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Abstract 

Query optimizers in current database systems are designed to pick a single efficient plan for a given query 
based on current statistical properties of the data. However, different subsets of the data can sometimes 
have very different statistical properties. In such scenarios it can be more efficient to process different 
subsets of the data for a query using different plans. We propose a new query processing technique called 
content-based routing (CBR) that eliminates the single-plan restriction in current systems. We present low-
overhead adaptive algorithms that partition input data based on statistical properties relevant to query 
execution strategies, and efficiently route individual tuples through customized plans based on their 
partition. We have implemented CBR as an extension to the Eddies query processor in the TelegraphCQ 
system, and we present an extensive experimental evaluation showing the significant performance benefits 
of CBR. 

1. Introduction 
The conventional approach to query optimization is to pick a single efficient plan for a query, based on statistical 
properties of the data along with other factors such as system conditions. In many application domains, different 
partitions of the overall data accessed by a query may have very different statistical properties. For example, 
statistical properties of the observations collected by different sensors in a sensor network environment may be very 
different [14]. In such cases it can be more efficient to process the different partitions using different plans. In this 
paper we propose a new general-purpose query processing technique called content-based routing (CBR) that 
eliminates the single-plan restriction in current systems. CBR automatically identifies tuple classes—partitions of 
the input data that differ in relevant statistical properties—and processes the query using multiple plans, each of 
which is customized for an individual tuple class. CBR is low-overhead and it is adaptive, revisiting its decisions as 
changes in data characteristics are detected. 

Adaptive approaches to query optimization have received a great deal of attention recently, with a focus on 
handling data properties and system conditions that may change while a query is running, e.g., [2, 8, 9, 10, 18, 27]. 
Our problem is different: We do not focus on adapting a single plan as data characteristics change, but rather on 
detecting classes of data characteristics that can be used to route different data to different plans. Note that even 
Eddies [2], which can potentially adapt at the tuple granularity, still uses a single plan for (nearly) all tuples at any 
point of time. 

Our CBR algorithms are implemented as an extension to Eddies [2]. However, our approach applies to any query 
processing environment where the data movement can be modeled as streams, e.g., stream systems, regular database 
systems using iterators [19], and "pull" systems like acquisitional query processors [24]. An Eddy processes a query 
by routing input stream tuples through operators specific to that query. Without CBR, an Eddy makes routing 
decisions based on the selectivity of each operator over all tuples the operator has processed recently. Tuples are not 
differentiated based on content, so all tuples from the same stream source are routed identically. We denote this type 
of routing as source-based routing (SBR). 

When CBR is added to Eddies, correlations between tuple content and operator selectivity are detected, and they 
are exploited during routing to eliminate tuples sooner, reduce latency, and improve overall system throughput 
relative to SBR. Next we motivate CBR using two examples. 

                                                           
1 This Technical Report is a revised version of the original June 2004 version. There are two main differences: i) a section with results from a 
simulation of content-based routing was removed and ii) new experimental results based on a real-life dataset were added. 
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Example 1.1. Figure 1(a) is an intrusion detection query for an enterprise network [6, 28]. The lookup table T may 
contain addresses of subnetworks in the enterprise that are exposed to the public Internet. The byte sequences 
represent patterns common to a specific type of network attack [6]. Figure 1(b) shows an Eddy for this query with 
three filter operators–O1, O2, and O3–corresponding to the three conditions, over an incoming stream S of network 
packets. Operator O1 performs a prefix-based join on the destination address attribute of incoming S tuples with T. 
Operators O2 and O3 perform the 100-byte and 256-byte sequence matches respectively. 

Let ci denote the current average processing cost per tuple for operator Oi, and let σi, 0 ≤ i ≤ 1, denote the current 
expected selectivity of Oi.2 Suppose the following conditions hold for the example: c3 > c1 > c2 and σ3 > σ1 > σ2. 
Given these statistics, the Eddy's routing will converge to the ordering O2, O1, O3, i.e., most tuples will follow this 
route as shown in Figure 1(b). 

Now suppose the monitored attack is underway on a subnetwork whose prefix is not in T. (The subnetwork may 
be secured separately by a firewall.) In this case, σ2 and σ3 will be very high, and σ1 will be very low for packets 
(tuples) coming from the attacker(s). So, O1, O2, O3 will be the most efficient ordering for processing these “attack 
packets”. For other packets, O2, O1, O3 will remain the best ordering as before. Since an attack happens typically 
from some group of compromised hosts, CBR can distinguish between the attack and non-attack packets based on 
the source address, and use the appropriate ordering (Figure 1(c)). Without CBR, the Eddy will continue using the 
O2, O1, O3 ordering, limiting performance.  □ 

Example 1.2. Consider the following query over a distributed sensor network in a large warehouse building: 
SELECT * FROM sensors
WHERE light < 1000 lux AND temperature > 20ºC;

To answer this query, data must be acquired from sensors. However acquiring readings from sensors is a power-
consuming operation. Since sensors are power-constrained, one of the main goals of acquisitional systems is to 
minimize power consumed by data acquisitions [14]. Note however, that sensors that are placed close to windows 
receive more natural light and likely report higher temperatures than sensors located in interior rooms3. Therefore, 
for those sensors close to windows, the probability that the predicate on light will fail may be higher than that for the 
temperature predicate. On the other hand, for sensors that are placed in interior locations, the probability that the 
predicate on light will fail may be lower than that for the temperature predicate. Therefore, instead of using a single 
fixed order for evaluating the two predicates across all sensors, we may want to use CBR: use different operator 
evaluation orders depending on the sensor location. For each sensor location, CBR chooses an operator evaluation 
order that evaluates the most selective operator first. On average, CBR will reduce the number of predicates 
evaluated per sensor and the number of data acquisitions required, resulting in significant power consumption 
savings in this setting. □ 

1.1. Contributions and Outline of Paper 

Implementing CBR using Eddies introduces several challenges that we address in this paper: 

•••• In Section 3 we define classifier attributes, an important concept in CBR. 

