
University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

Adaptive and Robust Query Processing
with SHARP

 Pedro Bizarro David J. DeWitt

 University of Wisconsin – Madison University of Wisconsin – Madison

 pedro@cs.wisc.edu dewitt@cs.wisc.edu

Abstract
Database catalogs often do not contain enough statistical information to correctly cost all possible physi-
cal plans. In their absence, the optimizer can produce incorrect estimates and select sub-optimal plans
for execution. To address this problem for a sub-class of queries, we propose SHARP, a new multi-join,
adaptive, relational operator that joins three or more relations of a star-join. SHARP reduces the possible
impact of optimizer mistakes by determining which plan to execute independently of optimization esti-
mates. During normal query processing, SHARP collects statistics, and by using a combination of late-
binding plan decisions and tuple routing strategies, it is able to change join order and table access meth-
ods. However, unlike previous tuple routing operators used for in-memory stream processing, SHARP
was designed to process local relations with sizes much larger than available memory. We have imple-
mented SHARP in the open-source DBMS Predator, and we present an extensive experimental evalua-
tion showing the significant performance benefits of SHARP.

1. INTRODUCTION
Database optimizers cost and choose query plans as if they have precise information about data distribu-
tions. However, that is rarely the case. When statistics are not available in the catalog, the optimizer es-
timates them by assuming that some data distributions are uniform or independent, by using a
combination of other (possibly estimated) statistics, or even by using default values [37]. These esti-
mates may contain errors that grow exponentially with the number of estimated statistics derived from
other estimated statistics [23] and the chosen plans may be sub-optimal by orders of magnitude [32].
Having more information in the catalog (e.g., histograms [34]) reduces the problem, but the information
needed to correctly cost all possible query plans is likely to increase exponentially as database sizes
grow, as queries become larger, and as query languages become more complex. If that is the case, then
database optimizers may have insufficient information to choose good, non-adaptive query plans for all
queries. Instead, decisions about which query plan to run may have to be made at run-time–using adap-
tive operators and/or late binding decisions–after some of the data is observed.

Following this reasoning, we propose SHARP1, a new, adaptive, relational operator for processing star-
joins with three or more relations. At run-time, after observing some data, SHARP can opportunistically
choose any possible join order to process those relations (without using Cartesian products). These plan
changes are made using a combination of late-binding plan decisions and tuple routing strategies. In ad-
dition, although tuple routing has previously been used mainly for in-memory data processing, SHARP
does not keep all the joins completely in memory. This allows SHARP to have both a smaller memory

1 Streaming, Highly Adaptive, Run-time Planner

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

footprint than other adaptive operators [16, 44], and to have an efficient second pass to process relations
much larger than available memory.

1.1 Contributions and Outline of the Paper
The main contributions of this paper are the following:

•••• In Section 3.1, we introduce SHARP, a new, multi-join, adaptive, operator to process star-joins.

•••• We show that tuple routing policies used in data stream systems can be used in traditional databases
processing relations larger than memory. We also provide the first apples-to-apples comparison of
three tuple routing policies [2, 5, 15] in the same system. These policies are described in Section 3.2.

•••• We propose a series of late-binding decisions that can opportunistically change the query plan at run-
time to improve performance. These decisions, described in Section 3.3, are taken after SHARP has
seen some tuples, but before deciding on the final execution plan.

•••• We propose a new multi-join second-stage processing algorithm in Section 3.4. This algorithm shows
good improvements over alternative techniques and its performance is insensitive to optimizer mis-
takes.

•••• As described in Section 4, we implement and evaluate a prototype implementation of SHARP in
Predator [38]. The results show good performance improvements over plans not using SHARP.

2. EDDIES AND MJOINS
The operators most related to SHARP are the Eddy [2] and the MJoin [44], both multi-join adaptive op-
erators using tuple routing. They are described here to provide context for the SHARP contributions in
the next Section. Other related work appears in Section 5.

2.1 Terminology
For an operator Op joining two or more relations, we say relation B is a build relation when tuples from
that relation are inserted into some lookup structure (e.g., hash tables). We say relation D drives Op, or
is a driving (or probing) relation for Op, if each input tuple t1 coming from D probes the build lookup
structures of Op and potentially produces output tuples, or schedules t1 for second-stage processing, be-
fore any other tuple t2 from D is processed2. A relation may be simultaneously a build and driving rela-
tion. In the figures, driving relations are marked with arrowed lines and build relations are marked with
dotted lines.

2.2 The Eddy
The Eddy [2] is an operator that routes tuples through a pool of operators until they are processed by all
operators or are dropped along the way. The Eddy continuously observes the performance of the opera-
tors by collecting statistics at run-time (e.g., selectivity and cost) and routes tuples to the most efficient
operator3. Since these statistics are potentially changing, the process is automatically adaptive, possibly
sending different tuples through different routes. The ability to efficiently change routes (i.e., query
plans) relies on operators with moments of symmetry [2], moments after which joins can be reordered.
The symmetric hash join (SHJ) [45], typically used with Eddies, is an operator with frequent moments

2 For example, in a nested-loops join operator the left input is the driving source, and in a hybrid hash join operator the right

input is the driving source.
3 In reality, the Eddy routes most, but not all, tuples through the route expected to be most efficient (in a process called ex-

ploitation) and simultaneously routes some few tuples through other routes to discover if any of those other routes has be-
come the most efficient (exploration).

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

of symmetry. Each SHJ consists of two in-memory hash tables4, one for each relation being joined; tu-
ples from one relation build into its hash table and probe the other. An Eddy with SHJs can then execute
several plans, depending on the tuple source and routing policy. For example, the Eddy in Figure 1b
executes R aS bT by sending R tuples to first probe hash table S.a and then probe T.b, T tuples first
probe S.b and then R.a, and S tuples have two options: either they first probe T.b and then R.a, or first
they probe R.a and then T.b (hash tables are represented as grey rectangles in Figure 1). This design, al-
beit providing very adaptive plans, introduces a considerable overhead [15]: it requires maintaining two
hash tables per join and requires that all joins be completely and simultaneously in memory (e.g., the
Eddy of Figure 1b needs to maintain the four hash tables, R.a, S.a, S.b, and T.b in memory). Although
the Eddy has the potential to join any number of relations in any order, its memory limitations restrict
the Eddy for in-memory processing of data streams (possibly infinite, window-bounded, remote tuple
sources that deliver tuples at unpredictable and bursty rates).

2.3 The MJoin
The MJoin [44] is a completely symmetric multi-way data stream join operator, with one hash table per
data stream. As with the Eddy using SHJs, tuples from a particular source build on that source’s hash
table and probe the others. The MJoin uses fewer hash tables than the Eddy because it assumes that a
data stream uses the same joining attribute for the all joins (see Figure 1c). This assumption also allows
more join orders in the MJoin than in the Eddy. For example, the MJoin of Figure 1b can process any of
the six join orders (RST, RTS, SRT, STR, TRS, and TSR), being restricted only by the incoming tuple
source.

The important contributions of MJoins are i) producing tuples sooner than a tree of binary non-blocking
join operators (e.g., SHJs), ii) extending the streaming behavior of SHJs to allow memory overflow, and
iii) providing a rate-based cost model of the data stream join problem it addresses.

In contrast, our paper addresses the problem of joining local relations. Our goal is to execute plans that
are insensitive to optimizer mistakes and our evaluation metric is time to completion. Other differences
between the MJoin and SHARP are: the MJoin does not redistribute memory dynamically between
joins, requires more memory then SHARP, does not evaluate routing policies, and, for the second-pass,
assumes that all relations join on the same attribute.

