other data warehouse tables together. On the other
hand, a materialized view is very fast because no join needs to be made at run time on
successive calls; everything that is left to do is to read the pre-computed view. Thus, the great
advantage of materialized views is that they allow the database system to avoid reading the
base data. All the information needed to answer the query is already in the view.

3.4. Join index

The join index, proposed by Valduriez [2], is an index that helps to join rows from two
relations, say R and S. By definition, the join index (JI) is created by joining R and S and
projecting the result on R and S primary keys1. Figure 2 shows two relations, person and pet,
and its respective join index.

person_id name age

John
Mary
Jane

27
21
28

1
2
3

pet_id name race

Lassie
Goldie
Kittie

dog
fish
cat

21
22
23

owner

Jane
Jane
John

person_id

3
3
1

pet_id

21
22
23

Join index

person relation

pet relation

Figure 2: Join index

For performance reasons, Valduriez also proposed that the JI should be implemented

as two B-tree indexes. Considering the example of Figure 3, one of the B-trees composing the
JI is accessed by person_id with leaf nodes pointing to pet_id and the other B-tree is
accessed by pet_id with leaf nodes pointing to person_id.

person_id name age

John
Mary
Jane

27
21
28

1
2
3

pet_id name race

Lassie
Goldie
Kittie

dog
fish
cat

21
22
23

owner

Jane
Jane
John

person_id

1
3
3

pet_id

23
21
22

JIpersonperson relation

pet relation

index on
person_id

index on
pet_id

index on
person_id

person_id

3
3
1

pet_id

21
22
23

JIpet

index on
pet_id

Figure 3: Join index as two B-tree indexes

Each B-tree of the join index (JIperson and JIpet in the example) assists for a join

order. If the DBMS is reading the person relation first and than the pet, it will: 1) read the

1 Actually, Valduriez identified rows using surrogates instead of primary keys. Surrogates are system unique
identifiers while primary keys are table unique identifiers.

person relation and find which rows to take to the next step; 2) read JIperson to find
which pets belong to those persons in 1); 3) and finally, with the pet_ids from JIperson,
the DBMS will read just the right rows in the relation pet. If the DBMS is joining the
relations in the reverse order it will use JIpet instead.

In short, a join index is a structure where the search is made using values from a table
and the results point to rows of another table.

4. Techniques using pre-computed structures

4.1. Reading only the index

Sometimes, the optimizer can decide that after reading the index it is not necessary to
read the indexed table. This happens if all the information needed is available already at the
index. Consider the tables showed in Figure 1. The query that finds the persons with pets is:

SELECT person.name
 FROM person, pet
 WHERE pet.owner = person.name;

If the optimizer knows about the join index, all it needs to do is read every row in
person and than search in JIperson a row matching that person_id. It won’t need to
search for anything more in pets because the SELECT clause does not specify any information
regarding pets. The dimension-join uses such improvement. In fact, the whole point of a
dimension-join is to use just one table and the index instead of reading and joining two tables.

4.2. Star Joins

One very interesting technique to optimize joins in star schemes is the star join
described in [16]. Basically, there is a bitmapped join index between the fact table and every
dimension table. When a search is executed, the DBMS reads the dimensions first, then it
finds their correspondent entries in its bitmapped join index. Finally, it processes (ORs and
ANDs) all bitmapped join indexes to find the rows in the fact table. The gain produced by this
approach comes from processing several indexes before reading any data in the fact table,
thus restricting the amount of rows retrieved in intermediate steps.

4.3. Star transformation

Oracle implements its own version of the star join. They call star join to a technique
that consists in producing a Cartesian join between the selected rows of each dimension table
and then, using it to find the desired rows in the fact table. This version is worse than the star
join of [16] because the intermediate Cartesian join can became large if the restrictions are not
selective enough. With the original star join, the join is made with bitmap indexes instead of
tables, and joining two bitmaps still produces a bitmap with the same size. Recognizing that
their star join could lead to large Cartesian products ([17], Chapter 20, section Optimizing
"Star" Queries, sub-section Star Transformation) Oracle implemented another join method to
star schemes resembling the original star join definition. They call it star transformation: “The
star transformation is based on combining bitmap indexes on individual fact table columns”.