                                                           
2 Cost is the time spent by the operator processing the tuple. Selectivity refers to the fraction of input tuples passed by the operator. 
3 A value of 1 Lux corresponds to moonlight, 400 Lux to a bright office, and 100,000 Lux to full sunlight. 

Query: “Track packets with destination 
address matching a prefix in table T, 
and containing the 100-byte and 256-
byte sequences “0xa...8” and “0x7...b” 
respectively as subsequences” 
SELECT * FROM packets 
WHERE matches(destination, T) 
AND contains(data, “0xa...8”) 
AND contains(data, “0x7...b”); 

a) 

O1 
O2 
O3 

Figure 1. (a) A Continuous Query; (b) the Eddies approach; and (c) Eddies with Content-Based Routing 

b) c) 
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•••• In Section 4 we present algorithms to automatically and efficiently learn classifier attributes, to partition the 
underlying data into tuple classes, and to route tuples from these classes optimally through the operators in an 
Eddy. 

•••• In Section 5 we discuss the adaptive nature of our algorithms to handle changes in input data properties and 
system conditions while the query is running. 

•••• Finally, in Section 6 we present an extensive experimental evaluation of CBR using a prototype implementation 
in TelegraphCQ. Our results show good performance improvements over not using CBR. 

2. Related Work 
Work related to CBR can be grouped into four categories: exploiting correlations among attributes during query 
processing, adaptive query processing, identifying correlations in large datasets, and computing complex statistical 
information over data streams. 

The work most closely related to CBR is identifying conditional plans in an acquisitional query processing 
system [13, 14]. Like CBR, a conditional plan partitions the input data and processes each partition with a different 
plan. The approach taken in [14] is to learn a single good conditional plan based on an initial training sample of the 
data, and then to use this plan unchanged throughout query execution. That initial training is done offline, requires a 
large amount of collected training data, and learns the conditional plans using complex decision tree building 
algorithms. On the other hand, CBR uses light-weight machine learning techniques over the streaming tuples that 
enable a continuously adaptive approach to query processing. Thus, CBR does not require previous knowledge of 
the data and is not dependent on previous learned models of the world. 

While many adaptive query processing systems have been built to date, to the best of our knowledge, all of them 
use a single plan for almost all tuples at any point of time [2, 4, 5, 22, 23, 25]. Some of these systems, including 
Eddies, on which we have implemented CBR, process almost all of the input tuples using the current best plan, and 
the remaining tuples are processed using other plans to track the performance of these plans (to identify plans to 
change to) or to collect run-time statistics [2, 4]. 

There has been some recent work on identifying correlations in large datasets. None of this work has been used 
to identify different plans for processing different partitions of the data for a query. Reference [21] identifies sets of 
attributes that are correlated. Reference [11] uses the lack of correlation (independence) among attributes to build 
compact multi-dimensional histograms. Reference [16] uses probabilistic models like Bayesian networks to capture 
the statistical relationship among attributes so as to compute cardinalities accurately for intermediate results in query 
plans. 

There has been work on computing complex statistical information over data streams, for example, decision trees 
[15], correlated aggregates [17], and histograms [20]. None of this work includes computing correlations between 
tuple content and selectivities of operators, identifying tuple classes, or finding different plans for different subsets 
of data. 

3. Classifier Attributes 
Our goal is to identify tuple classes where each class has a different optimal operator order for processing. CBR 
considers tuples classes that can be distinguished from one another based on tuple content, namely, the attributes in 
the tuples. In this context, different tuple classes may have different optimal operator orders if the selectivity of one 
or more operators is correlated with the content of one or more input attributes. Attributes used to distinguish tuple 
classes are called classifier attributes. Informally, an attribute A is called a classifier attribute for an operator O if 
the content of A is correlated with the selectivity of O. As illustrated by Example 3.1, CBR is based on identifying 
and exploiting such classifier attributes. 

Example 3.1.  Consider an input stream S processed by three operators O1, O2, and O3. Let A be an attribute of 
tuples in S which takes one of three values a, b, or c with equal probability. Table 1 shows the respective 
selectivities of O1–O3 for the tuple classes with A=a, A=b, and A=c, and the overall selectivity of each operator on S 
tuples. Assuming O1–O3 have the same execution costs, if only overall selectivities are considered, then the best 
ordering for S tuples is O1, O2, O3. However, note that the selectivity of O2 is correlated with the value of A: the 
selectivity of O2 for A=a and A=b is much lower than O2's overall selectivity, and it is much higher for A=c. 
Therefore, for tuples with A=a or A=b, the ordering O2, O1, O3 will outperform O1, O2, O3, while O1, O3, O2 will 
outperform O1, O2, O3 for tuples with A=c. 
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Value of A σ1 σ2 σ3 
A=a 32% 10% 55% 
A=b 31% 20% 65% 
A=c 27% 90% 60% 

Overall 30% 40% 60% 

Table 1. Content Specific Selectivities for Different Tuple Classes □ 

The degree of correlation between two distributions may be specified in a number of ways [26]. In this paper we use 
a specification from Information Theory which is based on the concept of gain ratio [26], described next. 

