The Dimension-Join: A New Index for Data War ehouses
Pedro Bizarro and Henrique Madeira
Univergty of Coimbra, Portugd
Dep. Engenharia Informética— CISUC
3030-397, Coimbra— Portugal
bizarro@dei.uc.pt, henrique@de.uc.pt

Abstract

There are several auxiliary pre-computed access structures that allow faster answers by reading |ess base data.
Examples are materialized views, join indexes, B-tree and bitmap indexes. This paper proposes dimension-join,
a new type of index especially suited for data warehouses. The dimension-join borrows ideas from several
concepts. It is a bitmap index, it is a multi-table join and when being used one of the tables is not read to
improve performance. It is a multi-table join because it holds information belonging to two tables, which is
similar to the join index proposed by Valduriez. However, instead of being composed by the tables' primary
keys, the dimension-join index is a bitmap index over the fact table using values from a dimension column. The
dimension-join index is very useful when selecting facts depending on dimension tables bel onging to snowfl akes.
The dimension-join represents a direct connection between the fact table and a table in the snowflake that can
avoid several joins and produce enormous performance improvements. This paper also evaluates experimentally
the dimension-join indexes using the TPC-H benchmark and shows that this new index structure can
dramatically improve the performance for some queries.

1. Introduction

Data warehouses (DWSs) often grow to Sizes of gigabytes or terabytes of information,
which makes the performance of the queries issued by decison support tools one of the most
important issues in Data Warehousing. In logica terms, a daa warehouse is organized
according to the multidimensona modd. Each dimenson of this modd represents a different
perspective for the andyss of the busness. For ingance, in the classicd example of a chain
of dores, some of the dimensons are products, sores, and time. Each cedl within the
multidimendond dructure (a cube in this three dimenson example) contains data (typicaly
numerica facts). For example, a sngle cell may contain the tota sdes for a given product in a
given gorein asngle day.

Although the data in a data warehouse could be stored in a multidimensond database
sarver (eg., Oracle Express server), most of the data warehouses and OLAP applications store
the data in a rdationd dadbase. That is the multidimensond modd is implemented as one
or more star schemes. Each dtar scheme consdts in a large central fact table surrounded by
severa dimensiond tables, which are related to the fact table by foreign keys[1].

Fact tables store business measures (profit, units, etc) and have nillions of records or
more. These tables normdly have few (6 to 15) attributes. Dimension tables store informeation
characterizing the facts. Examples of typicd dimensions are stores, suppliers, products, time,
efc. Dimensons are often denormdized, have few rows (hundreds or thousands) and many
columns (10 to 60). The centrd fact table is usudly normdized, snce it is the biggest table
and any redundancy would lead to excessive space dlocation.

Typicd queries join facts and some of the dimensons ad the results are limited
normaly by redrictions imposed in the dimensons. Because joining tables is such a heavy
operation and since the fact table is enormous, severd solutions have been proposed in the
literature to optimize joins (see the related work section for references).

Some of the dgorithms that implement joins use auxiliary sructures and some do not.
In generd, the ones that do not use auxiliary structures are good choices for ad hoc queries
but they normdly present worse performances. Algorithms using auxiliary dructures have
better performances but the data warehouse adminigtrator has to choose which auxiliary
dructuresto use snce the dternatives are plenty.

This paper reviews the most common joining agorithms and proposes a join usng a
new type of index, the dimensonjoin index based on the join index proposed by Vaduriez
[2] and resorting to function based-indexes, a feature avalable in Oracle DBMS. The
Vdduriez join index makes the joins faster while the proposed dimensionjoin index avoids
run-time joins (like maeridized views [3]) by doring the primary key of one table and a
column of another table. Basically, the Vadduriez method reads data from the firg table, then
reads data from the join-index and findly reads data from the second table. With the
dimengonjoin, the firgt table is never read because the dedred vaues are in the index. This
improvement sgnificantly improves the performance.

The remainder of this paper is organized as follows section 2 presents related work
regarding pre-computed access structures and algorithms for ad hoc joins. Section 3 reviews
the currently used cached dtructures to ad joins. Section 4 presents some techniques that
better use pre-computed dructures. Section 5 presents the dimensonjoin dong with a
motivation example. Section 6 condsts of experiment details and performance figures and
section 7 ends the paper with the conclusions and future work.

2. Related work

There are access methods that do not require any auxiliary sructure. These agorithms
ae expecidly suited for ad hoc joins because the administrator does not need to guess
anything about what data is the user going to ask for. Examples are the nested block join [4],
sort-merge join [4], smple hash join [4], Grace hash join [5], hybrid hash join, jive-join [6],
damjoin [6] and diag-join [7]. Although users of decison support systems normaly pose ad
hoc queries, these agorithms aone are not enough to ensure an acceptable performance.
Some papers refer to them as last resort dgorithms [8] because they are dower then the
dgorithms that use auxiliary structures.

