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Abstract 

There are several auxiliary pre-computed access structures that allow faster answers by reading less base data. 
Examples are materialized views, join indexes, B-tree and bitmap indexes. This paper proposes dimension-join, 
a new type of index especially suited for data warehouses. The dimension-join borrows ideas from several 
concepts. It is a bitmap index, it is a multi-table join and when being used one of the tables is not read to 
improve performance. It is a multi-table join because it holds information belonging to two tables, which is 
similar to the join index proposed by Valduriez. However, instead of being composed by the tables’ primary 
keys, the dimension-join index is a bitmap index over the fact table using values from a dimension column. The 
dimension-join index is very useful when selecting facts depending on dimension tables belonging to snowflakes. 
The dimension-join represents a direct connection between the fact table and a table in the snowflake that can 
avoid several joins and produce enormous performance improvements. This paper also evaluates experimentally 
the dimension-join indexes using the TPC-H benchmark and shows that this new index structure can 
dramatically improve the performance for some queries. 
 
 

1.  Introduction 

Data warehouses (DWs) often grow to sizes of gigabytes or terabytes of information, 
which makes the performance of the queries issued by decision support tools one of the most 
important issues in Data Warehousing. In logical terms, a data warehouse is organized 
according to the multidimensional model. Each dimension of this model represents a different 
perspective for the analysis of the business. For instance, in the classical example of a chain 
of stores, some of the dimensions are products, stores, and time. Each cell within the 
multidimensional structure (a cube in this three dimension example) contains data (typically 
numerical facts). For example, a single cell may contain the total sales for a given product in a 
given store in a single day. 

Although the data in a data warehouse could be stored in a multidimensional database 
server (e.g., Oracle Express server), most of the data warehouses and OLAP applications store 
the data in a relational database. That is, the multidimensional model is implemented as one 
or more star schemes. Each star scheme consists in a large central fact table surrounded by 
several dimensional tables, which are related to the fact table by foreign keys [1]. 

Fact tables store business measures (profit, units, etc) and have millions of records or 
more. These tables normally have few (6 to 15) attributes. Dimension tables store information 
characterizing the facts. Examples of typical dimensions are stores, suppliers, products, time, 
etc. Dimensions are often denormalized, have few rows (hundreds or thousands) and many 
columns (10 to 60). The central fact table is usually normalized, since it is the biggest table 
and any redundancy would lead to excessive space allocation. 



Typical queries join facts and some of the dimensions and the results are limited 
normally by restrictions imposed in the dimensions. Because joining tables is such a heavy 
operation and since the fact table is enormous, several solutions have been proposed in the 
literature to optimize joins (see the related work section for references). 

Some of the algorithms that implement joins use auxiliary structures and some do not. 
In general, the ones that do not use auxiliary structures are good choices for ad hoc queries 
but they normally present worse performances. Algorithms using auxiliary structures have 
better performances but the data warehouse administrator has to choose which auxiliary 
structures to use since the alternatives are plenty. 

This paper reviews the most common joining algorithms and proposes a join using a 
new type of index, the dimension-join index based on the join index proposed by Valduriez 
[2] and resorting to function based-indexes, a feature available in Oracle DBMS. The 
Valduriez join index makes the joins faster while the proposed dimension-join index avoids 
run-time joins (like materialized views [3]) by storing the primary key of one table and a 
column of another table. Basically, the Valduriez method reads data from the first table, then 
reads data from the join-index and finally reads data from the second table. With the 
dimension-join, the first table is never read because the desired values are in the index. This 
improvement significantly improves the performance. 

The remainder of this paper is organized as follows: section 2 presents related work 
regarding pre-computed access structures and algorithms for ad hoc joins. Section 3 reviews 
the currently used cached structures to aid joins. Section 4 presents some techniques that 
better use pre-computed structures. Section 5 presents the dimension-join along with a 
motivation example. Section 6 consists of experiment details and performance figures and 
section 7 ends the paper with the conclusions and future work. 