Let R be a random sample of tuples processed by an operator O. (In this paper we assume all operators are filters; 
an extension to non-filter operator is discussed in Section 4.5.) Let σ be the overall selectivity of O for tuples in R. 
Each tuple in R belongs to one of two classes: tuples that O passes and tuples that O drops. The entropy [26] of R, 
which is an information-theoretic metric used to capture the information content of R, is defined as: 

 ∑
=

−=
c

1i
i2i plogp)R(Entropy  (1) 

where c is the number of classes in R and pi is the fraction of R belonging to class i. In our case c=2, corresponding 
to the tuples passed and dropped by O, so p1=σ and p2=1 – σ respectively. Therefore: 
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Let A be an attribute of tuples in R. Let v1,v2,…,vd be the distinct values of A in R. The information gain of A with 
respect to R, which represents the increase in information about R gained by knowledge of A, is defined as [26]: 

 
∑

=

−=
d

1i
i

i )R(Entropy
R
R

)R(Entropy)A,R(InfoGain
 (3) 

Here, Ri is the subset of R with A=vi, and |R| (|Ri|) is the number of tuples in R (Ri). Gain ratio is a normalized 
representation of information gain [26]: 
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Gain ratio is used widely in decision-tree learning algorithms (e.g., ID3 [26]) to determine the attribute that best 
classifies a given data set. Since classifier attributes serve a similar purpose in our case, our formal definition of a 
classifier attribute is based on gain ratio. 

Definition 3.1 (Classifier Attribute) An attribute A is a classifier attribute for an operator O if for any large 
random sample R of tuples processed by O, we have GainRatio(R,A) > γ, for some threshold γ. □ 

Example 3.2. We revisit Example 3.1. Let Table 1 now represent the selectivities computed from random samples 
R1, R2, and R3 of tuples processed by operators O1, O2, and O3 respectively. Since A takes one of values a, b, or c 
with equal probability, the samples will contain tuples with A=a, A=b, and A=c in roughly equal proportion. We can 
use Equations (2) – (5) to compute the gain ratio of attribute A with respect to R1, R2, and R3: 
GainRatio(R1, A) = 0.33, GainRatio(R2, A) = 0.63, and GainRatio(R3, A) = 0.37. Notice that GainRatio(R2, A) 
dominates the others because of the strong correlation between the selectivity of O2 and the content of A. □ 

Our definition of classifier attributes extends to classifier attribute sets where the selectivity of an operator is 
correlated with a set of attributes instead of with any single attribute in that set. That is, tuple classes in the input 
may be determined by a set of attributes instead of a single attribute. We do not consider classifier attribute sets in 
this paper; instead we focus on single-attribute classifiers. Note however that CBR considers multiple single-
attribute classifiers when making routing decisions. While some of our techniques extend directly to classifier 
attribute sets, we defer a detailed exploration of this issue to future work. 

4. Learning Routes Automatically 
We are now ready to consider the problem of learning good content-based routes automatically for the CBR 
framework introduced in Section 3. We will consider a single input stream S with tuples having attributes C1, C2, …, 
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Ck that are processed by operators O1, O2, …, On, and describe our Content-Learns algorithm to learn good content-
based routes automatically in this setting. For now we will consider all operators O1, O2, …, On, and for each 
operator, we consider all attributes C1, C2, …, Ck as potential classifier attributes for CBR. In Section 4.4 we will 
present heuristics to prune the space of attributes and operators that we consider for CBR. Content-Learns consists 
of two continuous, concurrent steps: 

1. Optimization: In this step, for each operator Ol ∈ O1, …,On, if one or more attributes in C1,…,Ck are classifier 
attributes for Ol, then we keep track of the best classifier attribute for Ol. Informally, we identify the attribute in 
C1,…,Ck based on whose content we can make the best routing decisions with respect to Ol. The operator-
attribute combinations identified during optimization are used for CBR by the routing step as described in 
Section 4.2. Details of the optimization step are described in Section 4.1. 

2. Routing: In this step we perform CBR using the current operator-attribute combinations identified by the 
optimization step. If the selectivity of operator Ol is not correlated with the contents of any attribute, then we do 
not use any Ol-attribute combination but instead make routing decisions regarding Ol using the selectivity of Ol 
alone. Our routing algorithm for CBR is described in Section 4.2. 

4.1. The Optimization Step of Content-Learns 

The goal of optimization is, for each operator Ol ∈ O1, …,On, to identify the best classifier attribute for Ol in 
C1,…,Ck. We cycle through the operators in a round-robin fashion, so each operator is considered periodically. 
When we consider operator Ol, which we call profiling Ol, we identify the best classifier attribute for Ol. To identify 
the classifier attributes for Ol, we have to measure the gain ratio of C1,…,Ck based on a random sample of tuples 
processed by Ol; recall Section 3. To collect this random sample R when Ol is profiled, the Eddy routes a fraction of 
input tuples to Ol before they are routed to any other operator, and notes whether Ol dropped each such tuple or not. 
(Note that we profile operators using tuples straight from the input stream. However, in some scenarios it may make 
sense to profile tuples after they have been filtered by some operators. We can extend our profiling to track such 
conditional selectivities as in [4] which we intend to do as future work.) 

Our profiling technique requires the specification of two parameters: a probability P for sampling an input tuple 
so that it will be routed first to Ol, and a sample size to fix |R|. Once R has been collected, we can compute 
GainRatio(R, Cj) for each Cj ∈ C1,…,Ck, to determine the classifier attributes for Ol. If there are two or more such 
attributes, then the attribute with maximum gain ratio is the best classifier attribute for Ol. Details of our 
implementation for profiling O are outlined next. 