On the other hand, pre-computed or cached access structures return answers without
reading (partidly or totaly) the base data in the tables providing a faster answer. However,
these dtructures need to be maintained; i.e, if the base data changes, the Structures must be
updated or rebuilt. Examples are materidized views [3], join indexes [2], B-trees [9] and
bitmap indexes. To the data warehouse adminigrator, one of the most difficult tasks regarding
using pre-computed structures is to decide how to use them: which ones to use and where to
use them (which joins, which columns, should every possbility be covered? etc). The task is
paticularly difficult because the adminidraior cannot creste materidized views for every
possible query.

See [10] for a thorough andyss of severd join dgorithms. See [11] for a performance
comparison between join indexes, materidized views and hybrid-hash joins. See [12] for a
better cost model to compare ad hoc joins and for a performance comparison between nested

block join, sort-merge join, smple hash join, Grace hash join, and hybrid hash join. See [13]
and [14] (page 144) for a comparison between B-tree and bitmap indexes.

3. Pre-computed or cached access structures

3.1. B-treeindex

The Btree index is probably the most used pre-computed access structure in database
sysems. A B-tree is a baanced tree with each node having hundreds of connections to more
nodes in the next level of the tree. The index is condructed and ordered with values of a
column. The leaf nodes point to rows in the table where the base data is read. B-trees are very
good in environments with mixed reading and writing operations, concurrency, exact searches
and range searches. B-tree indexes are rdaively expensve auxiliary gtructures to mantain
since each one may take up as much space as 20% or more as the table. B-tree indexes present
excdlent performance figures when used to find few rowsin big tables.

3.2. Bitmap index

A bitmap index is a specid kind of index condging in arays of hits Each aray
represents one of the values in the indexed column and the hit pogtion in the aray
corresponds to the row podtion in the table. Bitmap indexes are especiadly good when used in
columns with low cardindity and sysems with low concurrency, few updates and searches
with Boolean operations. Bitmap indexes are very frequent in data warehouses since dl of
these conditions are found there. A bitmap occupies much less space than a correspondent B
tree index over the same column if the column has low cadindity. Figure 1 depicts a table

per son and 2 bitmap indexes, one on column sex and the other on column ci ty.

i ndex i ndex
per son sex city
sex city F M C M N

mal e New Yor k 0 1 0 0 1
mal e Chi cago 0 1 1 0 0
femal e New Yor k 1 0 0 0 1
mal e Madi son 0 1 0 1 0
femal e New Yor k 1 0 0 0 1
femal e New Yor k 1 0 0 0 1
femal e Chi cago 1 0 1 0 0
mal e Chi cago 0 1 1 0 0

Fgure 1. Bitmap indexes

Bitmap indexes require low cardindity columns because the more didtinct vaues there
ae the biggest the bitmap becomes. Note that in Figure 1, the bitmap over city is 50%
bigger than the bitmap over sex soldy because there are more digtinct vaues of ci ty then
there are of sex. There are dready dgorithms that use compressed bitmap when they became
too sparse [15].

3.3. Materialized view

A maeridized view is a very expensve yet very fast pre-computed access method. It
is very expendve because it sores the result of a query, which can be quite big. The firg time
the query is asked the server dtores its rows. Further cals to the same query retrieve the

dready saved result. Of course, this procedure is only cost effective if between severd cdls
the base daa remains the same avoiding rebuilding the view. Storing just a few materidized
views may take as much space as the al other data warehouse tables together. On the other
hand, a materidized view is very fagt because no join needs to be made a run time on
successive cdls, everything that is left to do is to read the pre-computed view. Thus, the great
advantage of materidized views is that they dlow the database sysem to avoid reading the
base data. All the information needed to answer the query is aready in the view.

3.4. Join index

The join index, proposed by Vaduriez [2], is an index that helps to join rows from two
rdaions, say R and S. By definition, the join index (J) is creasted by joining R and S and
projecting the result on R and S primary keys'. Figure 2 shows two relations, person and pet,
and its respective join index.

person relation
person_id | name | age
1 John 27 Join index
2 Mary 21 person_id | pet_id
3 Jane 28 3 21
3 22
pet relation 1 23
pet_id name race owner
21 Lassie |dog Jane
22 Goldie | fish Jane
23 Kittie cat John

Figure 2: Join index

For performance reasons, Vaduriez dso proposed that the J should be implemented
as two Btree indexes. Congdering the example of Figure 3, one of the B-trees composing the
J is accessed by person_i d with lesf nodes pointing to pet i d and the other B-treeis
accessed by pet _i d with lesf nodes pointing to per son_i d.

person relaion Jiperson
person_id name | age person_id pet_id
- 1 John 27 o 1 23
3 Jane 28 3 22
pet relation Jipet
pet_id | name race owner pet_id | person_id
o 21 Lassi_e o!og Jane o 21 3
peid | | 22 Goldie | fish Jane pet id | | 22 3
23 Kittie cat John 23 1