2.  Related work 

There are access methods that do not require any auxiliary structure. These algorithms 
are especially suited for ad hoc joins because the administrator does not need to guess 
anything about what data is the user going to ask for. Examples are the nested block join [4], 
sort-merge join [4], simple hash join [4], Grace hash join [5], hybrid hash join, jive-join [6], 
slam-join [6] and diag-join [7]. Although users of decision support systems normally pose ad 
hoc queries, these algorithms alone are not enough to ensure an acceptable performance. 
Some papers refer to them as last resort algorithms [8] because they are slower then the 
algorithms that use auxiliary structures. 

On the other hand, pre-computed or cached access structures return answers without 
reading (partially or totally) the base data in the tables providing a faster answer. However, 
these structures need to be maintained; i.e., if the base data changes, the structures must be 
updated or rebuilt. Examples are materialized views [3], join indexes [2], B-trees [9] and 
bitmap indexes. To the data warehouse administrator, one of the most difficult tasks regarding 
using pre-computed structures is to decide how to use them: which ones to use and where to 
use them (which joins, which columns, should every possibility be covered?, etc). The task is 
particularly difficult because the administrator cannot create materialized views for every 
possible query.  

See [10] for a thorough analysis of several join algorithms. See [11] for a performance 
comparison between join indexes, materialized views and hybrid-hash joins. See [12] for a 
better cost model to compare ad hoc joins and for a performance comparison between nested 



block join, sort-merge join, simple hash join, Grace hash join, and hybrid hash join. See [13] 
and [14] (page 144) for a comparison between B-tree and bitmap indexes. 

3.  Pre-computed or cached access structures 

3.1.  B-tree index 

The B-tree index is probably the most used pre-computed access structure in database 
systems. A B-tree is a balanced tree with each node having hundreds of connections to more 
nodes in the next level of the tree. The index is constructed and ordered with values of a 
column. The leaf nodes point to rows in the table where the base data is read. B-trees are very 
good in environments with mixed reading and writing operations, concurrency, exact searches 
and range searches. B-tree indexes are relatively expensive auxiliary structures to maintain 
since each one may take up as much space as 20% or more as the table. B-tree indexes present 
excellent performance figures when used to find few rows in big tables. 

3.2.  Bitmap index 

A bitmap index is a special kind of index consisting in arrays of bits. Each array 
represents one of the values in the indexed column and the bit position in the array 
corresponds to the row position in the table. Bitmap indexes are especially good when used in 
columns with low cardinality and systems with low concurrency, few updates and searches 
with Boolean operations. Bitmap indexes are very frequent in data warehouses since all of 
these conditions are found there. A bitmap occupies much less space than a correspondent B-
tree index over the same column if the column has low cardinality. Figure 1 depicts a table 
person and 2 bitmap indexes, one on column sex and the other on column city. 
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Figure 1: Bitmap indexes 

 
Bitmap indexes require low cardinality columns because the more distinct values there 

are the biggest the bitmap becomes. Note that in Figure 1, the bitmap over city is 50% 
bigger than the bitmap over sex solely because there are more distinct values of city than 
there are of sex. There are already algorithms that use compressed bitmap when they became 
too sparse [15]. 

3.3.  Materialized view 

A materialized view is a very expensive yet very fast pre-computed access method. It 
is very expensive because it stores the result of a query, which can be quite big. The first time 
the query is asked the server stores its rows. Further calls to the same query retrieve the 



already saved result. Of course, this procedure is only cost effective if between several calls 
the base data remains the same avoiding rebuilding the view. Storing just a few materialized 
views may take as much space as the all other data warehouse tables together. On the other 
hand, a materialized view is very fast because no join needs to be made at run time on 
successive calls; everything that is left to do is to read the pre-computed view. Thus, the great 
advantage of materialized views is that they allow the database system to avoid reading the 
base data. All the information needed to answer the query is already in the view. 