4 Each one of the two hash-tables that composes a SHJ is called a SteM in the Eddies nomenclature [35].

S

Figure 1 – A SHARP and an Eddy processing R aS bT,
and a MJoin processing R aS aT.

Eddy

R aS
R.a S.a

R S T

S bT
S.b T.b

R.a

 R T

Output Output

R.a S.a

R S T

T.a

Output

T.b

a) SHARP c) MJoin b) Eddy

SHARP

MJoin

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

3. SHARP
SHARP is an operator that keeps the inexpensive [15], tuple-routing, run-time adaptivity of the Eddy
without incurring the overhead of SHJs [15] and without the requirement that all joins fit completely in
memory. The trade-off is that, while Eddies and MJoins can process arbitrary plans, SHARP processes
only star-joins and segments of linear-joins as shown in Figure 2. In spite of that, SHARP still has the
potential to adaptively decide at run-time which join order to use. In addition to reducing memory usage,
not using SHJs also allowed the development of a new technique to process joins between relations
much larger than memory.

The rest of this Section is organized as follows. Section 3.1 describes the in-memory behavior of
SHARP and minor multi-join improvements. Section 3.2 describes three tuple routing techniques im-
plemented in SHARP. Section 3.3 introduces late-binding decisions that allow SHARP to change the
query plan before tuple routing starts. Then, Section 3.4 describes how SHARP processes relations lar-
ger than memory. Finally, Section 3.5 summarizes SHARP and compares it with Eddies and MJoins.

3.1 In-Memory Processing
In a SHARP joining n relations, one relation is the single driving relation and all other n-1 relations are
build relations. SHARP starts by reading tuples from the build relations and creates an in-memory hash
table for each one. (Processing of build relations bigger than available memory is described in Section
3.4) Then, SHARP reads tuples from the driving relation, probes the in-memory build hash tables and
outputs join results. Figure 1 (previous page) shows a SHARP joining R aS bT, where R and T are the
build relations and S is the driving relation. Tuples from the driving relation–henceforth called driving
tuples–probe the build hash tables in an order specified by an adaptive tuple routing policy, as described
in Section 3.2.

3.1.1 Adaptive Redistribution of Memory.
In SHARP, each build hash table is given a memory budget. If the total build size is larger than the
budgeted amount, then the hash table must write hash partitions to disk for second-stage processing.
However, before writing them to disk, SHARP first loads the remaining build tables into memory until
they either consume their entire memory budget or load completely. If any budget is underutilized,
SHARP reassigns the available memory to the yet to finish build hash tables. In contrast, the process of
redistributing memory across joins is non-trivial for tree-shaped execution plans of binary operators. The
process is more difficult because operators lower in the tree cannot obtain excess memory from opera-
tors higher in the tree as they have not begun execution.

Note that many memory redistribution policies are possible. For simplicity, SHARP assigns all unused
build memory to the first hash table build that did not fit its budget. If that build completes without using

Figure 2 – A SHARP processing a star-join,
and two SHARPs processing a linear-join

A

Star-Join

E C

B

D

D C B A E

SHARP

A

Linear-Join

B C

C B C

D E

E A

SHARP

SHARP

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

all the newly assigned extra memory, SHARP further reassigns it to the next yet to finish build and so
on.

3.1.2 Multi-Join Optimizations.
SHARP takes advantage of its multi-join nature to obtain two performance benefits. First, SHARP
avoids creating some intermediate results: when a tuple s from driving relation S, probes build relation R
and finds a matching tuple r, the resulting rs is not generated. Instead, SHARP (like the Eddy’s imple-
mentation in TelegraphCQ [11]) merely keeps a pointer to r and proceeds to probe the other build rela-
tion T using tuple s. Then, an rst intermediate tuple is generated only if a matching tuple t of T is found.
If the probe on T fails, no intermediate tuple is ever generated.

Another benefit is the reduction of getNext calls. Assume operator Op1 sends an s tuple to probe build
hash table R and gets one single matching tuple r. In this scenario, two getNext calls are made on R: the
first call returns r and the second call returns null, meaning that there are no more matches for s. In a
traditional plan composed of binary hash join operators, the intermediate join tuple s.r is returned to
Op2, the parent of Op1, before the second call is made. Op2 may then use the s portion of s.r to probe an-
other hash table T. If the s.r probe on T fails, Op2 tries to get a new tuple from Op1. Op1 then finishes the
probe of s on R by executing the second getNext call. This call is unnecessary: even if there was another
tuple in R, say r2, matching with s, the s.r2 tuple would also be dropped by Op2 since it shares the same s
component that failed the T probe. With SHARP, if a driving tuple probe into a build hash table returns
no matches, then any outstanding open probes on other build hash tables are closed and spurious
getNext calls are not made.

These two factors explain why SHARP shows a small performance advantage over trees of binary op-
erators, even in scenarios where its adaptive mechanisms provide no benefit.

3.2 Adaptive Tuple Routing Strategies Used
In SHARP, we implemented three routing policies adapted from three previous proposals [2, 15, 5].

The first routing policy, which we call Continuous or simply Cont, is a modification on the original rout-
ing policy in the first Eddies paper [2]: a probabilistic routing mechanism based on lottery scheduling is
used to determine where to route tuples next and routing decisions happen each time an operator finishes
processing one tuple. The variation is that in Cont, we make a routing plan once per each driving tuple,
instead of once per probe. In addition, instead of lottery scheduling, we route every r-th tuple to a ran-
dom route. This makes the exploration mechanism independent of the currently estimated best route. For
all other tuples Cont uses the estimated best routing order. Also, as in the Eddies implementation in
TelegraphCQ [11], the selectivity of operators (the join selectivity of build hash tables in our case) is
continuously updated after each probe and dropped tuples do not affect the selectivity of operators they
do not probe.

Continuous-Batch, or simply ContB, the second tuple routing policy implemented, is taken from
Deshpande [15]: instead of computing a routing order once per driving tuple, routing orders are com-
puted once per batches of tuples. Policies Cont and ContB minimize the overhead of gathering statistics–
tuples are not used to explore operators after being dropped–but they provide no optimality guarantees
on the chosen routes: they may take too long to discover new optimal routes or may never discover
them.

An alternative is A-greedy, a routing policy that uses a small percentage of tuples, called profile tuples,
to keep a profile window: a moving window of pass/fail bits for each operator [5]. Because the profile
window contains information even from otherwise dropped tuples, A-greedy can estimate the selectivi-

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

ties of operators even for routes that it never executes. This information is then used to provide strong
guarantees on the optimality of routes that A-greedy selects [5]. However, A-greedy has a higher state
update overhead then Cont or ContB and that is why it collects information just after every profile tuple,
instead of after every tuple. A-greedy, developed for data stream scenarios where data and system char-
acteristics are expected to change very quickly, computes a new routing order after every profile tuple.
Since SHARP is processing local relations instead of data streams, and to lower the overhead of comput-
ing routes and to produce the first routing order faster, our implementation of A-greedy, called Profile,
uses the first n out of every p tuples as profile tuples. Thus, Profile, the third tuple routing policy imple-
mented in SHARP, computes a new routing order after every n+K*p tuples, with K≥0, and uses that
routing order for the next p driving tuples. Table 1 summarizes the routing policies implemented.

3.3 Late Binding Decisions
In this Section we describe a series of late binding decisions–decisions made at run-time after some tu-
ples are observed–that change the structure of the query plan executed by SHARP.