Figure 3: Join index astwo B-tree indexes

Each Btree of the join index (JI per son and JI pet in the example) assgts for ajoin
order. If the DBMS is reading the per son reation firs and than the pet , it will: 1) read the

1 Actually, Valduriez identified rows using surrogates instead of primary keys. Surrogates are system unique
identifiers while primary keys are table unique identifiers.

per son reation and find which rows to take to the next step; 2) read JI per son to find
which pets belong to those persons in 1); 3 and findly, with the pet _i dsfrom JI per son,
the DBMS will read just the right rows in the rdaion pet. If the DBMS is joining the
reaionsin the reverse order it will use JI pet instead.

In short, a join index is a Sructure where the search is made @wing vaues from a table
and the results point to rows of another table.

4. Techniques using pre-computed structures
4.1. Reading only the index

Sometimes, the optimizer can decide that after reading the index it is not necessary to
read the indexed table. This hgppens if dl the information needed is avalable dready a the
index. Congder the tables showed in Figure 1. The query that finds the persons with petsis:

SELECT person. nane
FROM per son, pet
VWHERE pet . owner = person. nang;

If the optimizer knows about the join index, dl it needs to do is read every row in
person and than search in JI per son a row maching that person_i d. It won't need to
search for anything more in pets because the SELECT dause does not specify any information
regarding pets. The dimensortjoin uses such improvement. In fact, the whole point of a
dimengon-join isto use just one table and the index instead of reading and joining two tables.

4.2. Star Joins

One very interesting technique to optimize joins in dar schemes is the dar join
described in [16]. Badcdly, there is a bitmapped join index between the fact table and every
dimenson table. When a search is executed, the DBMS reads the dimendons fird, then it
finds ther correspondent entries in its bitmapped join index. Findly, it processes (ORs and
ANDs) dl bitmapped join indexes to find the rows in the fact table. The gain produced by this
goproach comes from processing severd indexes before reading any data in the fact table,
thus rediricting the amount of rows retrieved in intermediate steps.

4.3. Star transformation

Oracle implements its own verson of the star join. They cdl dar join to a technique
that conssts in producing a Cartesian join between the sdected rows of each dimension table
and then, usng it to find the dedred rows in the fact table. This verson is worse than the star
join of [16] because the intermediate Cartesian join can became large if the redtrictions are not
sdective enough. With the origind gar join, the join is made with bitmap indexes indead of
tables, and joining two bitmaps ill produces a bitmap with the same dze. Recognizing that
their star join could lead to large Cartesan products ([17], Chapter 20, section Optimizing
"Sa" Queries, sub-section Star Transformation) Oracle implemented another join method to
da schemes resembling the origind gar join definition. They cdl it da trandformation: “The
dar trandformation is based on combining bitmap indexes on individud fact table columns'.

However, sar transformation rewrites the queries in order to find the entries in each bitmap
joinindex. A query like:

SELECT ...
FROM fact, dinl, dinR, .., dinmN

VWHERE fact.fk_diml = di ml. pk /* joins */
AND fact.fk_di mN = di mN. pk /* joins *)
AND di mL. attri bute = val uel /* restriction */
AND (.Jlli'rrN.attribute=va|ueN /* restriction */

IS rewritten into:

SELECT ...
FROM fact, dintl, dinm, ., dinN
WHERE fact.fk_diml IN (SELECT pk /* joins o
FROM di mlL
WHERE = valuel) /* restriction */
AND fact.fk _dimN IN (SELECT pk /* joins */

FROM di mN
WHERE = valueN) /* restriction */

5. The Dimension-join

The dimengonjoin borrows ideas from severd concepts. It is a bitmap index, it has
information belonging to two tables like a join index and when being used one of the tables is
not read. It can adso be used like the dar-join in the sense that severd indexes can be
processed before reading any table. The dimensonjoin aso requires the optimizer to rewrite
queries as with star-transformation.

5.1. TPC-H, amotivation example

As a motivating example consder the TPC benchmark H scheme [18] presented in
Figure 4. The TPC Benchmark H (TPC-H for short) is a decison support benchmark
produced by the TPC Council [19]. It congsts of a set of tables and business oriented ah hoc
queries. Both queries and data have been chosen to have broad indusiry relevance. The god is
to provide performance results to industry users regarding decision support implementations.

The TPC-H scheme congsts in eight tables and their reations. Data can be scaled up
to mode businesses with different data Szes. The scheme and the number of rows for each
table at scae 1 are presented in Figure 4.