3.4.  Join index 

The join index, proposed by Valduriez [2], is an index that helps to join rows from two 
relations, say R and S. By definition, the join index (JI) is created by joining R and S and 
projecting the result on R and S primary keys1. Figure 2 shows two relations, person and pet, 
and its respective join index. 
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Figure 2: Join index 

 
For performance reasons, Valduriez also proposed that the JI should be implemented 

as two B-tree indexes. Considering the example of Figure 3, one of the B-trees composing the 
JI is accessed by person_id with leaf nodes pointing to pet_id and the other B-tree is 
accessed by pet_id with leaf nodes pointing to person_id. 
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Figure 3: Join index as two B-tree indexes 

 
Each B-tree of the join index (JIperson and JIpet in the example) assists for a join 

order. If the DBMS is reading the person relation first and than the pet, it will: 1) read the 
                                                 
1 Actually, Valduriez identified rows using surrogates instead of primary keys. Surrogates are system unique 
identifiers while primary keys are table unique identifiers. 
 



person relation and find which rows to take to the next step; 2) read JIperson to find 
which pets belong to those persons in 1); 3) and finally, with the pet_ids from JIperson, 
the DBMS will read just the right rows in the relation pet. If the DBMS is joining the 
relations in the reverse order it will use JIpet instead. 

In short, a join index is a structure where the search is made using values from a table 
and the results point to rows of another table. 

4. Techniques using pre-computed structures 

4.1.  Reading only the index 

Sometimes, the optimizer can decide that after reading the index it is not necessary to 
read the indexed table. This happens if all the information needed is available already at the 
index. Consider the tables showed in Figure 1. The query that finds the persons with pets is: 
 
SELECT person.name 
  FROM person, pet 
 WHERE pet.owner = person.name; 
 

If the optimizer knows about the join index, all it needs to do is read every row in 
person and than search in JIperson a row matching that person_id. It won’t need to 
search for anything more in pets because the SELECT clause does not specify any information 
regarding pets. The dimension-join uses such improvement. In fact, the whole point of a 
dimension-join is to use just one table and the index instead of reading and joining two tables. 

4.2.  Star Joins 

One very interesting technique to optimize joins in star schemes is the star join 
described in [16]. Basically, there is a bitmapped join index between the fact table and every 
dimension table. When a search is executed, the DBMS reads the dimensions first, then it 
finds their correspondent entries in its bitmapped join index. Finally, it processes (ORs and 
ANDs) all bitmapped join indexes to find the rows in the fact table. The gain produced by this 
approach comes from processing several indexes before reading any data in the fact table, 
thus restricting the amount of rows retrieved in intermediate steps. 

4.3. Star transformation 

Oracle implements its own version of the star join. They call star join to a technique 
that consists in producing a Cartesian join between the selected rows of each dimension table 
and then, using it to find the desired rows in the fact table. This version is worse than the star 
join of [16] because the intermediate Cartesian join can became large if the restrictions are not 
selective enough. With the original star join, the join is made with bitmap indexes instead of 
tables, and joining two bitmaps still produces a bitmap with the same size. Recognizing that 
their star join could lead to large Cartesian products ([17], Chapter 20, section Optimizing 
"Star" Queries, sub-section Star Transformation) Oracle implemented another join method to 
star schemes resembling the original star join definition. They call it star transformation: “The 
star transformation is based on combining bitmap indexes on individual fact table columns”. 



However, star transformation rewrites the queries in order to find the entries in each bitmap 
join index. A query like: 
 
SELECT … 
  FROM fact, dim1, dim2, …, dimN 
 WHERE fact.fk_dim1 = dim1.pk            /* joins       */ 
   …   … 
   AND fact.fk_dimN = dimN.pk            /* joins       */ 
   AND dim1.attribute = value1           /* restriction */ 
   …   … 
   AND dimN.attribute = valueN           /* restriction */ 
 
Is rewritten into: 
 
SELECT … 
  FROM fact, dim1, dim2, …, dimN 
 WHERE fact.fk_dim1 IN (SELECT pk        /* joins       */ 
                          FROM dim1 
                         WHERE = value1) /* restriction */ 
   …   … 
   AND fact.fk_dimN IN (SELECT pk        /* joins       */ 
                          FROM dimN 
                         WHERE = valueN) /* restriction */ 

5. The Dimension-join 

The dimension-join borrows ideas from several concepts. It is a bitmap index, it has 
information belonging to two tables like a join index and when being used one of the tables is 
not read. It can also be used like the star-join in the sense that several indexes can be 
processed before reading any table. The dimension-join also requires the optimizer to rewrite 
queries as with star-transformation. 