The late binding decisions can be made after SHARP loads any build relation, Bi, into hash table ti, with
i=1..n, where n is number of builds. While it creates ti, SHARP also constructs a histogram on attribute
Bi.d, the attribute of Bi that joins with the driving relation. If ti fits in memory, then SHARP uses the his-
togram created, consults the catalog and estimates how many driving tuples, di, would join with Bi. At
this point, SHARP can change the query plan in three different ways, summarized in Table 2 and de-
scribed next, or it can continue the query processing as described in Section 3.1. We note that although
the late binding decisions can happen after any build table is loaded, in this first prototype, they will
happen only once per query: i.e., if SHARP makes late binding decisions after the first build is loaded,
then it will not make more late binding decisions after any other build is loaded.

3.3.1 Using an Indexed Nested-Loop (Uinl).
If the driving relation D is a base relation with an index, idxi, on the attribute(s) D.ai of D that join with
Bi.d, then, depending on di, on the costs of random and sequential reads, and on properties of index idxi,
it may be better to use an indexed nested-loop to access the driving tuples–with hash table ti and index
idxi as the outer and inner components of the loop–than to use a file scan on D. At this point, SHARP
makes a cost-based decision5 and if the file scan is the better access for D, then SHARP does not change
the query plan. Otherwise, driving tuples will be obtained using the indexed nested-loop. Note that this
change effectively makes Bi the driving relation. In addition, if the indexed nested-loop access is used,

5 The cost-based decision is similar to the access path selection that happens at optimization. However, during optimization

the statistics needed to cost the indexed-nested loop plan may be missing. On the other hand, SHARP computes part of the
statistics it needs from observed tuples and is thus less likely to produce incorrect estimates.

Table 1 –Routing Policies Implemented, p>n>r, K∈∈∈∈

Routing Policy New Route Update State Exploration Optimality Guarantees

Cont
After every tu-

ple
Every tuple

Random route every r
tuples

None

ContB
After n*K tu-

ples
Every tuple

Random route every r
tuples

None

Profile
After n+K*p

tuples
n out of every p

tuples

n out of every p tuples
probe all builds, even if

dropped

Greedy 4-approximation
algorithm [5]

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

then the late binding decision “Using INL and Bloom-Filters”, below, is considered before any other
build relation is processed.

3.3.2 Using INL and Bloom-Filters (Uibf).
Given di and the average size of a driving tuple, SHARP computes the total expected size of those di tu-
ples, Ti. If Ti is less than the budget given to any build hash table, then SHARP reads all the di driving
tuples into memory before proceeding to read other builds. For each driving tuple it loads into memory,
SHARP reads attribute aj that joins with build relation Bj and updates the a bloom filter bfj, for j=1..n,
j≠i. Each bloom filter, bfj, is a bitmap of length k [9]. When driving tuples are read, attribute aj is hashed
to a value between 0 and k-1, and the corresponding bit in bfj is set. Later, when the other build relations
are read, for each tuple, SHARP hashes its join attribute, Bj.d, with the hash function used for bfj. If the
bit corresponding to that value in bfj is 0, then the tuple is dropped, otherwise the tuple is processed nor-
mally.

3.3.3 Using Driving Relation Pre-Filtering and Bloom Filters (Ufbf).
As described in Section 3.4, SHARP’s second-stage processing requires a second pass on portions of the
driving relation if any build relation requires a second pass. As such, filtering the build relations with
bloom-filters may improve performance significantly because it could save both the builds and the driv-
ing relations from spilling to disk. Thus, even if SHARP decides not to use an indexed nested-loop to
retrieve the driving tuples, it will still check, after building any ti, if the Ti (the size of all tuples of D es-
timated to match ti) fits the budget given to build hash tables. If it does, then, as in the case Uibf above,
SHARP reads driving tuples into memory ahead of time. Each driving tuple read probes ti and if it finds
no match, it is dropped. Otherwise, it is kept in an in-memory buffer and it is used to update bloom-
filters on the other build relations. Then, build relations are loaded into memory while being filtered by
the bloom-filters. Finally, driving tuples are read from the in-memory buffer, and used to probe the
builds.

3.4 Second-Stage Processing
Even after redistributing memory across joins (Section 3.1) and filtering tables using the late binding
decisions (Section 3.3) it is still possible that one or more relations do not fit in memory. Those portions
will have to be temporarily written to disk and processed at a later stage, typically referred to as second-
stage. This Section describes SHARP’s second-stage processing algorithms.

3.4.1 Split Tables into Partitions and Portions.
When SHARP reads build relation Bi, it creates an in-memory hash table ti with p partitions. If there is
no more memory space for Bi tuples, one in-memory partition of ti is selected, its current records are
moved to a temporary file on disk, the partition is marked as frozen, and SHARP continues loading re-
cords from Bi. Future records that hash to frozen partitions are held in very small memory buffers and
flushed to disk when the buffers fill up. Then, for each ti, the partitions are assigned to sets of consecu-
tive partitions called portions, such that the size of each portion does not exceed available memory.
Figure 3a shows the state of a SHARP after it has completed the build stage. In the example, build hash

Table 2 – Summary of Late Binding Decisions

Decision Type of D Read D Access D Buffer D?
Uinl Base After Bn Index No (stream)
Uibf Base After Bi Index Yes
Ufbf Base, intermediate After Bi Unchanged Yes

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

table t1 has four portions. Portion 0 is in memory, and the remaining three portions contain the frozen
partitions.

After the builds are partitioned, SHARP reads the driving table and partitions it along all n join attributes
with the build relations. This multi-dimensional split of D is shown in Figure 3b for the case of two
build relations. Note that the split of D is done in terms of portions of the ti, instead of partitions of ti.

To split D, incoming driving tuples are routed to some ti for probing (according to SHARP’s routing
policy as described in Section 3.2). When SHARP probes ti with driving tuple dt, using join attribute
dt.ai, it gets one of three results: “match”, “fail”, or ti(dt.ai), the number of the in-disk partition of ti that
dt.ai hashes to. We note that a “match” also includes the set of pointers to the dt matching tuples in ti and
implicitly implies that portion ti(dt.ai) is in memory (i.e., ti(dt.ai)=0).

If any ti probe returns “fail”, tuple dt is dropped; otherwise the tuple is routed to another hash table. If dt
is not dropped, there are three cases to consider, corresponding to the dotted, white, and gray portions of
D in Figure 3b:

• If all ti probes return “match” (dt belongs to the dotted portion of D), then the resulting one or more
join tuples are output by SHARP and not written for second-stage processing.

• If all ti(dt.ai)>0 (dt belongs to a white portion of D), then it is not known if tuple dt joins or not with
any of the builds. Tuple dt is then written to a temporary file for second-stage processing.

• If at least one, but not all tables, ti returned “match” (ti(dt.ai)=0) then driving tuples dt belongs to a
grey portion of D. In this situation, dt tuples can be processed in two ways: Save Intermediate Tuples
(SIT) or Save Driving Tuples (SDT). In option SIT, SHARP writes to temporary files the intermedi-
ate join between dt and its matching tuples (from the hash tables that returned “match”). In option
SDT SHARP writes just dt to temporarily files and discards any matching tuples, which are then ob-
tained again during the second-stage processing of dt.

When option SIT is used some D portions (marked gray in Figure 3b) will contain wider, intermediate
join tuples, but the probing work will not be lost. When option SDT is used, all D portions contain just
driving tuples, but the probing work will be lost and will have to be repeated later by reloading portions
of build tables from disk. Depending on the relative sizes of driving tuples and their matching records,
and on the selectivity of the joins, either option can be better. Furthermore, the choice between SIT and
SDT made for driving tuples for which ti(dt.ai)=0 can be different of the choices between SIT and SDT
for tuples for which tj(dt.aj)=0, j≠i. For example, in Figure 3b, choice SIT can be used for D portions
marked 4, 6 and 8, and option SDT can be used for D portions 11 and 20. To simplify the second-stage
algorithm, the prototype implementation of SHARP always uses option SDT.