TPC-H represents a retall business. Customers order products, which can be bought
from more than one supplier. Every customer and supplier belongs to a nation, which is
located in a region. The centra fact table is LINEITEM dthough PARSUPP can aso be
consdered a fact table. The dimensons are PART, SUPPLIER and ORDERS. There are two
snowflakes, ORDERS? CUSTOMER? NATION? REGION and
SUPPLIER? NATION? REGION. To find out to which region some LINEITEM was sold it
is necessary to read data from dl the tables in the first snowflake.

TPC-H query number 7, cdled Volume Shipping, finds for two given nations the
gross discount revenues derived from LINEITEMs in which Pats where shipped from a
Supplier in ether Nation to a Customer in the other Nation during 1995 and 1996. Two
nations are given as input parameters. The full query 7 text in Oracle s SQL didect is:

1. SELECT

2: supp_nati on,

3: cust _nati on,

4: | _year,

5: sum(vol une) revenue

6: FROM

7.

8: SELECT

9: nl. n_name supp_nation
10: n2. n_name cust_nati on,
11: to_char(l _shipdate, 'YYYY') | _year,
12: | _extendedprice * (1 - | _discount) vol une
13: FROM
14. suppl i er,
15: lineitem
16: orders,
17: cust omer,
18: nation nl,
19: nation n2
20: VWHERE
21: s_suppkey = | _suppkey
22: AND o_orderkey = |_orderkey
23: AND c_cust key = o_cust key
24 AND s_nationkey = nl.n_nationkey
25: AND c_nationkey = n2.n_nati onkey
26: AND (
27: (nl. n_nanme = ' FRANCE
28: AND n2.n_nane = ' GERVANY')
29: OR (nl. n_nanme = ' GERVANY'
30: AND n2.n_nanme = ' FRANCE'))
31: AND | _shi pdate
32: BETWEEN to_date(' 1995-01-01"', 'yyyy-mmdd')
33: AND to_date('1996-12-31", 'yyyy-mmdd')
34:) shi ppi ng
35: GROUP BY
36: supp_nati on,
37: cust _nati on,
38: | _year
39: ORDER BY
40: supp_nati on,
41: cust _nati on,
42: | _vyear;

Liging 1: TPC-H query number 7 code — Volume Shipping

Figure 5 represents a visual representation of query 7. The lighter atributes are the
ones that are used ether as input or output. The darker attributes are needed only to reach the
data, to perform the joins dong the snowflakes. Note that the query reads N_NAME twice, one

represents the SUPPLI ER's nation and the other is the CUSTOVER's naion and each one is
connected by L1 NEI TEMthrough a different snowflake.

R s L "“:fl—l;';lm
PARTELFR G GUPPHEY dpkr HUMBERID|
BE PORTEEY Dbk HUEER) _MiE CHARIZE
P& GURRKEY pk it HUREER(ED) CRAPFEET- PEGHIFRRY | aDORESS A CHARI (A
FE_BMILOTY HIPBEFT) I MATIOMEEY Rk MUMBERD)
PE_SUPPLYCOST HLREERN, 5] 5 FHONE CHARETS)
FEC L ORAENT W HFr B_ACCTHALL MUMBERD 2
7 0 ONHENT A HARI 0 5 records
;I_f ¥ *, REGION
y ; F_AEGIOFKET g HLWBERGID]
! :5':&::;:5“.: Hm T MIFFEET e LR T \ F_HewiE CHERIRE
r_ramiEr s FLrarTREY by H ; F_ COraeENT e
b, 6001335 recods o TP Ae
/ THET# i
L DROEAKEY ipkdikr HLMEERID] | &
Z00. 008 weonyds L_PARTEET ks HLUREER 1) \ P B W T - B P O R
PERT | L_SURPKEF e HULBERID) .
TUMENBBES mb: HOWBER/ P e A
TErE W e o i sl
F_WFGR CHAFGH il L_ETENLE0PRICE HILWBERI0.5) [hemow]
] i P_PARTEEY - L panTiay L DASCOUNT HULBER(ID.Z) | FUATIOHRET ipk? HLLBEFTIT
i Sl gt LT HUMEER10,5] FI_FLE CRARIE)
g RO L_FETURKFLAG CHARIT) FI_REGIORHET s MULBEF(IT
- BRI L LINESTATUE CHAR(T) FI_COMENT LERCHER 2
BLCOHTANER: CHEREIT L SHIRDATE s
P_RETHLPRICE MEER DT LGN TIATE B f
ECERMENT HORCHARIE L_FEGEIFTDATE 0&TE s
|L_SHIPINSTRUCT CHARE] ,/.;
L3 HIPMODE CHARCI
; wmllir)—h.lﬁTnlrEr
sl Y,
-
1500 B0 records TR e
Cniniy BERERSVAa o CUSTOMER
0_CUETHEY s HURBERCIT C_MAE URRLHARTE)
0 ORIERETTUE L AR ANBTHEY- a_0NITeEy |C_ADDRESE AL HARTH
DTN TACRAILE PILRBERCILY W= CUATIDNEET e HUWEEFII)
1_ORIERDATE CATE o pLInNE CHARCIE]
OZARDERERIOAITY CHEFLI CALLTEALL HUKBEFLI.Z)
DELEEE ERARITL C_WHTSEGWENT CHARII)
NZEHIPRIORTY HURE ERZID) e e PRSI
0_CORBERT WAACHARIH)