However, star transformation rewrites the queries in order to find the entries in each bitmap
join index. A query like:

SELECT …
 FROM fact, dim1, dim2, …, dimN
 WHERE fact.fk_dim1 = dim1.pk /* joins */
 … …
 AND fact.fk_dimN = dimN.pk /* joins */
 AND dim1.attribute = value1 /* restriction */
 … …
 AND dimN.attribute = valueN /* restriction */

Is rewritten into:

SELECT …
 FROM fact, dim1, dim2, …, dimN
 WHERE fact.fk_dim1 IN (SELECT pk /* joins */
 FROM dim1
 WHERE = value1) /* restriction */
 … …
 AND fact.fk_dimN IN (SELECT pk /* joins */
 FROM dimN
 WHERE = valueN) /* restriction */

5. The Dimension-join

The dimension-join borrows ideas from several concepts. It is a bitmap index, it has
information belonging to two tables like a join index and when being used one of the tables is
not read. It can also be used like the star-join in the sense that several indexes can be
processed before reading any table. The dimension-join also requires the optimizer to rewrite
queries as with star-transformation.

5.1. TPC-H, a motivation example

As a motivating example consider the TPC benchmark H scheme [18] presented in
Figure 4. The TPC Benchmark H (TPC-H for short) is a decision support benchmark
produced by the TPC Council [19]. It consists of a set of tables and business oriented ah hoc
queries. Both queries and data have been chosen to have broad industry relevance. The goal is
to provide performance results to industry users regarding decision support implementations.

The TPC-H scheme consists in eight tables and their relations. Data can be scaled up
to model businesses with different data sizes. The scheme and the number of rows for each
table at scale 1 are presented in Figure 4.

TPC-H represents a retail business. Customers order products, which can be bought
from more than one supplier. Every customer and supplier belongs to a nation, which is
located in a region. The central fact table is LINEITEM although PARSUPP can also be
considered a fact table. The dimensions are PART, SUPPLIER and ORDERS. There are two
snowflakes, ORDERS? CUSTOMER? NATION? REGION and
SUPPLIER? NATION? REGION. To find out to which region some LINEITEM was sold it
is necessary to read data from all the tables in the first snowflake.

TPC-H query number 7, called Volume Shipping, finds, for two given nations, the
gross discount revenues derived from LINEITEMs in which Parts where shipped from a
Supplier in either Nation to a Customer in the other Nation during 1995 and 1996. Two
nations are given as input parameters. The full query 7 text in Oracle’s SQL dialect is:

 1: SELECT
 2: supp_nation,
 3: cust_nation,
 4: l_year,
 5: sum(volume) revenue
 6: FROM
 7: (
 8: SELECT
 9: n1.n_name supp_nation,
10: n2.n_name cust_nation,
11: to_char(l_shipdate, 'YYYY') l_year,
12: l_extendedprice * (1 - l_discount) volume
13: FROM
14: supplier,
15: lineitem,
16: orders,
17: customer,
18: nation n1,
19: nation n2
20: WHERE
21: s_suppkey = l_suppkey
22: AND o_orderkey = l_orderkey
23: AND c_custkey = o_custkey
24: AND s_nationkey = n1.n_nationkey
25: AND c_nationkey = n2.n_nationkey
26: AND (
27: (n1.n_name = 'FRANCE'
28: AND n2.n_name = 'GERMANY')
29: OR (n1.n_name = 'GERMANY'
30: AND n2.n_name = 'FRANCE'))
31: AND l_shipdate
32: BETWEEN to_date('1995-01-01', 'yyyy-mm-dd')
33: AND to_date('1996-12-31', 'yyyy-mm-dd')
34:) shipping
35: GROUP BY
36: supp_nation,
37: cust_nation,
38: l_year
39: ORDER BY
40: supp_nation,
41: cust_nation,
42: l_year;