Memory

Disk

t1 t2

Figure 3 – Second stage processing

a) End of build stage

t2

t1

D
b) Multi-dimensional

split of D

0

1

2

0

1

2

3

1

2,10,... 3,…

4

5,… 7,…

6 8

13 15 17 9 11

18 22 24 26 20

Portions

Partitions
…

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

Figure 5 – Right-Deep Tree of DHJs
D B1

DHJ B2

DHJ B3

DHJ

3.4.2 Second-stage Joins.
After the multi-dimensional split of D is complete, SHARP begins the second-stage of the join. First
SHARP orders the build hash tables based on the ascending number of portions and, if there is a tie,
based on their descending total size. This order is represented by O(i), such that O(i) represents the i-th
build hash table in the order. In the example of Figure 3, O(1)=t2 and O(2)=t1 because t2 has just three por-
tions while t1 has four portions. Assume also that |O(i)| represents the number of portions in hash table
O(i) and that O(i).load(k) loads portion k, with k<|O(i)| of hash table O(i) into memory, deleting from
memory the current in-memory portion of O(i) and that function Dportion(i1, i2, …, in) returns the portion
of D that corresponds to the i1-th portion of O(1), to the i2-th portion of O(2), …, and to the in-th portion of
O(n). In the example of Figure 3, Dportion(1,2) corresponds to the portion of D marked with a circle.

Then, as shown in the pseudo-code of Figure 4, SHARP executes a series of loops, loading portions of
O(1) to O(n) into memory, getting tuples from the corresponding D portion, probing the in-memory por-
tions of O(1) to O(n) and outputting matches. This algorithm loads the on-disk portions of D one time and
loads the in-disk portions of O(i) a number of times equal to ∏j=1..i-1|O(j)|. The numbers in Figure 3b rep-
resent the order in which portions of the example of Figure 3a are loaded.

for (i1=0; i1<|O(1)|, O(1).load(i1); i1++)
 for (i2=0; i2<|O(2)|, O(2).load(i2); i2++)
 …
 for (in=0; in<|O(n)|, O(n).load(in); in++)
 for all tuples dt in Dportion(i1, i2, …, in)
 dt probes in-memory portions of O(i), …, O(n);
 output matches between dt and O(i), …, O(n);
 end for;
 end for;
 …
 end for;
end for;

Figure 4 – Second-stage Pseudo Code

In contrast, a right deep tree of binary dynamic hash joins, reads each input relation just once, but may
have to save to and read from disk (during the second-stage processing) the intermediate results multiple
times. For example, if no Bi, i=1,2,3 fits completely in memory, the execution plan corresponding to the
right-deep tree of Figure 5 will need to do a second-pass for each of the joins, saving to and reading
from disk part of the intermediate results corresponding to D B1, D B1 B2, and D B1 B2 B3. To mini-
mize the size of those intermediate results, an accurate optimizer estimates the join selectivities between
D and Bi, and other things being equal, sets D’s join order to be from the most to the least selective Bi.
However, join selectivities are hard to estimate correctly and an optimizer may choose an incorrect join
order which negatively affects performance.

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

On the other hand, the performance of SHARP depends very little on the join order defined by the opti-
mizer. If the builds fit in memory, the join order is determined by an adaptive tuple routing policy at
run-time. If the builds do not fit in memory, the cost of SHARP’s second-stage depends mainly on the
order O(i), but this order is determined only after all build tuples are observed; no estimates are needed.
However, the performance of SHARP’s second-stage suffers from the “curse of dimensionality”: if sev-
eral build relations are much larger than memory, then the repeated readings of the inner most build,
O(n), (which is read ∏i=1..n-1|O(i)| times) may dominate the total cost of the join. In the Experimental
Evaluation Section we explore how the available memory affects the performance of SHARP. It is also
shown that even with an amount of available memory equal to just 10% the size of the largest build ta-
ble, SHARP’s second-stage can still outperform other methods.

3.5 Summary of SHARP
SHARP does not use symmetry plans (like the MJoin) nor symmetric operators (like the Eddy).and in-
stead of allowing all relations to be used as builds or probes, the optimizer chooses one single driving
relation. Since only build relations have hash tables, this design reduces the memory footprint of a
SHARP to essentially half of what an Eddy and its SHJs would consume. The routing policy is then re-
sponsible for determining the order with which driving tuples probe the build sources.

By having a single driving relation, routing policies in SHARP have fewer routes to choose from than in
Eddies (because routing decisions affect only tuples coming from driving relations). However, because
SHARP is a pull-based operator–in charge of obtaining new tuples from its sources–we were able to de-
sign a series of late binding decisions that, in some cases, are able to promote any of the builds to be the
driving relation before the tuple routing stage starts.

In short, an Eddy is able to change execution from any route to any other route at any stage of execution,
while a SHARP first determines which source is the driving relation and then continuously adapts the
sequence in which the driving tuples probe the build sources. With this two-step adaptive process,
SHARP still has the potential to adaptively decide at run-time which one of all6 possible join orders to
use but with a much smaller memory footprint.

4. EXPERIMENTAL EVALUATION
We now describe an experimental evaluation of the query processing techniques described for SHARP
using a prototype implementation in Predator [38]. All results were obtained using a dedicated machine
with 512 MB of main memory and a buffer pool of 2000 16-Kbyte pages (hash table builds are kept out-
side the buffer pool). Results are averages of three to five cold runs.

We note that the first experimental results (Section 4.2) do not evaluate any adaptivity feature of
SHARP and exhibit only marginal improvements of a SHARP over competing plans. The purpose of
that Section, though, is twofold. First, we want to show that, not only is the adaptivity overhead of
SHARP very low, but also, even in scenarios where the adaptivity yields no benefit, SHARP still pro-
vides a marginal performance advantage due to its multi-join nature. Second, the adaptivity benefits of
SHARP compound these initial multi-join improvements.

4.1 Datasets
The SHARP prototype was evaluated using two datasets, Star and TPCH, described below. Star, a syn-
thetic dataset we created, allowed us to more easily explore different selectivities, join selectivities and

6 Ignoring join orders using Cartesian products.

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

table sizes. TPCH is used to evaluate SHARP’s adaptivity and robustness in a widely known bench-
mark:

• Star: We created a synthetic benchmark, Star, based on a star schema, with a central fact table F, and
four dimension tables, A, B, C, and D. F has 1,000,000 152-byte records and A, B, C, and D have
100,000 40-byte records. Our experiments use 2-way, 3-way, and 4-way join queries of the following
form:

SELECT * FROM F, A, B, …, D
 WHERE F.fkdA = A.pk
 AND F.fkdB = B.pk
 …
 AND F.fkdD = D.pk
 AND σ1(A)
 AND σ2(B)
 …
 AND σ4(C);

Where σi, i=1,..,4 represent selection predicates with selectivities between 0% and 100%.

• TPC-H: TPC-H is the decision support benchmark from the Transaction Processing Performance
Council [40]. We used tables lineitem (L), orders (O), part (P), customer (C), and supplier (S), with
scale size 1. We included an extra column in L (a foreign-key to C) to allow star-schema queries using
one central fact table (L) and up to four dimension tables (O, P, C, and S). Our queries join either all
tables, or all except O (the largest dimension), or all except S (the smallest dimension), and we use
varying selection predicates on the dimension tables.

4.2 Evaluating Multi-Join Improvements
As described in Section 3.1, SHARP has two benefits over plans composed of a tree of binary operators:
it can avoid unnecessary intermediate tuple generation and unnecessary getNext calls. We note that
these benefits are not due to any adaptive feature of SHARP. Instead, they are a positive side effect of
the multi-join nature of SHARP.