5.1.  TPC-H, a motivation example 

As a motivating example consider the TPC benchmark H scheme [18] presented in 
Figure 4. The TPC Benchmark H (TPC-H for short) is a decision support benchmark 
produced by the TPC Council [19]. It consists of a set of tables and business oriented ah hoc 
queries. Both queries and data have been chosen to have broad industry relevance. The goal is 
to provide performance results to industry users regarding decision support implementations. 

The TPC-H scheme consists in eight tables and their relations. Data can be scaled up 
to model businesses with different data sizes. The scheme and the number of rows for each 
table at scale 1 are presented in Figure 4. 

TPC-H represents a retail business. Customers order products, which can be bought 
from more than one supplier. Every customer and supplier belongs to a nation, which is 
located in a region. The central fact table is LINEITEM although PARSUPP can also be 
considered a fact table. The dimensions are PART, SUPPLIER and ORDERS. There are two 
snowflakes, ORDERS? CUSTOMER? NATION? REGION and 
SUPPLIER? NATION? REGION. To find out to which region some LINEITEM was sold it 
is necessary to read data from all the tables in the first snowflake. 



TPC-H query number 7, called Volume Shipping, finds, for two given nations, the 
gross discount revenues derived from LINEITEMs in which Parts where shipped from a 
Supplier in either Nation to a Customer in the other Nation during 1995 and 1996. Two 
nations are given as input parameters. The full query 7 text in Oracle’s SQL dialect is: 
 
 1: SELECT 
 2:   supp_nation, 
 3:   cust_nation, 
 4:   l_year, 
 5:   sum(volume) revenue 
 6: FROM 
 7:   ( 
 8:     SELECT 
 9:       n1.n_name supp_nation, 
10:       n2.n_name cust_nation, 
11:       to_char(l_shipdate, 'YYYY') l_year, 
12:       l_extendedprice * (1 - l_discount) volume 
13:     FROM 
14:       supplier, 
15:       lineitem, 
16:       orders, 
17:       customer, 
18:       nation n1, 
19:       nation n2 
20:     WHERE 
21:           s_suppkey   = l_suppkey 
22:       AND o_orderkey  = l_orderkey 
23:       AND c_custkey   = o_custkey 
24:       AND s_nationkey = n1.n_nationkey 
25:       AND c_nationkey = n2.n_nationkey 
26:       AND ( 
27:               (    n1.n_name = 'FRANCE'  
28:                AND n2.n_name = 'GERMANY') 
29:            OR (    n1.n_name = 'GERMANY' 
30:                AND n2.n_name = 'FRANCE')) 
31:       AND l_shipdate  
32:           BETWEEN to_date('1995-01-01', 'yyyy-mm-dd') 
33:               AND to_date('1996-12-31', 'yyyy-mm-dd') 
34:   ) shipping 
35: GROUP BY 
36:   supp_nation, 
37:   cust_nation, 
38:   l_year 
39: ORDER BY 
40:   supp_nation, 
41:   cust_nation, 
42:   l_year; 

Listing 1: TPC-H query number 7 code – Volume Shipping 
 

Figure 5 represents a visual representation of query 7. The lighter attributes are the 
ones that are used either as input or output. The darker attributes are needed only to reach the 
data, to perform the joins along the snowflakes. Note that the query reads N_NAME twice, one 



represents the SUPPLIER’s nation and the other is the CUSTOMER’s nation and each one is 
connected by LINEITEM through a different snowflake. 