Figure 4: The TPC-H scheme

As Figure 5 reveds, the peformance problem with this query is that the desred
attributes, from NATI ON and LI NEI TEM are too further gpart from each other. The query will
have to read data from ORDERS, CUSTOVER and SUPPLI ER only to reach NATI ON. The
dimengon-joinwill bring NATI ON closer to LI NEI TEM

5.2. Dimension-join index

The dimendon-join is a bitmap index over a fact table with vaues from a dimension
table. The tables must be connected with one or more (the case of a snowflake) many to one
relationships. In the example of Figure 5 one ided dimensonjoin index should be
condructed over LI NEI TEM rows mapping vaues of N_NAMVE from NATI ON. In fact,
congdering query 7, two dimension-join indexes are in order: one mapping the CUSTOVER'S
nation and the other mapping SUPPLI ER's nation. Both indexes should be congtructed over
LI NEI TEM i.e, the bits should point to rowsin L1 NEI TEM

The dimenson-join index occupies little space because it is a bitmap index. It can,
however lead to big peformance improvements because it dlows avoiding severa joins.
Figure 6 depicts a dimenson-join index over rows of LI NEI TEM with information regarding
each row CUSTOVER s NATI ON.

SUPFLIER

PARTSUPP

S ADDRESS WARCHARZ (A0

CHAR(IE)

S _SUPPKEY = PS_SUPPKEY

S_PHONE

S_ACCTBALL NUMBER(10,2)
S_COMMENT WARCHARZ(101)
,{ REGION

.
r

PS_PARTEEY = L_PARTKEY i
PS5 _SUPPKEY = L_SUPPKEY S SUPPKEY = L_SUPPKEY

¢
N

P_PARTKEY = PS_PARTKEY

N_NATIONKEY = 5_NATIONKEY

-

LINEITEM

R_REGIINKEY = N_REGKI NKEY

<tz NUMBR

L LINENUMBER pk> HUMBER(1O
L_QUANTITY LIMBER{0.2)

[T EXTENDEDFRICE IR | NATION

P_PARTHEY = L_PART Rl S LN T UMBERMOZY |1
e R s L_TAX% UMEBER(10,2) N AR E CHAR(ZS)

L_RETURNFLAG CHAR(1) N_REGIONKET < NUMBERC10)
L LINESTATUS CHARCT) N_COMMENT WARCHARZ(152)

L EHFCATE TATE]
L_COMMITDATE DATE
L_RECEIPTDATE DATE
L_SHIFINSTRUCT CHAR(2S)
L_SHIPMODE CHAR(D)
L_COMMENT WARCHARZIA)

N_NATIONEEY = C_NATIONKEY

0O_ORDERKEY = L ORDERKEY

ORDERS

CUSTOMER

: - TNAME e TARCNARZ(ZS
O_TOTALFRICE HUMEER(10,2) F-CUSTHEY = O_CUSTHE o EnniDLRESS e CAEC H AR
O_ORDERDATE DATE et T e
O_ORDERPRIORITY CHAR(S) E—EES;JBEALL ﬁmﬂéiﬂm 2
O_CLERK CHAR(S) = :

- C_MKTSEGMENT CHAR(D
O_SHIPRIORITY NUMBER{10) = (1
e VARCHARZ(T) C_COMMENT YARCHARZ(11T)

Figure 5: TPC-H query number 7 — Volume Shipping

CUSTOMER' snation

Br azi |

Argelia
U Ki ngdom

U States

LI NEI TEM
L_ORDERKEY e L_COVVENT

Argentina

WN R R R R R
OFRr OO0 OO0 Oo
[eNeoNeloNolNoNall
Ocoooooo o
Ocoo0oo0oo0ookr O
OO0 ORrRrRRFR OOO

6000000 A 0]0 1(0
Figure6: LI NEI TEMand dimension-joinindex on CUSTOVER's nation

6. Resaults

To tet query 7 we built two dimendortjoin indexes IDX_CUST, which relates
customers nations with LINEITEM’s tuples and IDX_SUPP, which relates suppliers nations
to LINEITEM’'s tuples In our implementation query 7 uses both indexes instead of

peforming severd run-time joins. At fird, we wanted to use only TPC-H queries but
eventudly we had to devise new queries to dmulate different usage profiles. Essentidly we
wanted to have queries usng only one or the other dimenson-join indexes. We construct two
new queries 7cust and 7supp, which use only the IDX_CUST or the IDX_SUPP dimension
join index.