In the results shown in Figure 6, table F from schema Star, was joined with two, three, and four dimen-
sion tables. All the dimension tables fit in memory, and all join selectivities7 are 100%. We compare
three execution plans: SHARP, SHARP-IR, and RDH. SHARP-IR is a variation of SHARP that gener-
ates intermediate join tuples after each successful probe. RDH is a plan composed of a right-deep tree
of dynamic hash joins [33], with F as the rightmost table8 as shown in Figure 11. Both SHARP and
SHARP-IR have their run-time statistics collection and adaptive routing policies turned off to ensure
that the probing sequence is the same in all plans, and to ensure that we are measuring just the multi-join
benefits. (The performance of routing policies in measured in Section 4.4.) All three plans use the same
hash table implementation code. The benefit of avoiding intermediate results varies between 5% and
15%.

7 We use the term join selectivity of a build table as the average number of returned records per probing record.
8 The right-deep tree plan creates hash tables on the same relations and executes the same number of build and probe opera-

tions as SHARP.

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

In a second experiment, we set the selectivity of the last join to 0% (e.g., for the case of three joins,
100% of F tuples join with the first and second dimension, and 0% join with the third dimension). These
contrived plans maximize the number of spurious getNext calls made by the RDH plan and give an up-
per bound on the benefit obtained by avoiding those calls. Figure 8 shows the results for SHARP,
SHARP-IR and RDH: SHARP is between 10% and 23% faster than RDH and SHARP-IR is around 5%
faster than RDH.

The results show that, even without taking advantage of adaptivity, a tuple routing operator can slightly
outperform plans composed of a tree of binary operators.

4.3 Redistributing Memory Between Joins
For each query, our system gives a pre-specified memory budget for each hash table used to implement
hash joins. Traditionally, if building the hash table requires more memory space than the memory
budget, some partitions would have to be written to disk and a second-pass on those partitions would be
required. In addition, if the hash table requires less memory than the allocated budget, then the unused
memory–save some exceptions [14]–is not given to other operators. On the other hand, as described in
Section 3.1, SHARP loads all its builds into memory before reading the driving relation and is therefore
able to redistribute memory between different hash tables.

To evaluate the impact of memory redistribution, table F was joined with selections σ1 and σ2 on tables
A and B. The selections are such that the size of σ2(B), |σ2(B)|, is four times the size of σ1(A), |σ1(A)|,
and (|σ1(A)|+|σ2(B)|)/2 is equal to the memory budget for hash tables. Thus, σ1(A) underutilizes its
budget while σ2(B) overutilizes it, but on average both fit in memory.

Four different plans were tested, for the four combinations of using SHARP and a RDH and of using
two join orders, joining F with A first and then with B, or joining F with B first and then with A. Then,
as shown in Figure 7, the size of the combined memory budget was varied from |σ1(A)|+|σ2(B)| (corre-
sponds to 100%) to 2*|σ2(B)| (160%).

SHARP is able to take advantage of memory redistribution and avoid a second-stage for all amounts of
memory tested. On the other hand, because the RDH executes a tree of independent operators, it does
not redistribute memory amongst the operators. Thus, the RDH plan only avoids a second-pass in both
operators when the budget per hash table is at least as large as the largest hash table. This happens only
for a combined memory budget of 2*|σ2(B)|, or 160% the size of the |σ1(A)|+|σ2(B)|. If more than
2*|σ2(B)| of memory is available, the performance of all four plans remains unaffected. If less than

Figure 8 – Avoiding
getNext Calls

Figure 6 – Avoiding
Intermediate Results

Figure 7 – Redistributing
Memory

0

10

20

30

3 4 5
Number of tables joined

RDH
SHARP-IR
SHARP

Secs.

0

10

20

30

3 4 5
Number of tables joined

RDH
SHARP-IR
SHARP

Secs.

0

10

20

30

40

100% 120% 140% 160%
% of builds that fit in memory

RDH-BA
RDH-AB
SHARP-BA
SHARP-AB

Secs.

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

Figure 10 – Low Profiling Overhead,
High Probing Cost

|σ1(A)|+|σ2(B)| of memory is available, SHARP also needs a second-stage. Experiments showing the
performance of the SHARP second-stage appear in Section 4.5.

4.4 Comparing Routing Policies
To compare the routing policies described in Section 3.2, table F was joined with two, three, and four
dimension tables. In each query, the join selectivities were 100% for all joins except for one that was
25%. To highlight the impact of a good routing policy that quickly discovers sub-optimal plans, the ini-
tial default join order defined by the optimizer was sub-optimal, executing each of the 100% selectivity
joins before the 25% selectivity join.

The experiments explored two variables, the profiling overhead, and the (hash table) probing cost. A
higher profiling overhead means that the routing policies spend more time exploring alternative routes,
computing new optimal routes, and updating state. The profiling overhead was varied by setting the pa-
rameters of Table 1 (in Section 3.2) to the following values:

High Profiling Overhead: r=10, n=1000, p=10000
Low Profiling Overhead: r=50, n=200, p=10000

Parameter r, which specifies how frequently the tuple routing policies Cont and ContB explore alterna-
tive routes, was set such that r=n/p to ensure fairness in the comparison (as n/p specifies how frequently
the tuple routing policy Profile explores other routes). The probing cost was varied by artificially delay-
ing the probe operation, such that, on average, high probing cost takes about four times longer than low
probing cost.

Figure 9 and Figure 10 show the results for the low profiling overhead cases for the three routing poli-
cies implemented, plus a trivial policy, Static, with no profiling overhead, which simply routes tuples
according to the join order defined by the optimizer. The higher profiling overhead cases are not shown
because they are very similar to these. As expected, a higher probing cost (Figure 10) affects all policies
negatively, but affects the Static policy more than the others because the adaptive policies, detect and
avoid the sub-optimal plan while Static continues executing the sub-optimal plan where it performs extra
probing operations

The Profile policy was always the best of the three adaptive policies, except when both the profiling
overhead and probing costs were high (graph not shown). However, even in this case, it was between
25% and 33% better than the Static policy. On average, we found that, Profile outperformed Static by
24%, ContB outperformed Static by 22%, and Cont outperformed Static by 16%.

Figure 9 – Low Profiling Overhead,
Low Probing Cost

0

6

12

18

2 joins 3 joins 4 joins

Static
Cont
ContB
Profile

Secs.

0

10

20

30

40

2 joins 3 joins 4 joins

Static
Cont
ContB
Profile

Secs.

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

4.5 Evaluating the Second-Stage
To evaluate the performance of the second-stage processing of SHARP, we joined tables F, A, and B in
one query and tables F, A, B, C, and D in another query. (Further experiments in the next two Sections
also evaluate the second-stage.) The amount of memory was varied such that between 10% and 100% of
tables A and B in the first query, and A, B, C, and D in the second would fit in memory. SHARP was
compared with plans RDH and LDH. We note that both SHARP and the RDH plan are non-blocking
plans, and therefore, their execution pipeline uses the in-memory parts of all the build hash tables simul-
taneously (see Figure 11b showing RDH’s execution pipeline in gray). In contrast, the execution pipe-
line of LDH plan, at any moment only manipulates two hash tables (see Figure 11c). Thus, to ensure the
amount of total memory per plan was the same, hash tables in the LDH plan were allowed twice the
memory of hash tables in SHARP and the RDH plans. The results are shown in Figure 12 and Figure 13.