Listing 1: TPC-H query number 7 code – Volume Shipping

Figure 5 represents a visual representation of query 7. The lighter attributes are the
ones that are used either as input or output. The darker attributes are needed only to reach the
data, to perform the joins along the snowflakes. Note that the query reads N_NAME twice, one

represents the SUPPLIER’s nation and the other is the CUSTOMER’s nation and each one is
connected by LINEITEM through a different snowflake.

Figure 4: The TPC-H scheme

As Figure 5 reveals, the performance problem with this query is that the desired

attributes, from NATION and LINEITEM, are too further apart from each other. The query will
have to read data from ORDERS, CUSTOMER and SUPPLIER only to reach NATION. The
dimension-join will bring NATION closer to LINEITEM.

5.2. Dimension-join index

The dimension-join is a bitmap index over a fact table with values from a dimension
table. The tables must be connected with one or more (the case of a snowflake) many to one
relationships. In the example of Figure 5, one ideal dimension-join index should be
constructed over LINEITEM rows mapping values of N_NAME from NATION. In fact,
considering query 7, two dimension-join indexes are in order: one mapping the CUSTOMER’s
nation and the other mapping SUPPLIER’s nation. Both indexes should be constructed over
LINEITEM, i.e., the bits should point to rows in LINEITEM.

The dimension-join index occupies little space because it is a bitmap index. It can,
however lead to big performance improvements because it allows avoiding several joins.
Figure 6 depicts a dimension-join index over rows of LINEITEM with information regarding
each row CUSTOMER’s NATION.

Figure 5: TPC-H query number 7 – Volume Shipping

Figure 6: LINEITEM and dimension-join index on CUSTOMER’s nation

6. Results

To test query 7 we built two dimension-join indexes: IDX_CUST, which relates
customers’ nations with LINEITEM’s tuples and IDX_SUPP, which relates suppliers’ nations
to LINEITEM’s tuples. In our implementation query 7 uses both indexes instead of

U
St

at
es

...

...............

Ar
ge

li
a

Ar
ge

nt
in

a

Br
az

il

U
Ki

ng
do

m

...

1
1
1
1
1
1
2
3

...

...

L_ORDERKEY L_COMMENT

0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0

1
0
0
0
0
0
0
0

LINEITEM

0
0
0
1
1
0
0
0

0
1
0
0
0
0
0
0

..
.

..
.

6000000 0 0 1 0...

...

U
St

at
es

CUSTOMER's nation

performing several run-time joins. At first, we wanted to use only TPC-H queries but
eventually we had to devise new queries to simulate different usage profiles. Essentially we
wanted to have queries using only one or the other dimension-join indexes. We construct two
new queries 7cust and 7supp, which use only the IDX_CUST or the IDX_SUPP dimension-
join index.

Query 7cust was

SELECT
 to_char(l_shipdate, 'YYYY') l_year,
 sum(l_extendedprice * (1 - l_discount)) volume
FROM
 lineitem,
 orders,
 customer,
 nation
WHERE
 o_orderkey = l_orderkey
 AND c_custkey = o_custkey
 AND c_nationkey = n_nationkey
 AND n_name = 'GERMANY'
GROUP BY
 to_char(l_shipdate, 'YYYY');

Query 7supp was:

SELECT
 count(*) qtd
FROM
 lineitem,
 supplier,
 nation
WHERE
 s_suppkey = l_suppkey
 AND s_nationkey = n_nationkey
 AND n_name = 'FRANCE';

To access how well dimension-indexes perform we measured total response time,
space required by the structures and the time lost in data loads.