Let Dj denote the domain of potential classifier attribute Cj. For each Cj we choose a partitioning function fj that 
partitions Dj into d partitions. If Cj is a discrete-valued attribute, we choose a hash function that maps any v ∈ Dj to 
one of d buckets. If Cj is a continuous-valued attribute, we maintain running estimates of max(Dj) and min(Dj) and 
use a range-partitioning function to map any v ∈ Dl into one of d partitions. Without loss of generality, let v1,v2,…,vd 
denote the d partitions of each domain. (Note that, e.g., partition v1 of domain D1 is not the same as partition v1 of 
domain D2.) 

Content-Learns maintains the following run-time data structures, as shown in Figure 2: 

 
Figure 2. Run-time Data Structures 
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1. Classifier Attribute Matrix, CA[]. CBR keeps an array that, for each operator Ol, stores the attribute index of 
the best classifier attribute, i.e., the attribute with highest gain ratio for Ol. If Ol has no classifier attributes, CBR 
assigns CA[l] = -1. CBR recomputes CA[l] after R random sample tuples are used to profile operator Ol. In 
Figure 2, the classifier attribute for operator 3 (marked in gray) is attribute 1. 

2. Tuples In, In[] and Tuples Out, Out[] Matrices: These matrices track which tuples in which partitions of all 
attributes pass (increments both  In[] and Out[] entries) or fail (increments only In[] entries) the operator being 
profiled. For each one of the R random sample tuples, k entries are updated in each one of these matrices. The 
entries to be updated are (j,i), with j =1,…,k, and vi=fj(t.Cj). 

3. Detailed Selectivities Matrix, S[]. Each column in this matrix stores the running selectivities for an Ol–Cj 
operator–classifier-attribute pair. Entries in the matrix are updated at two different times: 
(i) Run-time: Each time a tuple passes or fails an operator, one entry in this matrix is updated.4 For a tuple t 

being processed by Ol, the column to update in the matrix is l, and the row is vi=fj(t.Cj), with j being the index 
of the classifier attribute for Ol, i.e., j =CA[l]. 

(ii) Initialization: After completing profiling operator Ol and finding its classifier attribute Cj, CBR updates Ol’s 
column: S[l,i]←Out[j,i]/In[j,i], with i=1,..,d. If In[j,i]=0, then S[l,i]←W[l], where W[l] is the overall 
selectivity of operator Ol as described next. 

4. Overall Operator Selectivities, W[]. This matrix (not shown in Figure 2) is non-CBR specific information and 
it is kept both by CBR and by the non-CBR implementation in TelegraphCQ. W[l] tracks the recent overall 
selectivity of operator Ol over all tuples processed by Ol. 

Once we have collected the random sample R of tuples processed by operator Ol while profiling Ol, we can compute 
GainRatio(R,Cj) (Equation (5)) for all Cj ∈ C1,…,Ck using matrices I and O. From Equation (2), Entropy(R) depends 
only on the overall selectivity of Ol over R, which is the number of output tuples over all tuples profiled: 
( ) R]i,j[Outd

1i∑ =
 for any j. 

Similarly, Entropy(Ri) in Equation (3) for InfoGain(R,Cj) depends only on I and O. Finally, |Ri| in Equations (3) 
and (4) for InfoGain(R,Cj) and SplitInformation (Cj) is equal to In[j,i]. 

So far we have seen how the classifier attributes for Ol can be determined by profiling Ol. If there are one or 
more such attributes, then the attribute with maximum gain ratio, denoted Cmax, is the best classifier attribute for Ol. 
Even though Cmax is the best classifier for Ol, using the Ol-Cmax combination for CBR may not improve overall 
performance. (Details of using operator-attribute combinations during routing are given in Section 4.2.) The reason 
it may not improve performance is that we may already be using some other operator-attribute combinations for 
CBR. The additional benefit that Ol-Cmax gives in this context may be lower than the extra routing overhead that it 
incurs. We use a simple yet accurate technique to estimate the overall benefit of adding Ol-Cmax for CBR in the 
current context. We simply start using Ol-Cmax for CBR alongside the other operator-attribute combinations being 
used already, and measure the overall performance with and without Ol-Cmax. We characterize overall performance 
in terms of the rate at which the Eddy can process input tuples, which can be measured at negligible overhead. If the 
overall performance improves when we start using Ol-Cmax for CBR, then we stick with it until the next time Ol is 
profiled. (Just before we start profiling an operator Ol, we stop using any Ol-attribute combination being used for 
CBR.) Otherwise, we stop using Ol-Cmax. In either case, we move on to profile the next operator in our round-robin 
schedule. Note that after computing gain ratio values for C1,…,Ck while profiling Ol, we may realize that Ol has no 
classifier attributes. Then, we move directly to profile the next operator. 

4.2. The Routing Step of Content-Learns 

In this section we describe how we extend the original Eddy routing algorithm to incorporate the operator-attribute 
combinations identified in the optimization step for CBR. This algorithm routes tuples to operators according to a 
probability that is inversely proportional to the operators' selectivities (stored in matrix W in our implementation). 
We call this algorithm Source-Based Routing (SBR).5 

When an Eddy using Content-Learns has to route a tuple t to one of operators O1,…,On, the Eddy routes t to the 
operator with minimum value σ, where σ is defined as follows for an operator Ol: 
                                                           
4 The formula used to update selectivity after a tuple is known to pass or fail an operator is: selectivity = selectivity * α + pass * (1- α), where 
selectivity is a percentage between 0 and 100, pass is 100 if the tuple passes the operator or 0 if it is dropped, and α = 0.95. 
5 We call this algorithm Source-Based Routing because without looking at the content, an Eddy treats all tuples coming from the same source the 
same way. 
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• If Ol is tagged with classifier attribute Cj, then σ is the expected selectivity of Ol for tuples t' with fj(t'.Cj)=fj(t.Cj), 
which is equal to S[l,i] where fj(t.Cj)=vi and j=CA[l]. (We have used the same notation as in Section 4.1.) 