Query 7cust was

SELECT
to_char(l _shipdate, 'YYYY') | _year,
sum(| _extendedprice * (1 - | _discount)) vol une
FROM
lineitem
orders,
cust oner,
nation
VWHERE
o_order key
AND c_cust key 0_cust key
AND c_nati onkey n_nati onkey
AND n_nane = ' GERVANY'

| _orderkey

GROUP BY
to_char (Il _shi pdate, ' YYYY');
Query 7supp was.
SELECT
count (*) qtd
ROM
l'i neitem
supplier
nation
VWHERE
s_suppkey = | _suppkey

AND s_nationkey = n_nati onkey
AND n_nane = ' FRANCE' ;

To access how wdl dimensonindexes perform we measured totad response time,
space required by the structures and the time lost in data loads.

6.1. Total responsetime

For query 7, and without the dimension-join, every row in LI NEI TEM had to be joined
with ORDERS, CUSTOMER and NATI ON to find its CUSTOVER's nation. Smilarly, every row in
LI NEI TEM had to be joined with SUPPLI ER and NATI ON to find its SUPPLI ER's nation. With
the dimensonjoin indexes, the optimizer can rewrite query 7, showed in Liging 1, and
remove the joins (lines 15 to 19 and 21 to 25).

Without dimengonjoin indexes, TPC-H query number 7 took 385 seconds to
completion. With the two dimensontjoin indexes the query took only 123 seconds
representing an improvement of over 273%. Fgure 7 represents the optimized visud verson
of TPC-H query 7. Another important result was that it was much easier to optimize the query
with the dimensonjoin, i.e, a first, query number 7 took 809 seconds without the

dimengonjoin indexes and only after some tuning effort could we reduce the time to the 385
seconds.

SUPPLIER
PARTSUPP
5_SUPRKEY = PS_SUPPKEY
=
-
'(REGION
i
PS_PARTKEY = L_PARTKEY .
PS_SURRKEY = L_SURRKEY =
P_PARTKEY = PS_PARTKEY = o 5 SUPPKEY - L_SUPPKEY

N_NATIINKEY = 5_NATIONKEY

LINEITEM -
L ORDERKEY zph fiz HUMBER{10)
L PARTKEY i HUMBER;107 = R_REGKINKEY = N_REG ONKEY
FART L SUPFPKEY afex HUMBER? 107 2|z
L LINENUMBER Zph> HUMBER{ 107 ||
L QUANHTITY HUMBER10,2) ul|E
LIL EXTENDEDFPRICE HUMBER 0z | 0 w| i NATION
P_PARTKEY= L PARTRELL BISCOUNT MU =M=
e EE o S R L_TAX HUMBER10,2) e
L_RETURMNFLAG CHAR(T) I
L LINESTATUS CHAR(1) =<
LIL SHIFDATE DATE 1 2 (52
L_COMMITDATE DATE alls
L_RECEIFTDATE DATE = =
L_SHIFINSTRUCT CHARZS) = (B
L_SHIFMODE CHAR(10)
L_COMMENT WARCHARZ(44) L1
N_NATIONKEY = C_NATIONKEY
O _ORDERKEY = L_ORDERKEY
BRLERS CUSTOMER

I CUSTKEY = O_CUSTKEY
-

=

Figure 7: Optimized TPC-H query number 7

Query 7cugt took 618 seconds without the dimensiontjoin indexes and only 82 seconds
with them accounting for an improvement of over 750%. Query 7supp, which is very smple,
took 0.5 seconds without the dimensiontjoin (IDX_SUPP) and only 0.15 seconds with it,
returning the answer 3.3 times fadter.

6.2. Spacetaken by the database structures

The new auxiliary indexes, IDX_CUST and IDX_SUPP, take up 11 Mbytes and 25
Mbytes, which correspond to about 2% of the totd TPC-H scheme (tables, primary key
indexes and foreign key indexes). Although IDX _CUST and IDX_SUPP index exactly the
some number of tuples they have different Szes due to clustering. The DBMS compresses
bitmap indexes with good clugtering vaues.

Table 1 depicts the sizes of dl mgor structures in the TPC-H scheme.

Tables Mbytes PK Indexes Mbytes FK Indexes Mbytes TOTALS
FK_CRDERKEY_L 126, 563

LI NEI TEM 757,813 PK_LINEITEM 126,563 FK PARTKEY L 126,563 1264, 065
FK_SUPPKEY L 126, 563

ORDERS 168, 633 PK_ORDERS 23,633 FK_CUSTKEY_O 37,539 229, 805
FK_SUPPKEY_PS 16, 719

PARTSUPP 114,805 PK_PARTSUPP 23,516 FK_PARTKEY PS 16, 719 171, 759

PART 26,680 PK_PART 2, 969 - - 29, 649

CUSTOVER 24,141 PK CUSTOVER 2,266 FK_NATIONKEY C 3, 359 29, 766

SUPPLT ER 1,484 PK SUPPLIER 0,156 FK NATIONKEY_S 0, 273 1,913

NATT ON 0,023 PK_NATION 0,016 FK REG ONKEY_N 0, 039 0,078

REG ON 0,016 PK_REG ON 0,016 - . 0,032

TOTALS 1093, 595 179, 135 454,337 1727, 067

Table 1. Space required by every mgor sructure in the scheme

Table 2 shows the space taken by the TPC-H scheme with and without the dimension
join indexes.