6.1. Total response time

For query 7, and without the dimension-join, every row in LINEITEM had to be joined
with ORDERS, CUSTOMER and NATION to find its CUSTOMER’s nation. Similarly, every row in
LINEITEM had to be joined with SUPPLIER and NATION to find its SUPPLIER’s nation. With
the dimension-join indexes, the optimizer can rewrite query 7, showed in Listing 1, and
remove the joins (lines 15 to 19 and 21 to 25).

Without dimension-join indexes, TPC-H query number 7 took 385 seconds to
completion. With the two dimension-join indexes the query took only 123 seconds
representing an improvement of over 273%. Figure 7 represents the optimized visual version
of TPC-H query 7. Another important result was that it was much easier to optimize the query
with the dimension-join, i.e., at first, query number 7 took 809 seconds without the

dimension-join indexes and only after some tuning effort could we reduce the time to the 385
seconds.

Figure 7: Optimized TPC-H query number 7

Query 7cust took 618 seconds without the dimension-join indexes and only 82 seconds
with them accounting for an improvement of over 750%. Query 7supp, which is very simple,
took 0.5 seconds without the dimension-join (IDX_SUPP) and only 0.15 seconds with it,
returning the answer 3.3 times faster.

6.2. Space taken by the database structures

The new auxiliary indexes, IDX_CUST and IDX_SUPP, take up 11 Mbytes and 25
Mbytes, which correspond to about 2% of the total TPC-H scheme (tables, primary key
indexes and foreign key indexes). Although IDX_CUST and IDX_SUPP index exactly the
some number of tuples they have different sizes due to clustering. The DBMS compresses
bitmap indexes with good clustering values.

Table 1 depicts the sizes of all major structures in the TPC-H scheme.

Tables Mbytes PK Indexes Mbytes FK Indexes Mbytes TOTALS

LINEITEM 757,813 PK_LINEITEM 126,563
FK_ORDERKEY_L
FK_PARTKEY_L
FK_SUPPKEY_L

126,563
126,563
126,563

1264,065

ORDERS 168,633 PK_ORDERS 23,633 FK_CUSTKEY_O 37,539 229,805

PARTSUPP 114,805 PK_PARTSUPP 23,516 FK_SUPPKEY_PS
FK_PARTKEY_PS

16,719
16,719

171,759

PART 26,680 PK_PART 2,969 - - 29,649
CUSTOMER 24,141 PK_CUSTOMER 2,266 FK_NATIONKEY_C 3,359 29,766
SUPPLIER 1,484 PK_SUPPLIER 0,156 FK_NATIONKEY_S 0,273 1,913
NATION 0,023 PK_NATION 0,016 FK_REGIONKEY_N 0,039 0,078
REGION 0,016 PK_REGION 0,016 - - 0,032

TOTALS 1093,595 179,135 454,337 1727,067

Table 1: Space required by every major structure in the scheme

Table 2 shows the space taken by the TPC-H scheme with and without the dimension-
join indexes.

 Every structure Dimension-joins TOTALS

TPC-H ? 1727 - - 1727

TPC-H + Dimension-joins ? 1727 IDX_SUPP
IDX_CUST

25
11

1763

Table 2: Space required by all structures in the scheme

6.3. Time lost in data loads

The time lost rebuilding the dimension-join indexes due to data loads represents the
major drawback of this approach. However, we constructed the dimension-join indexes using
an Oracle 8i database feature, the function based index which relies upon PL/SQL calls.

Since TPC-H does not define data load details it is not possible to measure precisely
how much time is spent in this phase. However, even without loading any data we measure
the time spent dropping and re-creating all other indexes. It took us about 9000 seconds to
drop and create all primary key and foreign key indexes and it took us about 7300 seconds to
drop and rebuild only the two dimension-join indexes. Thus, including the dimension-join
indexes considerably increase the index recreation time.

We think that an implementation of the dimension-indexes support by the DBMS
vendor would greatly diminish the creation time.