Figure 4: The TPC-H scheme 
 
As Figure 5 reveals, the performance problem with this query is that the desired 

attributes, from NATION and LINEITEM, are too further apart from each other. The query will 
have to read data from ORDERS, CUSTOMER and SUPPLIER only to reach NATION. The 
dimension-join will bring NATION closer to LINEITEM. 

5.2.  Dimension-join index 

The dimension-join is a bitmap index over a fact table with values from a dimension 
table. The tables must be connected with one or more (the case of a snowflake) many to one 
relationships. In the example of Figure 5, one ideal dimension-join index should be 
constructed over LINEITEM rows mapping values of N_NAME from NATION. In fact, 
considering query 7, two dimension-join indexes are in order: one mapping the CUSTOMER’s 
nation and the other mapping SUPPLIER’s nation. Both indexes should be constructed over 
LINEITEM, i.e., the bits should point to rows in LINEITEM. 

The dimension-join index occupies little space because it is a bitmap index. It can, 
however lead to big performance improvements because it allows avoiding several joins. 
Figure 6 depicts a dimension-join index over rows of LINEITEM with information regarding 
each row CUSTOMER’s NATION. 

 
 
 
 



Figure 5: TPC-H query number 7 – Volume Shipping 
 

Figure 6: LINEITEM and dimension-join index on CUSTOMER’s nation 
 

6.  Results 

To test query 7 we built two dimension-join indexes: IDX_CUST, which relates 
customers’ nations with LINEITEM’s tuples and IDX_SUPP, which relates suppliers’ nations 
to LINEITEM’s tuples. In our implementation query 7 uses both indexes instead of 
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performing several run-time joins. At first, we wanted to use only TPC-H queries but 
eventually we had to devise new queries to simulate different usage profiles. Essentially we 
wanted to have queries using only one or the other dimension-join indexes. We construct two 
new queries 7cust and 7supp, which use only the IDX_CUST or the IDX_SUPP dimension-
join index. 

Query 7cust was 
 
SELECT 
  to_char(l_shipdate, 'YYYY') l_year, 
  sum(l_extendedprice * (1 - l_discount)) volume 
FROM 
  lineitem, 
  orders, 
  customer, 
  nation 
WHERE 
      o_orderkey  = l_orderkey 
  AND c_custkey   = o_custkey 
  AND c_nationkey = n_nationkey 
  AND n_name = 'GERMANY' 
GROUP BY 
  to_char(l_shipdate, 'YYYY'); 

Query 7supp was: 
 
SELECT 
  count(*) qtd 
FROM 
  lineitem, 
  supplier, 
  nation 
WHERE 
      s_suppkey   = l_suppkey 
  AND s_nationkey = n_nationkey 
  AND n_name = 'FRANCE'; 
 

To access how well dimension-indexes perform we measured total response time, 
space required by the structures and the time lost in data loads. 

6.1. Total response time 

For query 7, and without the dimension-join, every row in LINEITEM had to be joined 
with ORDERS, CUSTOMER and NATION to find its CUSTOMER’s nation. Similarly, every row in 
LINEITEM had to be joined with SUPPLIER and NATION to find its SUPPLIER’s nation. With 
the dimension-join indexes, the optimizer can rewrite query 7, showed in Listing 1, and 
remove the joins (lines 15 to 19 and 21 to 25). 

Without dimension-join indexes, TPC-H query number 7 took 385 seconds to 
completion. With the two dimension-join indexes the query took only 123 seconds 
representing an improvement of over 273%. Figure 7 represents the optimized visual version 
of TPC-H query 7. Another important result was that it was much easier to optimize the query 
with the dimension-join, i.e., at first, query number 7 took 809 seconds without the 



dimension-join indexes and only after some tuning effort could we reduce the time to the 385 
seconds. 

Figure 7: Optimized TPC-H query number 7 
 

Query 7cust took 618 seconds without the dimension-join indexes and only 82 seconds 
with them accounting for an improvement of over 750%. Query 7supp, which is very simple, 
took 0.5 seconds without the dimension-join (IDX_SUPP) and only 0.15 seconds with it, 
returning the answer 3.3 times faster. 