Except when the amount of memory is very limited, SHARP outperforms the other two plans. If several
build relations are much larger than memory, then the innermost build will be read many times and the
performance of SHARP degrades quickly. On the other hand, as shown in Section 4.7, if just one or two
builds are much larger than memory, and the remaining builds either fit in memory or are not much lar-
ger than memory, then the performance of SHARP degrades much more slowly.

To address the exponential degradation problem, the SHARP could convert itself to a RDH plan: after
all the builds are read and partitioned, SHARP can easily determine if its performance will degrade
quickly or not. At this point, the conversion to a RDH plan is essentially free; all dimension tables are
already partitioned with the right hash functions, and no work is lost. We leave this late binding decision
that as future work.

0

50

100

150

0% 20% 40% 60% 80% 100%
Percentage of builds that fit in memory

LDH
RDH
SHARP

Secs.

Figure 12 – Evaluating Second-Stage, 2 joins

Figure 11 – a) SHARP; b) right-deep tree
of DHJs; c) left-deep tree of DHJs

c) LDH Plan
F A

DHJ

a) SHARP Plan

D C B A F

SHARP

B

DHJ C

DHJ D

DHJ

b) RDH Plan
F A

DHJ B

DHJ C

DHJ D

DHJ

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

0

250

500

0% 20% 40% 60% 80% 100%
Percentage of builds that fit in memory

LDH
RDH
SHARP

Secs.

Figure 13 - Evaluating Second-Stage, 4 joins

4.6 Evaluating Late Binding Decisions
To evaluate the effectiveness of the late binding decisions proposed in Section 3.3, table F was joined
with dimension tables A and B in one query and with dimension tables A, B, C, and D in another. Both
queries were run with unlimited memory and with memory limited to 25% the size of the dimension ta-
bles. A selection predicate σ was applied to table A and the selectivity of σ was varied from 0.01% to
100%. The execution plan for four joins is shown in Figure 14a. Three other plans were also considered,
RDH, LDH, and INL. Plans RDH and LDH are similar to the plans b) and c) of Figure 11, but with
predicate σ applied on table A. Plan INL is a tree of binary indexed-nested loop joins; i.e., with the same
shape as plan LDH, but with the DHJ operators replaced by indexed-nested loop operators.

The three late binding decisions under consideration are Using an Indexed Nested-Loop (Uinl) to obtain
the driving tuples, Using Indexed-Nested Loops and Bloom-Filters (Uibf), and Using Driving Relation
Pre-Filtering and Bloom Filters (Ufbf). Ufbf was implemented as follows: instead of consulting the cata-
log to estimate the number of driving tuples matching an in-memory build table–as described in Section
3.3–our prototype implementation executes Ufbf every time a build relation had less than 2000 tuples.
To simulate the cost of a SHARP using late binding decisions Uinl and Uibf, the plan of Figure 14b was
forced and for each point in the graphs, the best time for the plans of Figure 14a and Figure 14b was
chosen as being SHARP. Figure 15 measures the impact of the late binding decisions for the 4-join
query with memory restricted to 25% the size of the builds, by comparing SHARP with SHARP-NLB, a
version of SHARP where no late binding decisions are allowed. Figure 16 then compares SHARP with
plans RDH, LDH and INL for the same query. Figure 17 shows the results for the 2-join query with
memory equal to 100% the size of the builds (note that for this query, SHARP and RDH do not need a
second-stage but LDH does). These figures show that SHARP is the best plan for a wide range of values

Figure 14 – Plans Used to Evaluate Late Binding Decisions

a) SHARP

D C B σ(A) F

SHARP

b) Simulating SHARP
with Uinl

F

INL

D C B

SHARP

σ(A)

σ(A)

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

of σ, showing the best results in all points of the graphs, except possibly in the range σ∈[0%, 0.5%]
where the INL plan was sometimes better, or in the range σ∈[2%, 20%] where RDH was sometimes bet-
ter.

In the range σ∈[0.01%, 0.1%], the size of σ(A) is so small that it is worthwhile to use late-binding deci-
sion Uibf. That is, after reading A tuples into memory, and after filtering them with σ, it is best to use
them to lookup the driving tuples with an index then it is to read the driving tuples using a table scan on
F. In addition, because the number of driving tuples matching those A tuples is also very small, it is
worthwhile to read those few driving tuples into memory and create bloom filters on the builds yet to
load instead of proceeding with the unfiltered load of build tables.

In the range of σ from 0.1% to 2%, the number of σ(A) tuples was not low enough to use them to obtain
driving tuples using an index, but it was still low enough to make late-binding decision Ufbf worthwhile.
In that range, it is best to read A tuples into memory, filter them with σ, read and filter F tuples with the
σ(A) tuples and create the bloom filters on the yet-to-load build tables than it is to proceed with the un-
filtered load of build tables.

Overall, Figure 15, Figure 16, and Figure 17 show that it is possible to construct robust query plans, that
is, plans whose comparative performance is insensitive to optimizer estimates. In the example, regard-
less of the estimate the optimizer might have had about selection σ, executing SHARP would be a good
decision: its performance is either optimal or close to optimal in all points in the graphs.

4.7 TPC-H Queries
In order to further evaluate the performance of second-stage processing and robustness of SHARP in the
presence of potentially incorrect join orders, SHARP was tested for queries 1, 2, and 3, and the selection
predicates shown in Figure 18. Then the optimizer was altered to generate plans with a specific join or-
der.

Figure 19 shows the results of executing Query 1 using two join orders, LPCS (the best join order for
RDH), and LCPS (the second best join order for RDH), and with 45Mbytes and 15Mbytes of available
memory, for both SHARP and the RDH plan. (The LDH variant was always worse than RDH in this
query.) Not only is SHARP superior to the RDH plan, its performance is also essentially independent of
the join order specified by the optimizer. In fact, the order specified by the optimizer affects the SHARP
plan in just two ways:

0

20

40

60

80

0.0% 0.1% 1.0% 10.0% 100.0%

Selectivity of σ(A)

SHARP-NLB
SHARP

Secs.

0

40

80

120

160

0.0% 0.1% 1.0% 10.0% 100.0%
Selectivity of σ(A)

INL
LDH
RDH
SHARP

Secs.

0

10

20

30

40

50

0.0% 0.1% 1.0% 10.0% 100.0%

Selectivity of σ(A)

INL
LDH
RDH
SHARP

Secs.

Figure 15 – Late Binding
Evaluation: 4 joins; mem-

ory=25% size of builds

Figure 16 – Late Binding
Evaluation: 4 joins; mem-

ory=25% size of builds

Figure 17 – Late Binding
Evaluation: 2 joins; mem-
ory=100% size of builds

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

• For the very first few driving tuples, before the first tuple route is computed, SHARP uses the join or-
der specified by the optimizer as the default route. However, as soon as the routing policy produces its
first route, the initial join order is forgotten.

• When redistributing unused memory to hash tables, SHARP favors giving memory to hash tables be-
longing to joins that appear earlier in the optimizer specified join order. This is the reason join order
LPCS yields better results than LCPS in the right side of Figure 19.

Join orders:

0

100

200

300

400

500

600

RDH SHARP
Available Mem = 45M

LCPS
LPCS

Secs.

Join orders:

0

200

400

600

800

1000

1200

1400

RDH SHARP
Available Mem = 15M

LCPS
LPCS

Secs.

Figure 19 – Execution of Query 1

Figure 20 and Figure 21 present the execution times of Query 2 and Query 3 for different join orders.
For each of these queries the cost of the second-stage dominates the total execution time of the query. In
the RDH plan, the cost of second-stage processing depends on the join order specified by the optimizer.
Thus, optimizer mistakes may greatly influence the total cost of the RDH plan. However, the second-
stage of SHARP has two desirable properties: i) the cost of writing partitions to disk and the amount that
is written is independent of the join order specified by the optimizer; and ii) the number of times each
partition is read and the order when each partition is read is adaptively determined based on the ob-
served sizes of builds, again, decisions independent of the optimizer.