6.4. Implementation

The Oracle 8i database server provides features that allowed for a high-level
implementation of dimension-join indexes. In version 8i, Oracle permits a special type of
index called Function Based Index. A function-based index is a B-tree or bitmap index
created from the result of a function applied to every row in a particular column. For instance,
it is possible to have an index built on UPPER(name) on persons instead of just name. The
SQL command that creates a B-tree index on UPPER(name) is:
CREATE INDEX ON person(UPPER(name));

Oracle also allows defining function-based indexes using user-defined functions. The
user-defined functions should be deterministic and should not read any other database tables
or variables. However, it is possible to work around these restrictions, basically by lying to the

Oracle’s PL/SQL compiler. We defined two functions: get_supp_nation and
get_cust_nation which receive a LINEITEM order number and return the SUPPLIER’s
nation and the CUSTOMER’s nation respectively. The next step was just to define indexes on
those functions over LINEITEM:
CREATE BITMAP INDEX idx_supp ON lineitem(get_supp_nation(l_orderkey);
CREATE BITMAP INDEX idx_cust ON lineitem(get_cust_nation(l_orderkey);

Finally, the queries were rewritten to force the usage of the new indexes. The new
queries read fewer tables and perform no joins like showed in Figure 7. The complete
implementation is outside the scope of this paper. It can be found at [20].

6.5. Comparison of pre-computed structures

The usage of pre-computed structures to perform joins involves three steps: 1) fetch
and process some information in the first relation; 2) fetch and process some information in
the structure; 3) fetch and process the remaining information in the other relation or table.

Structure Step 1 Step 2 Step 3
Bitmap Reads the

first table,
gets some
rows and
attribute
values.

With those values, finds which
rows in the second table are
joined with the rows from the
first table. Finding the rows in
the bitmap is extremely fast
when the column has low
cardinality.

Reads the rows in the second
table by direct access indicated
by the position the bits are found
in the bitmap. It may remove
some rows from the answer set
based on the query conditions
and on the values obtained.

Dimension-
join

Does nothing. Finds which rows in the fact
table are joined with the rows
from the dimension table.
Finding the rows in the bitmap is
extremely fast when the column
has low cardinality.

Reads the rows in the fact table
by direct access indicated by the
position the values are found in
the bitmap. It may remove some
rows from the answer set based
on the query conditions and on
the values obtained.

B-tree Reads the
first table,
gets some
rows and
attribute
values.

With those values, finds which
rows in the second table are
joined with the rows from the
first table. Finding the rows in
the B-tree is fast if the column
has high cardinality and if the
query is joining few rows.

Reads the rows in the second
table indicated by the leaf nodes
in the B-tree. It may remove
some rows from the answer set
based on the query conditions
and on the values obtained.

Join index Reads the
first table,
gets some
rows and
attribute
values.

Used the values from step 1) to
find which rows in the second
table are joined with these rows.

Reads the rows in the second
table indicated by the leaf nodes
in the B-tree. It may remove
some rows from the answer set
based on the query conditions
and on the values obtained.

Materialized
view

-- The whole answer is obtained
using only the materialized view.

--

Table 3: Steps involved in joins using several pre-computed structures

Table 3 is ordered by space, from the structure that occupies less space to the one that
occupies more.

The DBMS can also use the join index by inverting steps 1) and 2); i.e., reading first
the information in the index and afterwards reading the rows in one table and than in the
other.

7. Conclusions and future work

The dimension-join index allows for data away from the central fact table to be drawn
closer to it. The dimension-join index is a bitmap index over the fact table with information
regarding one of the dimension’s columns and in this characteristic it resembles the join index
from Patrick Valduriez. Like in materialized views, with the dimension-join, run-time joins
are avoided. Also like in star-join, several indexes may be processed before a (fact) table is
accessed. Finally, like in the star-transformation, the DBMS engine may have to re-write the
query.

Since the dimension-join represents a shorter path from the fact table to a dimension,
the further away from the fact table is that dimension, the better the dimension-join index
performs. The dimension-join is a structure especially suited to data warehouses because the
joins are big, the number of retrieved lines may be plenty, there are few updates to base data,
and there is almost no concurrency. Also, since dimension-join indexes are much cheaper in
terms of space than B-trees or materialized views, the data warehouse administrator can use
more aggressive policies when deciding which columns to index.