6.2.  Space taken by the database structures 

The new auxiliary indexes, IDX_CUST and IDX_SUPP, take up 11 Mbytes and 25 
Mbytes, which correspond to about 2% of the total TPC-H scheme (tables, primary key 
indexes and foreign key indexes). Although IDX_CUST and IDX_SUPP index exactly the 
some number of tuples they have different sizes due to clustering. The DBMS compresses 
bitmap indexes with good clustering values. 

Table 1 depicts the sizes of all major structures in the TPC-H scheme. 
 
 
 
 
 



Tables Mbytes PK Indexes Mbytes FK Indexes Mbytes TOTALS  

LINEITEM 757,813 PK_LINEITEM 126,563 
FK_ORDERKEY_L 
FK_PARTKEY_L 
FK_SUPPKEY_L 

126,563 
126,563 
126,563 

1264,065 

ORDERS 168,633 PK_ORDERS 23,633 FK_CUSTKEY_O 37,539 229,805 

PARTSUPP 114,805 PK_PARTSUPP 23,516 FK_SUPPKEY_PS 
FK_PARTKEY_PS 

16,719 
16,719 

171,759 

PART 26,680 PK_PART 2,969 - - 29,649 
CUSTOMER 24,141 PK_CUSTOMER 2,266 FK_NATIONKEY_C 3,359 29,766 
SUPPLIER 1,484 PK_SUPPLIER 0,156 FK_NATIONKEY_S 0,273 1,913 
NATION 0,023 PK_NATION 0,016 FK_REGIONKEY_N 0,039 0,078 
REGION 0,016 PK_REGION 0,016 - - 0,032 

TOTALS  1093,595  179,135  454,337 1727,067 

Table 1: Space required by every major structure in the scheme  
 

Table 2 shows the space taken by the TPC-H scheme with and without the dimension-
join indexes. 

 
 Every structure  Dimension-joins  TOTALS  

TPC-H ? 1727 - - 1727 

TPC-H + Dimension-joins  ? 1727 IDX_SUPP 
IDX_CUST 

25 
11 

1763 

Table 2: Space required by all structures in the scheme  

6.3. Time lost in data loads 

The time lost rebuilding the dimension-join indexes due to data loads represents the 
major drawback of this approach. However, we constructed the dimension-join indexes using 
an Oracle 8i database feature, the function based index which relies upon PL/SQL calls. 

Since TPC-H does not define data load details it is not possible to measure precisely 
how much time is spent in this phase. However, even without loading any data we measure 
the time spent dropping and re-creating all other indexes. It took us about 9000 seconds to 
drop and create all primary key and foreign key indexes and it took us about 7300 seconds to 
drop and rebuild only the two dimension-join indexes. Thus, including the dimension-join 
indexes considerably increase the index recreation time. 

We think that an implementation of the dimension-indexes support by the DBMS 
vendor would greatly diminish the creation time. 

6.4.  Implementation 

The Oracle 8i database server provides features that allowed for a high-level 
implementation of dimension-join indexes. In version 8i, Oracle permits a special type of 
index called Function Based Index. A function-based index is a B-tree or bitmap index 
created from the result of a function applied to every row in a particular column. For instance, 
it is possible to have an index built on UPPER(name) on persons instead of just name. The 
SQL command that creates a B-tree index on UPPER(name) is: 
CREATE INDEX ON person(UPPER(name)); 

Oracle also allows defining function-based indexes using user-defined functions. The 
user-defined functions should be deterministic and should not read any other database tables 
or variables. However, it is possible to work around these restrictions, basically by lying to the 



Oracle’s PL/SQL compiler. We defined two functions: get_supp_nation and 
get_cust_nation which receive a LINEITEM order number and return the SUPPLIER’s 
nation and the CUSTOMER’s nation respectively. The next step was just to define indexes on 
those functions over LINEITEM: 
CREATE BITMAP INDEX idx_supp ON lineitem(get_supp_nation(l_orderkey); 
CREATE BITMAP INDEX idx_cust ON lineitem(get_cust_nation(l_orderkey); 

Finally, the queries were rewritten to force the usage of the new indexes. The new 
queries read fewer tables and perform no joins like showed in Figure 7. The complete 
implementation is outside the scope of this paper. It can be found at [20]. 