Every structure Dimension-joins TOTALS
TPC-H 21727 - 1727
. . TDX_SUPP 25
TPC-H + Dimension-joins 21727 IDX_QUST 11 1763

Table 2: Space required by dl structuresin the scheme

6.3. Timelos in data loads

The time log rebuilding the dimenson-join indexes due to data loads represents the
major drawback of this approach. However, we constructed he dimengon-join indexes usng
an Oracle 8i database feature, the function based index which relies upon PL/SQL cdls.

Since TPC-H does not define data load detalls it is not possble to measure precisely
how much time is spent in this phase. However, even without loading any data we measure
the time spent dropping and re-creeting al other indexes. It took us about 9000 seconds to
drop and create al primary key and foreign key indexes and it took us about 7300 seconds to
drop and rebuild only the two dimensontjoin indexes. Thus including the dimensortjoin
indexes cong derably increase the index recrestion time.

We think that an implementation of the dimendortrindexes support by the DBMS
vendor would grestly diminish the cregtion time,

6.4. Implementation

The Oracle 8i database server provides festures that dlowed for a high-leve
implementation of dimenson-join indexes. In verson 8i, Oracle permits a specid type of
index cdled Function Based Index. A functionrbased index is a B-tree or bitmap index
created from the result of a function applied to every row in a particular column. For instance,
it is possble to have an index built on UPPER(nane) on persons instead of just nane. The

SQL command that creates a B-treeindex on UPPER(nane) is
CREATE | NDEX ON per son(UPPER(nane)) ;

Oracle dso dlows defining function-based indexes usng user-defined functions. The
user-defined functions should be determinigtic and should not read any other database tables
or variables. However, it is possble to work around these redrictions, basicaly by lying to the

Oracleés PL/SQL compiler. We defined two functions get_supp_nation

and

get _cust _nati on which receve a LI NEI TEM order number and return the SUPPLI ER'S
nation and the CUSTOMER's nation respectively. The next step was just to define indexes on

those functionsover L1 NEI TEM
CREATE BI TMAP | NDEX i dx_supp ON |ineitem(get_supp_nation(l_orderkey);
CREATE BI TMAP | NDEX i dx_cust ON |ineitem(get_cust_nation(l_orderkey);

Findly, the queries were rewritten to force the usage of the new indexes. The new
queries read fewer tables and peform no joins like showed in Figure 7. The complete
implementation is outside the scope of this paper. It can be found at [20].

6.5. Comparison of pre-computed structures

The usage of pre-computed structures to perform joins involves three steps. 1) fetch
and process some information in the first relation; 2) fetch and process some information in
the structure; 3) fetch and process the remaining information in the other relation or table.

Structure Step 1 Step 2 Step 3

Bitmap Reads the|With those vaues, finds which|Reads the rows in the second
first table [rows in the second table are|table by direct access indicatec
gets some|joined with the rows from the|by the postion the bits are founc
rows and|first table. Finding the rows inlin the bitmap. It may remove
attribute the bitmap is extremely fast|some rows from the answer set
values. when the column has low|based on the query conditions

cardindlity. and on the values obtained.

Dimenson- |Doesnothing. |Finds which rows in the fact|Reads the rows in the fact table

join table are joined with the rows|by direct access indicated by the

from the dimenson table |postion the vaues are found ir

Finding the rows in the bitmap is |the bitmap. It may remove some

extremely fast when the column|rows from the answer set based

has low cardinality. on the query conditions and or
the values obtained.

B-tree Reads the|With those values, finds which|Reads the rows in the second
first table [rows in the second table are|table indicated by the leaf nodes
gets some|joined with the rows from the|[in the B-tree. It may remove
rows and|first table. Finding the rows in|some rows from the answer set
attribute the B-tree is fast if the column|{based on the query conditions
values. has high cardindity and if the|and on the values obtained.

guery isjoining few rows.

Join index Reads the|Used the values from step 1) to|Reads the rows in the second
first table,|find which rows in the second|table indicated by the leaf nodes
gets some|table are joined with theserows. [in the B-tree. It may remove
rows and some rows from the answer set
atribute based on the query conditions
values. and on the values obtained.

Materidized |-- The whole answer is obtained|--

view using only the materialized view.

Table 3: Sepsinvolved in joins using severd pre-computed structures

Table 3 is ordered by space, from the structure that occupies less space to the one that
occupies more.