SELECT * FROM L, S, C, P
 WHERE l_partkey=s_suppkey
 AND l_custkey=c_custkey
 AND l_partkey=o_partkey
 AND σ1(p_partkey) ← 75%
 AND σ2(c_custkey) ← 25%
 AND σ3(s_suppkey); ← 100%

Query 1

SELECT * FROM L, C, P, O
 WHERE l_partkey=p_partkey
 AND l_custkey=c_custkey
 AND l_orderkey=o_orderkey
 AND σ4(o_orderkey) ← 25%
 AND σ5(p_partkey) ← 25%
 AND σ6(c_custkey); ← 75%

Query 2

SELECT * FROM L, S, C, P, O
 WHERE l_partkey=s_suppkey
 AND l_custkey=c_custkey
 AND l_partkey=o_partkey
 AND l_suppkey=s_suppkey
 AND σ7(o_orderkey) ← 25%
 AND σ8(p_partkey) ← 50%
 AND σ9(c_custkey) ← 25%
 AND σ10(s_suppkey);← 100%

Query 3

Figure 18 – Queries and selection predicates used in the TPC-H schema

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

Join orders:

0

400

800

1200

RDH SHARP
Available Mem = 10M

CPO
PCO
POC

Secs.

Join orders:

0

250

500

750

RDH SHARP

Available Mem = 10M

COPS
CPOS
OCPS
SCOP

Secs.

For the queries we run, RDH can take twice as long in a join order for a query then in another join order
for the same query. In addition, across all experiments (some experiments not shown), RDH took on av-
erage twice as long as SHARP to complete execution.

Finally, we created a variation of the TPC-H schema, which we call TPC-H-Thin, to explore how the
width of the tuples affects SHARP’s relative performance. Each table in TPC-H-Thin is a projection of
the corresponding table in TPC-H: table L contains only five integer columns, and tables O, P, C, and S
contain only two integer columns. We run queries 1, 2, and 3 again, but this time with much less avail-
able memory, such that not all build tables fit in memory. The results are similar to the ones shown in
Figure 19, Figure 20, and Figure 21; SHARP is essentially insensitive to the join order specified by the
optimizer while the RDH may time up to 3 times longer in one join order than in another join order for
the same query. Furthermore, for the queries we run in TPC-H-Thin, RDH took on average 2.2 times
longer than SHARP to complete execution.

5. RELATED WORK
In addition to the Eddies, MJoin and SHJ operators described in Section 2, the work related to SHARP
can be grouped in five broad categories: adaptive operators, tuple routing strategies, techniques for proc-
essing joins larger than memory, techniques to change the query plan at run-time, and techniques that
reduce the need for corrective behavior.

Other adaptive operators: The XJoin [42] is a binary adaptive operator that takes advantage of the
non-blocking behavior of SHJ to process push-based remote relations. Although it can process relations
bigger than memory, the XJoin schedules the join between out-of-memory relations to mask delays and
bursty transfer rates of those sources. In contrast, SHARP uses adaptivity to execute robust plans over
pull-based local relations. The operators most related to SHARP’s late-binding decisions are the choose-
plan operator [13, 18] and the switchable plan operator [7], but neither provides the continuous fine-
grained adaptivity of SHARP.

Tuple routing strategies: In SHARP, we implemented three routing policies adapted from three pro-
posals by Avnur [2], Babu [5], and Deshpande [15]. CBR is a tuple routing policy that takes advantage
of correlation and skew to make better routing decisions [8]. The implementation of CBR in SHARP is
left as future work.

Techniques for processing joins larger than memory: The Dynamic Hash Join (DHJ) [33] is the stan-
dard blocking binary hash join algorithm that adaptively freezes partitions to disk as needed and that we

Figure 20 – Execution of Query 2 Figure 21 – Execution of Query 3

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

extended to join multiple relations simultaneously. The XJoin [42] and Ives [27] proposed techniques
extending the SHJ to process relations bigger than memory. However, these techniques were designed
for binary joins over remote sources while SHARP processes multiple joins over local relations.

Changing query plan at run-time: In addition to the late-binding operators discussed before, there are
proposals that use query re-optimization to correct possible optimizer mistakes [7, 27, 28, 30, 32]. These
strategies are orthogonal to SHARP, i.e., a SHARP can be used as an adaptive operator in plans gener-
ated by those systems. Other proposals keep the same query plan, but reschedule operators to cope with
unpredictable delivery rates from remote data sources [10, 27, 28, 41, 42, 44] or to improve estimates for
online queries [19¸20, 29]. In contrast, SHARP reschedules operators to better distribute memory be-
tween in-memory hash tables and possibly avoid a second pass. (A method to redistribute memory in
traditional query plans is described in [14].) Finally, some data stream systems periodically determine
and change to new query plans [5, 16], and these strategies can be incorporated in SHARP as routing
policies (e.g., we implemented [5] in SHARP).

Techniques that reduce the need for run-time corrective adaptivity: Other approaches tackle the
problem of insufficient information available to the optimizer by somehow modeling the uncertainty
about estimates used at optimization [3, 7, 18, 24, 43]. Optimizers following this approach are more
likely to choose robust plans and therefore less likely to need corrective adaptation at run-time. Due to
the complexity of the search space, we believe that a combination of some of these techniques, together
with adaptive operators like SHARP will prove to be the best approach.

More related work can be found in surveys and other publications with extended discussion of related
work [4, 6, 21, 25, 27, 28, 32].

6. CONCLUSIONS
The observation that tuple routing is not expensive, but symmetric hash joins are [15] led us to design
SHARP, a multi-join tuple routing operator without symmetric hash joins (SHJs). To avoid SHJs, we
explored a new trade-off: instead of executing arbitrarily query plans, and being able to change from any
join order to any other join order at any point during execution, SHARP adopts a two-step adaptive ap-
proach. First, SHARP determines which source is the driving relation using late-binding decisions, and
second, it continuously potentially changes the probing sequence of the build sources using tuple rout-
ing. This two-step adaptive process yields two benefits: it requires less memory than previous adaptive
operators and simplifies the design of second-stage processing.

In addition, the performance of the second-stage processing strategy is largely unaffected by estimates
made during optimization. The second-stage was shown to be more effective than both left-deep and
right-deep trees for a variety of scenarios. Most of the benefit of the proposed second-stage comes from
avoiding writing intermediate results multiple times to disk. However, this new second-stage processing
technique suffers from the “curse of dimensionality”, and thus beyond certain parameters (very little
memory, very large build tables, or a high number of joins), we expect its performance to degrade expo-
nentially. Nevertheless, the problem is easily solved: after all build tables are read, if the sizes of mem-
ory and tables are such that the SHARP’s (second-stage) performance is worse than a right-deep tree of
hash joins, then the SHARP can simply execute the same plan a right-deep tree of hash joins would.

In addition, our initial results suggest that, unless the operator processing cost is very high, the A-
Greedy [5] tuple routing policy is likely to be the best.

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

7. REFERENCES
[1] R. Arpaci-Dusseau. Run-time adaptation in river. ACM Trans. on Computer Systems, 21(1):36–86,

2003.

[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing. In Proc. of the
2000 ACM SIGMOD Intl. Conf. on Management of Data, May 2000.

[3] B. Babcock and S. Chaudhuri. Towards a Robust Query Optimizer: A Principled and Practical
Approach. In Proc. of the 2005 ACM SIGMOD Intl. Conf. on Management of Data, Jun 2005.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom. Models and Issues in Data Stream
Systems. PODS 2002: 1-16.