• If Ol is not tagged with a classifier attribute, then σ is W[l], the expected overall selectivity of Ol, which is the 
same value as used by the SBR algorithm. 

Intuitively, for operators that have a classifier attribute, CBR uses the content-specific selectivity of the operator 
while making routing decisions. The content-specific selectivity is available from the selectivity matrix for the 
operator. For operators that do not have a classifier attribute, CBR uses the overall selectivity of the operator across 
all tuples as done by SBR. 

4.3. Overheads and Benefits of CBR 

There are two forms of overhead associated with CBR: the routing overhead of evaluating content-based conditions 
while making routing decisions, and the learning overhead of learning and maintaining good routes automatically. 
The routing overhead was designed to be very low, as it is incurred each time a tuple is routed by the Eddy. The 
learning overhead is amortized across a large number of tuples as this overhead is incurred once after |R| sample 
tuples are observed. Section 6.8 presents experiments where the overheads of CBR can be observed to be very low. 

The benefit of CBR comes from finding routes that drop tuples sooner. As such, the benefit of CBR is 
proportional to the percentage of time that a query spends evaluating operators. In Section 6.7 we explore the 
performance of CBR while varying operator costs. 

4.4. Pruning Operators and Attributes 

So far we considered all attributes and all operators as potential candidates for CBR. We now describe some 
heuristics to prune this space. These heuristics often reduce the learning overhead of CBR significantly without any 
noticeable effect on the quality of content-based routes. 

CBR applies when optimal operator orderings differ across input tuple classes. If an operator is very cheap or 
very selective relative to the other operators, or both, then its position will mostly remain unchanged across the 
orderings. This intuition translates into an effective pruning heuristic where we do not consider very inexpensive or 
very selective operators for CBR. Similarly, we can ignore operators that are very expensive or not very selective 
with respect to the other operators because their position is likely to remain unchanged across those orderings as 
well. 

Similar to pruning operators, there are some effective heuristics to prune the attributes considered for CBR. For 
example, we can ignore monotonically increasing (or decreasing) attributes such as timestamps or sequential 
identifiers which typically are generated synthetically. Discrete-valued attributes with large domains, e.g., a 
comments string attribute, may be ignored. (It is advisable to ignore long attributes as classifier attributes for CBR to 
keep routing overhead low.) While it is not hard to detect such attributes automatically, the required information 
often is available from the schema definitions. 

4.5. CBR for Non-Filter Operators 

We have focused so far on filter operators that either pass or drop an input tuple. This class does not capture, for 
example, non-foreign-key join operators, limiting the scope of our techniques. However, our techniques apply to 
non-filter operators with one simple modification. We have used the filter property of an operator only to compute 
entropy in Equation (2) which contributed to the gain ratio value used to identify classifier attributes. The two-class 
notion of passed and dropped tuples is meaningless for non-filter operators whose “selectivity”–the expected 
number of tuples produced per input tuple–can be any non-negative real number. Our real purpose here is to 
quantify the skew in content-specific operator selectivities with respect to the overall selectivity. Gain ratio is one 
proven technique to quantify this skew. There are other techniques, e.g., variance, which apply to non-filter 
operators. Therefore, our techniques for CBR apply to non-filter operators provided the gain-ratio-based test for 
classifier attributes is replaced by an appropriate test that applies to non-filter operators. 

5. Adaptivity 
Since the Eddies architecture has been designed to support adaptive processing, a relevant question to ask is how our 
extensions to support CBR in Eddies affect adaptivity. Adaptivity refers to the ability of the system to find an 
efficient plan quickly for the new data and system characteristics when these change. The changes in the data stream 
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characteristics that can affect routing decisions are changes in operator selectivities and changes in correlations 
between attributes and operators’ selectivities. 

CBR increases both the learning overhead and the routing overhead of Eddies. Fundamentally, reducing run-time 
overhead is at odds with improving adaptivity [9]. The approach we have adopted in this paper is to keep run-time 
overhead as low as possible while being as adaptive as the SBR routing policy in TelegraphCQ. 

To be as adaptive as SBR, CBR keeps the operator selectivity matrix W up to date. Note that W is common 
across both policies. In exchange, CBR settles for slower adaptivity with respect to changes in classifier attributes by 
profiling only one operator at a time. This design decision may fail to detect a new correlation if the classifier 
attribute for an operator changes between two of its profiling phases. However, in spite of this decision, CBR is 
designed to never be less adaptive than SBR. Example 5.1 illustrates why. 

Example 5.1: CBR as adaptive as SBR. Consider that CBR finds Cj to be the classifier attribute for Ol. Then, when 
routing tuple t, CBR assumes the selectivity of Ol to be S[l,i], with vi=fj(t.Cj). However, it may be the case that the 
correlation between Cj and Ol no longer holds since Ol was last profiled due to one of two reasons: 
• No attribute is correlated with Ol. If this is the case, then the selectivity of Ol is given by W[l] and not S[l,i]. 

However, if Cj is not actually correlated to Ol, then all entries S[l,i], with i=1,…,d will quickly converge to W[l] 
(because CBR updates entries in S[] as frequently as those in W[]). 