The DBMS can dso use the join index by inverting steps 1) and 2); i.e, reading first
the information in the index and afterwards reading the rows in one table and than in the
other.

7. Conclusions and future work

The dimendortjoin index dlows for data avay from the centrd fact table to be drawn
closer to it. The dimendontjoin index is a bitmap index over the fact table with information
regarding one of the dimenson’s columns and in this characteridtic it resembles the join index
from Parick Vadduriez. Like in materidized views, with the dimengonjoin, run-time joins
are avoided. Also like in gar-join, severd indexes may be processed before a (fact) table is
accesed. Findly, like in the dar-trandformation, the DBMS engine may have to re-write the
query.

Since the dimensonjoin represents a shorter path from the fact table to a dimension,
the further away from the fact table is that dimenson, the better the dimenson-join index
performs. The dimensonjoin is a structure especidly suited to data warehouses because the
joins ae big, the number of retrieved lines may be plenty, there are few updates to base data,
and there is dmost no concurrency. Also, since dimensortjoin indexes are much chegper in
terms of space than B-trees or materidized views, the data warehouse adminigtrator can use
more aggressve policies when deciding which columns to index.

The dimengonjoin index was tested usng the TPC-H benchmark scheme and query
number 7 dong with two other queries providing congtant improvement in performance. The
cregtion phase is currently the drawback of the dimenson-join indexes manly because it uses
features in a way they were not meant for (the implementation used festures of Oracle 8i
database server, namdy function based indexes with user-defined functions).

Future work is needed measuring more queries and different tables Also an
implementation of the dimendonjoin indexes a a lower levd (ingead of PL/SQL and
function based indexes) can provide better creation times.

References

[1] Rdph Kimbdl. The Data Warehouse Toolkit. John Willey & Sons,
Inc.; 1996.

[2] Petrick Vaduriez. Join Indices. ACM TODS, Vol 12, N° 2 pags 218-
246; June 1987.

[3] N. Roussopoulos. Materialized Views and Data Warehouses. ACM
SIGMOD Record 27(1): 21-26 (1998)

[4] Raghu Ramékrishnan, Johannes Gehrke. Database Management

Systems, Second Edition. McGraw-Hill Internationd Editions,
Computer Science Series. 2000.

5] Masaru Kitsuregawa, H Tanaka, T Molo-oka Rdationd Algebra
Machine CRACE. Lecture Notes in Computer Science. Springer-Verlag.
pp.191-2.14 (1982)

[6]
[7]

[8]
[9]
[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]
[20]

Zhe Li, Kenneth A. Ross. Fast Joins Using Join Indices. The VLDB
Journa, volume 7, number 4, 1998.

Sven Hemer, Till Wesmann, Guido Moerkotte. Diag-Join, An
Opportunigic Join Algorithm for 1 to N Reationships. Proc.
VLDB1998 Conference, pags 98-1009.

Kjel Bratbergsengen. Hashing Methods And Reational Algebra
Operations. In Proc. 10th VLDB Conference, pags 323-333, 1984.

Rudolf Bayer, Edward M. McCreight. Organization and Maintenance
of Large Ordered Indices. ActaInformatica 1, pags 173-189; 1972.

Pritt Misra, Magaet H. Eich. Join Processng in Relational
Databases. In ACM Computing Surveys, Vol 24, No 1, March 1992.

Jost A. Blakdey, Nancy L. Martin. Join Index, Materialized View, and
Hybrid-Hash Join: A Performance Analyss. Proc. ICDE Conference
1990, pags 256-263.

Laura M. Haas, Michad J. Carey, Miron Livny, Amit Shukla SEEKing
the truth about ad hoc join costs. The VLDB Journd, volume 6,
number 3, pags 241-256, 1997.

Marcus Jirgens, Hans-J. Lenz. Tree Based Indexes vs. Bitmap I ndexes
- a Performance Study. Proc. DMDW Conference 1999.

Michael J. Corey, Michad Abbey. Oracle Data Warehousing. Osborne
McGrawHill — Oracle Press. 1997.

C. Y. Chan, Y. E. loannidis Bitmap Index Desgn and Evaluation.
Proc. SIGMOD Conference 1998: 355-366.

P. O'Nell and G. Graefe. Multi-Table Joins Through Bitmapped Join
Indices. SIGMOD Record, pages 8-1 1, September 1995.

Oracle Corporation. Oracle8 Concepts (Release 8.0 - A58227-01).
Oracle Documentation Library. Available a http://technet.oracle.com/

Benchmark TPC-H - Decison Support for Ad Hoc Queries.
http://mww.tpc.org/tpeh.

Transaction Processing Council. hitp://mwww.tpc.org.

Pedro Bizarro. Avoid costly joins with FBIs. Oracle Professond

Newdetter, Volume 7, number 9. September 2000. Avalable at
www.oracleprofess ona newd etter.com.