6.5. Comparison of pre-computed structures 

The usage of pre-computed structures to perform joins involves three steps: 1) fetch 
and process some information in the first relation; 2) fetch and process some information in 
the structure; 3) fetch and process the remaining information in the other relation or table. 

 
Structure Step 1 Step 2 Step 3 
Bitmap Reads the 

first table, 
gets some 
rows and 
attribute 
values. 

With those values, finds which 
rows in the second table are 
joined with the rows from the 
first table. Finding the rows in 
the bitmap is extremely fast 
when the column has low 
cardinality. 

Reads the rows in the second 
table by direct access indicated 
by the position the bits are found 
in the bitmap. It may remove 
some rows from the answer set 
based on the query conditions 
and on the values obtained. 

Dimension-
join 

Does nothing. Finds which rows in the fact 
table are joined with the rows 
from the dimension table. 
Finding the rows in the bitmap is 
extremely fast when the column 
has low cardinality. 

Reads the rows in the fact table 
by direct access indicated by the 
position the values are found in 
the bitmap. It may remove some 
rows from the answer set based 
on the query conditions and on 
the values obtained. 

B-tree Reads the 
first table, 
gets some 
rows and 
attribute 
values. 

With those values, finds which 
rows in the second table are 
joined with the rows from the 
first table. Finding the rows in 
the B-tree is fast if the column 
has high cardinality and if the 
query is joining few rows. 

Reads the rows in the second 
table indicated by the leaf nodes 
in the B-tree. It may remove 
some rows from the answer set 
based on the query conditions 
and on the values obtained. 

Join index Reads the 
first table, 
gets some 
rows and 
attribute 
values. 

Used the values from step 1) to 
find which rows in the second 
table are joined with these rows. 

Reads the rows in the second 
table indicated by the leaf nodes 
in the B-tree. It may remove 
some rows from the answer set 
based on the query conditions 
and on the values obtained. 

Materialized 
view 

-- The whole answer is obtained 
using only the materialized view. 

-- 

Table 3: Steps involved in joins using several pre-computed structures 
 



Table 3 is ordered by space, from the structure that occupies less space to the one that 
occupies more. 

The DBMS can also use the join index by inverting steps 1) and 2); i.e., reading first 
the information in the index and afterwards reading the rows in one table and than in the 
other. 

7. Conclusions and future work 

The dimension-join index allows for data away from the central fact table to be drawn 
closer to it. The dimension-join index is a bitmap index over the fact table with information 
regarding one of the dimension’s columns and in this characteristic it resembles the join index 
from Patrick Valduriez. Like in materialized views, with the dimension-join, run-time joins 
are avoided. Also like in star-join, several indexes may be processed before a (fact) table is 
accessed. Finally, like in the star-transformation, the DBMS engine may have to re-write the 
query. 

Since the dimension-join represents a shorter path from the fact table to a dimension, 
the further away from the fact table is that dimension, the better the dimension-join index 
performs. The dimension-join is a structure especially suited to data warehouses because the 
joins are big, the number of retrieved lines may be plenty, there are few updates to base data, 
and there is almost no concurrency. Also, since dimension-join indexes are much cheaper in 
terms of space than B-trees or materialized views, the data warehouse administrator can use 
more aggressive policies when deciding which columns to index. 

The dimension-join index was tested using the TPC-H benchmark scheme and query 
number 7 along with two other queries providing constant improvement in performance. The 
creation phase is currently the drawback of the dimension-join indexes manly because it uses 
features in a way they were not meant for (the implementation used features of Oracle 8i 
database server, namely function based indexes with user-defined functions). 

Future work is needed measuring more queries and different tables. Also an 
implementation of the dimension-join indexes at a lower level (instead of PL/SQL and 
function based indexes) can provide better creation times. 
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