• Another attribute is correlated with Ol. If this is the case, then we have an argument for more aggressive content-
based routing statistics tracking (e.g., profiling multiple operators simultaneously as done in [3]), not less. In any 
case, given that Cj is not correlated with Ol, all entries S[l,i], with i=1,…,d will still quickly converge to W[l]. □ 

The assumption behind the current CBR design is that operators’ selectivities change more frequently than the 
correlations between operators and tuple content. As such, selectivity is tracked continuously (quick to detect 
changes) while profiling is performed only for a sample of the tuples (slower to detect changes). For example in the 
real-life dataset that we worked with we observed changes in selectivity from 1% to 96% in one operator while the 
best classifier attribute for that operator stayed the same (Section 6.6). 

6. Experimental Results 
We now describe an experimental evaluation of our CBR techniques using a prototype implementation in 
TelegraphCQ [9]. We evaluate the CBR prototype using both synthetic and real life datasets. The synthetic dataset is 
used to evaluate CBR by varying parameters hard to control in a real-life dataset: skew, selectivity, and aggregate 
selectivity. The real-life dataset is used to evaluate CBR’s adaptivity and performance under varying operator costs 
and overhead. 

6.1. Datasets 

The prototype implementation of CBR was evaluated with both a synthetic and a real-life dataset, described below: 
• Stream-Star: We created a synthetic benchmark, Stream-Star, based on a star schema. Instead of a central fact 

table, we used a data stream S.6 Our experiments use N-way join queries of the following form which join 
incoming S tuples with N dimension tables d1, d2, …, dN: 

SELECT * FROM stream S, d1, d2, …, dN
WHERE s.fkd1 = d1.pk // Operator Op1
AND s.fkd2 = d2.pk // Operator Op2
…
AND s.fkdN = dN.pk; // Operator OpN

Each stream consisted of 100,000 tuples. Depending on the query, between two and eight dimension tables 
containing 10,000 tuples each are used. Stream S contains tuples with a single classifier attribute, attrC, which is 
correlated with the selectivities of all operators. (We note that in the real-life dataset described next, different 
operators can have different correlated attributes and these correlations can change, appear, or disappear with 
time. CBR worked equally well in both settings.). Our stream generator is able to produce tuples with any kind of 
non-independence between the classifier attribute attrC and the selectivity of the join operators. For example, it 
can generate a stream with the characteristics shown in Table 1. 

                                                           
6 A star schema was chosen for two reasons: (i) queries over streams normally refer to one single stream source that joins with zero or more local 
tables; and (ii) data stream applications have streams that represent facts, e.g., traffic information, which then join with dimensions, e.g., speed 
sensors and cars. 
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• Lab: The Lab dataset is a trace of readings from 54 sensors in the Intel Research, Berkeley Lab. The readings 
were taken between end of February and beginning of April of 2004. The schema consists of one single stream, 
sensors. Tuples in the stream have attributes light, humidity, temperature, voltage, sensorID, and timestamp 
information (year, month, day, hour, minute, and second) [14]. We cleansed this dataset by removing tuples with 
missing values or impossible values (e.g., negative humidity) that sometimes happen when the sensor batteries 
run low. There are 2.2 million records in the cleansed dataset. For this dataset the readings are sent to 
TelegraphCQ in generation order, as they would if the tuples were being collected from the sensors in real-time. 

6.2. Algorithms, Metrics, and Default Values 

Section 4.2 described most of the details of our implementation of CBR in TelegraphCQ, Content-Learns (Learns in 
the figures), and the non-content-based SBR algorithm in TelegraphCQ. To illustrate the differences between the 
learning overhead and the routing overhead of CBR, in the Stream-Star experiments we include a routing algorithm 
called Content-Knows (Knows in the figures) which does not need to learn classifier attributes automatically. 
Instead, Content-Knows is a theoretical bound that simulates a routing policy that is “told” which attribute is the best 
classifier for each operator and what is the best routing order for each class. 

In addition to the running time, we also use the number of routing calls as a performance metric. The number of 
routing calls shows a clear picture of the quality of the routing algorithm: a bad routing algorithm will miss 
opportunities to route a tuple to the most selective operator, e.g., a tuple may be routed several times before being 
dropped. In addition, the improvement in routing calls due to using Content-Learns instead of SBR acts as a ceiling 
in the improvement we can expect in total running time. 

Unless otherwise stated, the default values used in the experiments are the ones listed in Table 2. 

Parameter Default Value Comment 
P 6% Tuple sampling probability during operator profiling 

|R| 150 tuples Sample size to compute GainRatio 
d 24 Number of buckets in hash partitions 

Confidence 95% Confidence intervals in graphs 

Table 2. Defaults used in experiments and graphs 

6.3. Varying Skew 

In this section we use the Stream-Star dataset to show how CBR performs in the presence of skew among the 
content-specific selectivities of operators. We set the stream to have as many tuple classes as joins. (Each tuple class 
is identified by a unique value of attribute attrC.) Skew was created by setting the selectivity of one operator to A, 
and setting the selectivity of the all other N-1 operators to B, as shown in Table 3. 

 Op1 Op2 … OpN 
Class 1 A B … B 
Class 2 B A … B 

… … … … … 
Class N B B … A 

Table 3. Selectivities for class/operator pairs 

A was varied from 5% to 95% with B varying accordingly such that the overall aggregate selectivity remained 
constant at 5%. (Section 6.4 reports experiments where selectivities are chosen randomly and Section 6.5 reports 
experiments where the aggregate selectivity is varied.) There were 8 other attributes in tuples in the stream not 
correlated with the selectivities of the operators. Thus, Content-Learns must learn that, among all these attributes, 
attrC is the best classifier attribute for all operators. The N-way join query was run for two, four, six, and eight join 
operators. Due to space constraints, we only show results for two and six joins in Figure 3 and Figure 4. 
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Figure 3. Improvement with varying skew (2 joins) 
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Figure 4. Improvement with varying skew (6 joins) 

Note that when A<B (negative skew), a good routing policy should exploit the selectivity skew by routing tuples first 
to the lower selectivity operator corresponding to A. When A>B, a good routing algorithm will avoid the operator 
with selectivity A and route tuples through all the other operators first. 