The dimension-join index was tested using the TPC-H benchmark scheme and query
number 7 along with two other queries providing constant improvement in performance. The
creation phase is currently the drawback of the dimension-join indexes manly because it uses
features in a way they were not meant for (the implementation used features of Oracle 8i
database server, namely function based indexes with user-defined functions).

Future work is needed measuring more queries and different tables. Also an
implementation of the dimension-join indexes at a lower level (instead of PL/SQL and
function based indexes) can provide better creation times.

References

[1] Ralph Kimball. The Data Warehouse Toolkit. John Willey & Sons,
Inc.; 1996.

[2] Patrick Valduriez. Join Indices. ACM TODS, Vol 12, Nº 2, pags 218-
246; June 1987.

[3] N. Roussopoulos. Materialized Views and Data Warehouses. ACM
SIGMOD Record 27(1): 21-26 (1998)

[4] Raghu Ramakrishnan, Johannes Gehrke. Database Management
Systems, Second Edition. McGraw-Hill International Editions,
Computer Science Series. 2000.

[5] Masaru Kitsuregawa, H Tanaka, T Molo-oka. Relational Algebra
Machine CRACE. Lecture Notes in Computer Science. Springer-Verlag.
pp.l91-2.14 (1982)

[6] Zhe Li, Kenneth A. Ross. Fast Joins Using Join Indices. The VLDB
Journal, volume 7, number 4, 1998.

[7] Sven Helmer, Till Westmann, Guido Moerkotte. Diag-Join, An
Opportunistic Join Algorithm for 1 to N Relationships . Proc.
VLDB1998 Conference, pags 98-109.

[8] Kjell Bratbergsengen. Hashing Methods And Relational Algebra
Operations . In Proc. 10th VLDB Conference, pags 323-333, 1984.

[9] Rudolf Bayer, Edward M. McCreight. Organization and Maintenance
of Large Ordered Indices. Acta Informatica 1, pags 173-189; 1972.

[10] Priti Mishra, Margaret H. Eich. Join Processing in Relational
Databases. In ACM Computing Surveys, Vol 24, No 1, March 1992.

[11] José A. Blakeley, Nancy L. Martin. Join Index, Materialized View, and
Hybrid-Hash Join: A Performance Analysis. Proc. ICDE Conference
1990, pags 256-263.

[12] Laura M. Haas, Michael J. Carey, Miron Livny, Amit Shukla. SEEKing
the truth about ad hoc join costs. The VLDB Journal, volume 6,
number 3, pags 241-256, 1997.

[13] Marcus Jürgens, Hans-J. Lenz. Tree Based Indexes vs. Bitmap Indexes
- a Performance Study. Proc. DMDW Conference 1999.

[14] Michael J. Corey, Michael Abbey. Oracle Data Warehousing. Osborne
McGrawHill – Oracle Press. 1997.

[15] C. Y. Chan, Y. E. Ioannidis: Bitmap Index Design and Evaluation.
Proc. SIGMOD Conference 1998: 355-366.

[16] P. O’Neil and G. Graefe. Multi-Table Joins Through Bitmapped Join
Indices. SIGMOD Record, pages 8-l 1, September 1995.

[17] Oracle Corporation. Oracle8 Concepts (Release 8.0 - A58227-01).
Oracle Documentation Library. Available at http://technet.oracle.com/

[18] Benchmark TPC-H - Decision Support for Ad Hoc Queries.
http://www.tpc.org/tpch.

[19] Transaction Processing Council. http://www.tpc.org.

[20] Pedro Bizarro. Avoid costly joins with FBIs. Oracle Professional
Newsletter, Volume 7, number 9. September 2000. Available at
www.oracleprofessionalnewsletter.com.