[5] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom. Adaptive ordering of pipelined
stream filters. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data, Jun 2004.

[6] S. Babu and P. Bizarro. Adaptive Query Processing in the Looking Glass. In Proc. of Second
Biennial Conf. on Innovative Data Systems Research (CIDR), Jan 2005.

[7] S. Babu, P. Bizarro, and D. DeWitt. Proactive Re-optimization. In Proc. of the 2005 ACM
SIGMOD Intl. Conf. on Management of Data, Jun 2005.

[8] P. Bizarro, S. Babu, D. DeWitt, and J. Widom. Content-Based Routing: Different Plans for
Different Data. In Proc. of the 2005 Intl. Conf. on Very Large Data Bases, Sep 2005.

[9] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun. ACM
13(7): 422-426 (1970).

[10] L. Bouganim, F. Fabret, C. Mohan, P. Valduriez. A Dynamic Query Processing Architecture for
Data Integration Systems. IEEE Data Eng. Bull. 23(2): 42-48 (2000).

[11] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S.
Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In Proc. First Biennial Conf. on Innovative Data Systems
Research (CIDR), Jan 2003.

[12] F. Chu, J. Halpern, and P. Seshadri. Least expected cost query optimization: An exercise in utility.
In Proc. of the 1999 ACM Symp. on Principles of Database Systems, 1999.

[13] R. L. Cole and G. Graefe. Optimization of dynamic query evaluation plans. In Proc. of the 1994
ACM SIGMOD Intl. Conf. on Management of Data, Jun 1994.

[14] B. Dageville and M. Zait. SQL memory management in Oracle9i. In Proc. of the 2002 Intl. Conf.
on Very Large Data Bases, Aug. 2002.

[15] A. Deshpande. An initial study of overheads of eddies. SIGMOD Record 33(1): 44-49 (2004)

[16] A. Deshpande and J. M. Hellerstein. Lifting the Burden of History from Adaptive Query
Processing. In Proc. of the 2004 Intl. Conf. on Very Large Data Bases, Sep 2004.

[17] S. Ganguly. Design and analysis of parametric query optimization algorithms. In Proc. of the 1998
Intl. Conf. on Very Large Data Bases, Aug. 1998.

[18] G. Graefe and K. Ward. Dynamic Query Evaluation Plans. In Proc. of the 1989 ACM SIGMOD
Intl. Conf. on Management of Data, Jun 1989.

[19] P. Haas and J. M. Hellerstein. Ripple Joins for Online Aggregation. In Proc. of the 1999 ACM
SIGMOD Intl. Conf. on Management of Data, Jun 1999.

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

[20] J. M. Hellerstein, P. Haas and H. J. Wang. Online Aggregation. In Proc. of the 1997 ACM
SIGMOD Intl. Conf. on Management of Data, Jun 1997.

[21] J. M. Hellerstein, M. J. Franklin, et al. Adaptive query processing: Technology in evolution. IEEE
Data Engineering Bulletin, 23(2):7–18, June 2000.

[22] A. Hulgeri and S. Sudarshan. AniPQO: Almost nonintrusive parametric query optimization for
nonlinear cost functions. In Proc. of the 2003 Intl. Conf. on Very Large Data Bases, Aug. 2003.

[23] Y. Ioannidis and S. Christodoulakis. On the Propagation of Errors in the Size of Join Results. In
Proc. of the 1991 ACM SIGMOD Intl. Conf. on Management of Data, May 1991.

[24] Y. Ioannidis, R. Ng, K. Shim, and T. Sellis. Parametric Query Optimization. In Proc. of the 1992
Intl. Conf. on Very Large Data Bases, Aug. 1992.

[25] Z. Ives. Efficient Query Processing for Data Integration. PhD thesis, University of Washington,
Seattle, WA, USA, Aug. 2002.

[26] Z. Ives, D. Florescu, M. Friedman, A. Levy, D. Weld. An Adaptive Query Execution System for
Data Integration. In Proc. of the 1999 ACM SIGMOD Intl. Conf. on Management of Data, Jun
1999.

[27] Z. Ives, A. Levy, et al. Adaptive query processing for internet applications. IEEE Data
Engineering Bulletin, 23(2):19–26, June 2000.

[28] Z. Ives, A. Halevy, D. Weld. Adapting to Source Properties in Processing Data Integration
Queries. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data, Jun 2004.

[29] C. Jermaine, A. Dobra, A. Pol, S. Joshi. Online Estimation For Subset-Based SQL Queries. In
Proc. of the 2005 Intl. Conf. on Very Large Data Bases, Aug. 2005.

[30] N. Kabra and D. DeWitt. Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution
Plans. In Proc. of the 1998 ACM SIGMOD Intl. Conf. on Management of Data, Jun 1998.

[31] R. Lawrence. Early Hash Join: A Configurable Algorithm for the Efficient and Early Production of
Join Results. In Proc. of the 2005 Intl. Conf. on Very Large Data Bases, Sep 2005.

[32] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, H. Pirahesh. Robust Query Processing
through Progressive Optimization. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management
of Data, Jun 2004.

[33] M. Nakayama, M. Kitsuregawa, and M. Takagi. Hash-partitioned join method using dynamic
destaging strategy. In Proc. of the 1998 Intl. Conf. on Very Large Data Bases, Sep 1998.

[34] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. Improved Histograms for Selectivity
Estimation of Range Predicates. In Proc. of the 1996 ACM SIGMOD Intl. Conf. on Management of
Data, Jun 1996.

[35] V. Raman, A. Deshpande, J. M. Hellerstein. Using State Modules for Adaptive Query Processing.
In Proc. of the 21st Intl. Conf. on Data Engineering (ICDE2003), Apr 2003.

[36] M. A. Shah. Flux: A Mechnism for Building Robust, Scalable Dataflows. PhD Thesis, University
of California – Berkeley, 2004.

[37] P. Selinger, M. M. Astrahan, D.D. Chamberlin, R. A. Lorie, T. G. Price. Access Path Selection in
a Relational Database Management System. In Proc. of the 1979 ACM SIGMOD Intl. Conf. on
Management of Data, May 1979.

[38] P. Seshadri. Predator: A Resource for Database Research. SIGMOD Record, 27(1): 16-20, 1998.

University of Wisconsin – Madison, Computer Sciences Department
Technical Report #1562, April 2006

[39] F. Tian, D. J. DeWitt. Tuple Routing Strategies for Distributed Eddies. In Proc. of the 2003 Intl.
Conf. on Very Large Data Bases, Sep 2003.

[40] Transaction Processing Performance Council. The TPC-H Benchmark. Available at
http://www.tpc.org/tpch. Accessed March 12th, 2006.

[41] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost Based Query Scrambling for Initial Delays. In
Proc. of the 1998 ACM SIGMOD Intl. Conf. on Management of Data, Jun 1998.

[42] T. Urhan and M. J. Franklin. XJoin: A Reactively-Scheduled Pipelined Join Operator. IEEE Data
Eng. Bull. 23(2): 27-33 (2000).

[43] S. Viglas. Novel Query Optimization and Evaluation Techniques, Ph.D. Thesis, Department of
Computer Sciences, University of Wisconsin-Madison, Jun 2003.

[44] S. Viglas, J. Naughton, and J. Burger. Maximizing the Output Rate of Multi-Way Join Queries
over Streaming Information Sources. In Proc. of the 2003 Intl. Conf. on Very Large Data Bases,
Sep 2003.

[45] A. N. Wilschut and P. M. G. Apers. Pipelining in Query Execution. Conf. on Databases, Parallel
Architectures, and their Applications, 1991.