Overall, the higher the skew between A and B, especially when A<B, the greater the extent by which Content-
Learns outperforms SBR. At most, Content-Learns outperforms SBR by performing 67.8% fewer routing calls (with 
eight operators and the largest skew). Across all experiments, when A<B, Content-Learns required on average 26.9% 
fewer routing calls and when A>B, Content-Learns required 10.2% fewer routing calls. That is, it is more useful to 
know which operator is different by being more selective than it is to know which operator is different for being less 
selective. This happens because more selective operators will appear earlier in operator orderings affecting more 
tuples and having greater performance impact than less selective operators that appear later in the operator order. 

6.4. Varying Selectivities 

In Section 6.3, the choice of selectivities made routing tuples to operators difficult for SBR because all operators 
appeared to be equally selective. Each operator had selectivity A for one class of tuples and B for all other classes. 
Thus, in all cases, to SBR, all operators appeared to have a selectivity of (A + B * (N-1))/N, for the N-way join 
query. 

We continue to use the Stream-Star dataset in the following experiments. Each query was run against 50 
different streams. Attribute attrC was correlated with the selectivities of the operators. However, this time we 
assigned random selectivities to each operator. As before, we included additional attributes (constants, sequences, 
and foreign keys) whose content was not correlated with any of the selectivities of the operators. Figure 5 shows that 
Content-Learns is very effective at learning the right classifier; out of the 16 million routing calls, Content-Learns 
used the wrong classifier only 6.4% of the time. 
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Figure 5. Breakdown of routing calls 

Figure 6 shows the improvement of Content-Learns over SBR both in terms of routing calls and total execution 
time. Note that the larger the number of operators involved, the more opportunities are available for improvement. 
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Figure 6. Improvement with random selectivities 

6.5. Varying Aggregate Selectivity 

In Section 6.3 the overall aggregate selectivity was kept at 5%. In Section 6.4 the operator selectivities were 
randomly selected without any guarantee on the aggregate selectivity. On average, the aggregate selectivity was 8% 
across all streams. This section explores the space of aggregate selectivities from 5% to 35%. For this experiment, 
we ran a 6-way join query over Stream-Star with the operators having random selectivities under the restriction that 
the overall aggregate selectivity was kept at some pre-determined value. The aggregate selectivity is varied in Figure 
7. Each point in the plot represents the average improvement of CBR over SBR for 50 streams of 100,000 tuples 
each. 
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Figure 7. Improvement with varying aggregate selectivity (6 joins) 
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6.6. Adaptivity Experiments 

In this and subsequent sections, we will use the real-life Lab dataset. In the Lab dataset the best classifier attributes 
for operators change, appear, and disappear as time progresses. Query Q1 is used to illustrate how CBR adapts in the 
presence of variations of selectivity and variations of correlation. 

SELECT * FROM sensors WHERE light>500 (Q1) 

For example, the amount of light varies with the time of day in the obvious way: during the day there is more light 
than during the night. However, the predicate that evaluates “light>500” may actually be correlated with sensorID 
and not with, say, hours. This happens because some sensors are placed in illuminated areas like windows or in 
offices, while others are placed in hallways with less human activity and light. Furthermore, if the operator that 
checks if light>500 evaluated to true for, say, sensor 7, at 12h34pm, then it is very likely that it will evaluate to true 
for the same sensor 1 minute later. During the night, when it is dark and when people have left the building, the 
operator that tests for light will almost always have zero selectivity. When that is the case, no attribute can be found 
to be correlated with the operator; that is, if the selectivity of an operator is 0% (or 100%), then all attributes have 
zero information gain ratio. 

Figure 8 shows the result of running query Q1 for three days and nights of data. The top part of the figure shows 
the selectivity of the predicate; note that during the day the selectivity does not reach 100%, thus, some sensors are 
in darker areas than others. In the middle of the figure, we show what attribute is most correlated with the selectivity 
of the operator for each moment in time. sensorID is almost always the best classifier attribute. Sometimes, 
especially during transitions night-day or day-night, the attribute hours is the best classifier attribute. In three other 
moments, one of the other attributes was found to be the best classifier. In all other periods not covered by any of the 
black lines from “sensorID”, “hours”, and “All others”, CBR could not find any attribute correlated with the 
selectivity of the operator (because its selectivity was 0%). Finally, the lower part of the Figure 8 shows how the 
information gain of attribute sensorID varies with time. Although Figure 8 is indicative that data characteristics in 
the stream change dramatically and that CBR is able to adapt to them, queries with only one operator (like query 
Q1) do not require good routing policies. 

 
To evaluate the adaptivity of CBR on the Lab dataset, we ran queries like query Q2 below: 

SELECT * FROM sensors (Q2)
WHERE light BETWEEN lowL AND highL
AND temperature BETWEEN lowT AND highT
AND humidity BETWEEN lowH AND highH
AND voltage BETWEEN lowV AND highV;

Figure 8. Change in selectivity, best classifiers, and gain ratio 
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For each attribute, the parameter lowX was randomly chosen from among the lowest 25% values in the attribute’s 
domain and the parameter highX was randomly chosen from the highest 25% values in the domain. 

For 50 different random Q2 queries, we obtained on average an improvement of 8% in routing calls, 5% in total 
execution time, 7% in time spent evaluating operators, and 18% in routing calls needed until a tuple is dropped. The 
results are positive but modest. Two reasons explain why CBR does not provide greater improvements: 
(i) There are overheads in TelegraphCQ unrelated to routing or operator execution [12], for instance, the IO 

required to get the stream tuples from the network and the overhead of queuing those tuples before they get to 
the Eddy. These overheads limit the benefit we can obtain from a better routing policy. In Section 6.7 we 
explore operators with higher execution costs and show that as operator costs increase, CBR’s performance 
improves. 

(ii) CBR can only obtain improvements when the selectivities of the operators are not close to 0% or 100%. As seen 
in Figure 8 there are large intervals in the dataset where the selectivities of operators stay very close to 0% or 
very close to 100%. The selectivity graphs for the other operators (not shown) have similar intervals very close 
to 0% or to 100%. For Q2, this happened 57.2% of the time, CBR yields improvements only on the other 42.8% 
of the time. 

6.7. Varying Operator Cost 

In this section we vary the time it takes an operator to process a tuple and report the corresponding CBR’s 
performance improvements. There are two motivations for exploring the space of higher operator costs: (i) there are 
applications where operator costs can be very high (for example, [14] reports operator costs, expressed in terms of 
power consumption, with cost differences of two orders of magnitude between operators) and (ii) the 
implementation of TelegraphCQ we used has overheads [12] that overshadow operator costs. By increasing the 
operator costs, we decrease the weight of these overheads in the overall execution time. 
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Figure 9. Improvement with varying operator cost 

Figure 9 shows the improvement in performance from using Content-Learns in queries like Q2. The improvement in 
the number of routing calls remains constant throughout and is shown only for reference. The improvement in 
execution time improves as the operator cost increases. The increase in operator cost was obtained by running CPU 
intensive computations every time a tuple had to be processed by an operator. 

6.8. Run-time Overhead of CBR 

As mentioned in Section 4.3, CBR has two overheads: routing overhead and learning overhead. We instrumented the 
code to determine the time spent by each of these overheads. The routing overhead was measured as the time taken 
by the function that performs routing decisions (the algorithm of Section 4.2). The learning overhead was measured 
as the time taken for updating the data structures described in Section 4.1 together with the time spent computing the 
best classifier attributes for each profiled operator. We also instrumented the SBR version to report its overheads. 
Although SBR does not determine classifier attributes, it spends time updating statistics as well. Figure 10 reports, 
per routed tuple7, these overheads, in microseconds, for both SBR and CBR policies for the experiments of Section 
6.4 (Stream-Star dataset). For both policies, the total overhead (routing together with learning and updating 
statistics) was around 4-5% of the total execution time. 

                                                           
7 Per tuple overhead is computed as total overhead divided by the number of routing calls. Note that the number of routing calls is equal to the 
number of times the Eddy has to route tuples. 
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In addition, we also measured the worst case scenario for CBR: when the routing policy is irrelevant, as is the case 
for queries with one operator only. If there is just one operator, no benefit can be gained from different routing 
policies. Thus, differences in total execution time must be from overhead and not from better decisions. For this 
experiment we run query Q1 from Section 6.6 over the Lab dataset (without using the operator delays mentioned in 
the previous section) for both CBR and SBR. The average over 10 runs of query Q1 shows that, when no benefit is 
possible, CBR is about 0.8% worse than SBR in total execution time. 

7. Conclusions 
In this paper we proposed a new concept: assigning different query execution plans for subsets of data with different 
statistical properties. As such, we developed a new query processing technique called content-based routing that 
eliminates the single-plan restriction in current systems. We showed how the adaptive architecture of a data stream 
management system, TelegraphCQ, can be extended with content-based routing to enable the system to exploit 
correlations between tuple content and operator selectivities. 

Our most important contribution was to show that content-based learning and routing can be simultaneously 
inexpensive and adaptive while still achieving significant performance improvements. We presented the Content-
Learns algorithm which learns good content-based routes automatically, and we showed that the overhead of 
maintaining the extra statistics and computing classifier attributes is negligible when compared to a non-CBR 
algorithm. 

Our prototype implementation indicates that CBR can improve execution time by up to 35% when compared 
with routing based on operator statistics alone. For all queries with more than one operator, CBR yielded better 
results than SBR, both in the number of routing calls as well as in absolute running time. In addition, the 
performance comparison between Content-Learns and Content-Knows showed that Content-Learns learns classifier 
attributes correctly in real time. 

8. Future Work 
While CBR appears to be a promising approach for query processing, many issues remain to be explored: 
• In this paper we considered only operator-attribute combinations as the basis for CBR. This approach could be 

extended to consider combinations of operator sets (or lists) and attribute sets. The relevance of classifier 
attribute sets was discussed briefly in Section 3. Operator sets for CBR are useful in the presence of non-
commutative operators and also to reduce routing overhead. 

• Some run-time parameters in our implementation of CBR are not yet learned automatically. These include the 
number of partitions used by the hash functions, the sampling rate, and the sample size for computing gain ratio. 

• Although our work is not strictly comparable with [13] it is useful to contrast some high level design decisions. 
In [13] the goal is to minimize power consumption over of a large network of sensors. This is achieved by 
collecting large amounts of data before running queries, processing the data with heavy machine learning 
algorithms to learn conditional plans, and distributing those plans to sensors. Our work, though not covering all 
sensor acquisitional scenarios, is much more adaptive: it uses lightweight techniques to detect correlations and 
produce the different plans for different data (a form of conditional plans) on the fly. An interesting avenue of 
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future work is trying to combine the light-weight adaptive nature of our techniques with the distributed nature 
and power-consumption minimization of acquisitional systems. 
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